MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleiblem6 Structured version   Visualization version   GIF version

Theorem m2detleiblem6 22128
Description: Lemma 6 for m2detleib 22133. (Contributed by AV, 20-Dec-2018.)
Hypotheses
Ref Expression
m2detleiblem1.n 𝑁 = {1, 2}
m2detleiblem1.p 𝑃 = (Base‘(SymGrp‘𝑁))
m2detleiblem1.y 𝑌 = (ℤRHom‘𝑅)
m2detleiblem1.s 𝑆 = (pmSgn‘𝑁)
m2detleiblem1.o 1 = (1r𝑅)
m2detleiblem1.i 𝐼 = (invg𝑅)
Assertion
Ref Expression
m2detleiblem6 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → (𝑌‘(𝑆𝑄)) = (𝐼1 ))

Proof of Theorem m2detleiblem6
StepHypRef Expression
1 1ex 11210 . . . . 5 1 ∈ V
2 2nn 12285 . . . . 5 2 ∈ ℕ
3 prex 5433 . . . . . . 7 {⟨1, 2⟩, ⟨2, 1⟩} ∈ V
43prid2 4768 . . . . . 6 {⟨1, 2⟩, ⟨2, 1⟩} ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
5 eqid 2733 . . . . . . 7 (SymGrp‘𝑁) = (SymGrp‘𝑁)
6 m2detleiblem1.p . . . . . . 7 𝑃 = (Base‘(SymGrp‘𝑁))
7 m2detleiblem1.n . . . . . . 7 𝑁 = {1, 2}
85, 6, 7symg2bas 19260 . . . . . 6 ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}})
94, 8eleqtrrid 2841 . . . . 5 ((1 ∈ V ∧ 2 ∈ ℕ) → {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑃)
101, 2, 9mp2an 691 . . . 4 {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑃
11 eleq1 2822 . . . 4 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑄𝑃 ↔ {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑃))
1210, 11mpbiri 258 . . 3 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → 𝑄𝑃)
13 m2detleiblem1.y . . . 4 𝑌 = (ℤRHom‘𝑅)
14 m2detleiblem1.s . . . 4 𝑆 = (pmSgn‘𝑁)
15 m2detleiblem1.o . . . 4 1 = (1r𝑅)
167, 6, 13, 14, 15m2detleiblem1 22126 . . 3 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g𝑅) 1 ))
1712, 16sylan2 594 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → (𝑌‘(𝑆𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g𝑅) 1 ))
18 fveq2 6892 . . . . 5 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → ((pmSgn‘𝑁)‘𝑄) = ((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩}))
1918adantl 483 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → ((pmSgn‘𝑁)‘𝑄) = ((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩}))
20 eqid 2733 . . . . 5 ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁)
21 eqid 2733 . . . . 5 (pmSgn‘𝑁) = (pmSgn‘𝑁)
227, 5, 6, 20, 21psgnprfval2 19391 . . . 4 ((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩}) = -1
2319, 22eqtrdi 2789 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → ((pmSgn‘𝑁)‘𝑄) = -1)
2423oveq1d 7424 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → (((pmSgn‘𝑁)‘𝑄)(.g𝑅) 1 ) = (-1(.g𝑅) 1 ))
25 ringgrp 20061 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
26 eqid 2733 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2726, 15ringidcl 20083 . . . 4 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
28 eqid 2733 . . . . 5 (.g𝑅) = (.g𝑅)
29 m2detleiblem1.i . . . . 5 𝐼 = (invg𝑅)
3026, 28, 29mulgm1 18974 . . . 4 ((𝑅 ∈ Grp ∧ 1 ∈ (Base‘𝑅)) → (-1(.g𝑅) 1 ) = (𝐼1 ))
3125, 27, 30syl2anc 585 . . 3 (𝑅 ∈ Ring → (-1(.g𝑅) 1 ) = (𝐼1 ))
3231adantr 482 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → (-1(.g𝑅) 1 ) = (𝐼1 ))
3317, 24, 323eqtrd 2777 1 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → (𝑌‘(𝑆𝑄)) = (𝐼1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  {cpr 4631  cop 4635  ran crn 5678  cfv 6544  (class class class)co 7409  1c1 11111  -cneg 11445  cn 12212  2c2 12267  Basecbs 17144  Grpcgrp 18819  invgcminusg 18820  .gcmg 18950  SymGrpcsymg 19234  pmTrspcpmtr 19309  pmSgncpsgn 19357  1rcur 20004  Ringcrg 20056  ℤRHomczrh 21049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-addf 11189  ax-mulf 11190
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-xor 1511  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-ot 4638  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-tpos 8211  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-xnn0 12545  df-z 12559  df-dec 12678  df-uz 12823  df-rp 12975  df-fz 13485  df-fzo 13628  df-seq 13967  df-exp 14028  df-fac 14234  df-bc 14263  df-hash 14291  df-word 14465  df-lsw 14513  df-concat 14521  df-s1 14546  df-substr 14591  df-pfx 14621  df-splice 14700  df-reverse 14709  df-s2 14799  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-starv 17212  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-0g 17387  df-gsum 17388  df-mre 17530  df-mrc 17531  df-acs 17533  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-mhm 18671  df-submnd 18672  df-efmnd 18750  df-grp 18822  df-minusg 18823  df-mulg 18951  df-subg 19003  df-ghm 19090  df-gim 19133  df-oppg 19210  df-symg 19235  df-pmtr 19310  df-psgn 19359  df-cmn 19650  df-mgp 19988  df-ur 20005  df-ring 20058  df-cring 20059  df-rnghom 20251  df-subrg 20317  df-cnfld 20945  df-zring 21018  df-zrh 21053
This theorem is referenced by:  m2detleib  22133
  Copyright terms: Public domain W3C validator