| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m2detleiblem6 | Structured version Visualization version GIF version | ||
| Description: Lemma 6 for m2detleib 22552. (Contributed by AV, 20-Dec-2018.) |
| Ref | Expression |
|---|---|
| m2detleiblem1.n | ⊢ 𝑁 = {1, 2} |
| m2detleiblem1.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| m2detleiblem1.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
| m2detleiblem1.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
| m2detleiblem1.o | ⊢ 1 = (1r‘𝑅) |
| m2detleiblem1.i | ⊢ 𝐼 = (invg‘𝑅) |
| Ref | Expression |
|---|---|
| m2detleiblem6 | ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (𝑌‘(𝑆‘𝑄)) = (𝐼‘ 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex 11114 | . . . . 5 ⊢ 1 ∈ V | |
| 2 | 2nn 12204 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 3 | prex 5377 | . . . . . . 7 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ V | |
| 4 | 3 | prid2 4715 | . . . . . 6 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} |
| 5 | eqid 2731 | . . . . . . 7 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
| 6 | m2detleiblem1.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
| 7 | m2detleiblem1.n | . . . . . . 7 ⊢ 𝑁 = {1, 2} | |
| 8 | 5, 6, 7 | symg2bas 19311 | . . . . . 6 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}}) |
| 9 | 4, 8 | eleqtrrid 2838 | . . . . 5 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → {〈1, 2〉, 〈2, 1〉} ∈ 𝑃) |
| 10 | 1, 2, 9 | mp2an 692 | . . . 4 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ 𝑃 |
| 11 | eleq1 2819 | . . . 4 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → (𝑄 ∈ 𝑃 ↔ {〈1, 2〉, 〈2, 1〉} ∈ 𝑃)) | |
| 12 | 10, 11 | mpbiri 258 | . . 3 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → 𝑄 ∈ 𝑃) |
| 13 | m2detleiblem1.y | . . . 4 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
| 14 | m2detleiblem1.s | . . . 4 ⊢ 𝑆 = (pmSgn‘𝑁) | |
| 15 | m2detleiblem1.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 16 | 7, 6, 13, 14, 15 | m2detleiblem1 22545 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
| 17 | 12, 16 | sylan2 593 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
| 18 | fveq2 6828 | . . . . 5 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → ((pmSgn‘𝑁)‘𝑄) = ((pmSgn‘𝑁)‘{〈1, 2〉, 〈2, 1〉})) | |
| 19 | 18 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → ((pmSgn‘𝑁)‘𝑄) = ((pmSgn‘𝑁)‘{〈1, 2〉, 〈2, 1〉})) |
| 20 | eqid 2731 | . . . . 5 ⊢ ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁) | |
| 21 | eqid 2731 | . . . . 5 ⊢ (pmSgn‘𝑁) = (pmSgn‘𝑁) | |
| 22 | 7, 5, 6, 20, 21 | psgnprfval2 19441 | . . . 4 ⊢ ((pmSgn‘𝑁)‘{〈1, 2〉, 〈2, 1〉}) = -1 |
| 23 | 19, 22 | eqtrdi 2782 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → ((pmSgn‘𝑁)‘𝑄) = -1) |
| 24 | 23 | oveq1d 7367 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 ) = (-1(.g‘𝑅) 1 )) |
| 25 | ringgrp 20162 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 26 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 27 | 26, 15 | ringidcl 20189 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
| 28 | eqid 2731 | . . . . 5 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 29 | m2detleiblem1.i | . . . . 5 ⊢ 𝐼 = (invg‘𝑅) | |
| 30 | 26, 28, 29 | mulgm1 19013 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ (Base‘𝑅)) → (-1(.g‘𝑅) 1 ) = (𝐼‘ 1 )) |
| 31 | 25, 27, 30 | syl2anc 584 | . . 3 ⊢ (𝑅 ∈ Ring → (-1(.g‘𝑅) 1 ) = (𝐼‘ 1 )) |
| 32 | 31 | adantr 480 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (-1(.g‘𝑅) 1 ) = (𝐼‘ 1 )) |
| 33 | 17, 24, 32 | 3eqtrd 2770 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (𝑌‘(𝑆‘𝑄)) = (𝐼‘ 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {cpr 4577 〈cop 4581 ran crn 5620 ‘cfv 6487 (class class class)co 7352 1c1 11013 -cneg 11351 ℕcn 12131 2c2 12186 Basecbs 17126 Grpcgrp 18852 invgcminusg 18853 .gcmg 18986 SymGrpcsymg 19287 pmTrspcpmtr 19359 pmSgncpsgn 19407 1rcur 20105 Ringcrg 20157 ℤRHomczrh 21442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-addf 11091 ax-mulf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9800 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-xnn0 12461 df-z 12475 df-dec 12595 df-uz 12739 df-rp 12897 df-fz 13414 df-fzo 13561 df-seq 13915 df-exp 13975 df-fac 14187 df-bc 14216 df-hash 14244 df-word 14427 df-lsw 14476 df-concat 14484 df-s1 14510 df-substr 14555 df-pfx 14585 df-splice 14663 df-reverse 14672 df-s2 14761 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-starv 17182 df-tset 17186 df-ple 17187 df-ds 17189 df-unif 17190 df-0g 17351 df-gsum 17352 df-mre 17494 df-mrc 17495 df-acs 17497 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-mhm 18697 df-submnd 18698 df-efmnd 18783 df-grp 18855 df-minusg 18856 df-mulg 18987 df-subg 19042 df-ghm 19131 df-gim 19177 df-oppg 19264 df-symg 19288 df-pmtr 19360 df-psgn 19409 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-cring 20160 df-rhm 20396 df-subrng 20467 df-subrg 20491 df-cnfld 21298 df-zring 21390 df-zrh 21446 |
| This theorem is referenced by: m2detleib 22552 |
| Copyright terms: Public domain | W3C validator |