MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleiblem6 Structured version   Visualization version   GIF version

Theorem m2detleiblem6 22569
Description: Lemma 6 for m2detleib 22574. (Contributed by AV, 20-Dec-2018.)
Hypotheses
Ref Expression
m2detleiblem1.n 𝑁 = {1, 2}
m2detleiblem1.p 𝑃 = (Base‘(SymGrp‘𝑁))
m2detleiblem1.y 𝑌 = (ℤRHom‘𝑅)
m2detleiblem1.s 𝑆 = (pmSgn‘𝑁)
m2detleiblem1.o 1 = (1r𝑅)
m2detleiblem1.i 𝐼 = (invg𝑅)
Assertion
Ref Expression
m2detleiblem6 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → (𝑌‘(𝑆𝑄)) = (𝐼1 ))

Proof of Theorem m2detleiblem6
StepHypRef Expression
1 1ex 11236 . . . . 5 1 ∈ V
2 2nn 12318 . . . . 5 2 ∈ ℕ
3 prex 5412 . . . . . . 7 {⟨1, 2⟩, ⟨2, 1⟩} ∈ V
43prid2 4744 . . . . . 6 {⟨1, 2⟩, ⟨2, 1⟩} ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
5 eqid 2736 . . . . . . 7 (SymGrp‘𝑁) = (SymGrp‘𝑁)
6 m2detleiblem1.p . . . . . . 7 𝑃 = (Base‘(SymGrp‘𝑁))
7 m2detleiblem1.n . . . . . . 7 𝑁 = {1, 2}
85, 6, 7symg2bas 19379 . . . . . 6 ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}})
94, 8eleqtrrid 2842 . . . . 5 ((1 ∈ V ∧ 2 ∈ ℕ) → {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑃)
101, 2, 9mp2an 692 . . . 4 {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑃
11 eleq1 2823 . . . 4 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑄𝑃 ↔ {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑃))
1210, 11mpbiri 258 . . 3 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → 𝑄𝑃)
13 m2detleiblem1.y . . . 4 𝑌 = (ℤRHom‘𝑅)
14 m2detleiblem1.s . . . 4 𝑆 = (pmSgn‘𝑁)
15 m2detleiblem1.o . . . 4 1 = (1r𝑅)
167, 6, 13, 14, 15m2detleiblem1 22567 . . 3 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g𝑅) 1 ))
1712, 16sylan2 593 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → (𝑌‘(𝑆𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g𝑅) 1 ))
18 fveq2 6881 . . . . 5 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → ((pmSgn‘𝑁)‘𝑄) = ((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩}))
1918adantl 481 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → ((pmSgn‘𝑁)‘𝑄) = ((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩}))
20 eqid 2736 . . . . 5 ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁)
21 eqid 2736 . . . . 5 (pmSgn‘𝑁) = (pmSgn‘𝑁)
227, 5, 6, 20, 21psgnprfval2 19509 . . . 4 ((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩}) = -1
2319, 22eqtrdi 2787 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → ((pmSgn‘𝑁)‘𝑄) = -1)
2423oveq1d 7425 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → (((pmSgn‘𝑁)‘𝑄)(.g𝑅) 1 ) = (-1(.g𝑅) 1 ))
25 ringgrp 20203 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
26 eqid 2736 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2726, 15ringidcl 20230 . . . 4 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
28 eqid 2736 . . . . 5 (.g𝑅) = (.g𝑅)
29 m2detleiblem1.i . . . . 5 𝐼 = (invg𝑅)
3026, 28, 29mulgm1 19082 . . . 4 ((𝑅 ∈ Grp ∧ 1 ∈ (Base‘𝑅)) → (-1(.g𝑅) 1 ) = (𝐼1 ))
3125, 27, 30syl2anc 584 . . 3 (𝑅 ∈ Ring → (-1(.g𝑅) 1 ) = (𝐼1 ))
3231adantr 480 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → (-1(.g𝑅) 1 ) = (𝐼1 ))
3317, 24, 323eqtrd 2775 1 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → (𝑌‘(𝑆𝑄)) = (𝐼1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  {cpr 4608  cop 4612  ran crn 5660  cfv 6536  (class class class)co 7410  1c1 11135  -cneg 11472  cn 12245  2c2 12300  Basecbs 17233  Grpcgrp 18921  invgcminusg 18922  .gcmg 19055  SymGrpcsymg 19355  pmTrspcpmtr 19427  pmSgncpsgn 19475  1rcur 20146  Ringcrg 20198  ℤRHomczrh 21465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-word 14537  df-lsw 14586  df-concat 14594  df-s1 14619  df-substr 14664  df-pfx 14694  df-splice 14773  df-reverse 14782  df-s2 14872  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-0g 17460  df-gsum 17461  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-efmnd 18852  df-grp 18924  df-minusg 18925  df-mulg 19056  df-subg 19111  df-ghm 19201  df-gim 19247  df-oppg 19334  df-symg 19356  df-pmtr 19428  df-psgn 19477  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-rhm 20437  df-subrng 20511  df-subrg 20535  df-cnfld 21321  df-zring 21413  df-zrh 21469
This theorem is referenced by:  m2detleib  22574
  Copyright terms: Public domain W3C validator