MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleiblem6 Structured version   Visualization version   GIF version

Theorem m2detleiblem6 21756
Description: Lemma 6 for m2detleib 21761. (Contributed by AV, 20-Dec-2018.)
Hypotheses
Ref Expression
m2detleiblem1.n 𝑁 = {1, 2}
m2detleiblem1.p 𝑃 = (Base‘(SymGrp‘𝑁))
m2detleiblem1.y 𝑌 = (ℤRHom‘𝑅)
m2detleiblem1.s 𝑆 = (pmSgn‘𝑁)
m2detleiblem1.o 1 = (1r𝑅)
m2detleiblem1.i 𝐼 = (invg𝑅)
Assertion
Ref Expression
m2detleiblem6 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → (𝑌‘(𝑆𝑄)) = (𝐼1 ))

Proof of Theorem m2detleiblem6
StepHypRef Expression
1 1ex 10955 . . . . 5 1 ∈ V
2 2nn 12029 . . . . 5 2 ∈ ℕ
3 prex 5358 . . . . . . 7 {⟨1, 2⟩, ⟨2, 1⟩} ∈ V
43prid2 4704 . . . . . 6 {⟨1, 2⟩, ⟨2, 1⟩} ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
5 eqid 2739 . . . . . . 7 (SymGrp‘𝑁) = (SymGrp‘𝑁)
6 m2detleiblem1.p . . . . . . 7 𝑃 = (Base‘(SymGrp‘𝑁))
7 m2detleiblem1.n . . . . . . 7 𝑁 = {1, 2}
85, 6, 7symg2bas 18981 . . . . . 6 ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}})
94, 8eleqtrrid 2847 . . . . 5 ((1 ∈ V ∧ 2 ∈ ℕ) → {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑃)
101, 2, 9mp2an 688 . . . 4 {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑃
11 eleq1 2827 . . . 4 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑄𝑃 ↔ {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑃))
1210, 11mpbiri 257 . . 3 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → 𝑄𝑃)
13 m2detleiblem1.y . . . 4 𝑌 = (ℤRHom‘𝑅)
14 m2detleiblem1.s . . . 4 𝑆 = (pmSgn‘𝑁)
15 m2detleiblem1.o . . . 4 1 = (1r𝑅)
167, 6, 13, 14, 15m2detleiblem1 21754 . . 3 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g𝑅) 1 ))
1712, 16sylan2 592 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → (𝑌‘(𝑆𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g𝑅) 1 ))
18 fveq2 6768 . . . . 5 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → ((pmSgn‘𝑁)‘𝑄) = ((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩}))
1918adantl 481 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → ((pmSgn‘𝑁)‘𝑄) = ((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩}))
20 eqid 2739 . . . . 5 ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁)
21 eqid 2739 . . . . 5 (pmSgn‘𝑁) = (pmSgn‘𝑁)
227, 5, 6, 20, 21psgnprfval2 19112 . . . 4 ((pmSgn‘𝑁)‘{⟨1, 2⟩, ⟨2, 1⟩}) = -1
2319, 22eqtrdi 2795 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → ((pmSgn‘𝑁)‘𝑄) = -1)
2423oveq1d 7283 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → (((pmSgn‘𝑁)‘𝑄)(.g𝑅) 1 ) = (-1(.g𝑅) 1 ))
25 ringgrp 19769 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
26 eqid 2739 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2726, 15ringidcl 19788 . . . 4 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
28 eqid 2739 . . . . 5 (.g𝑅) = (.g𝑅)
29 m2detleiblem1.i . . . . 5 𝐼 = (invg𝑅)
3026, 28, 29mulgm1 18705 . . . 4 ((𝑅 ∈ Grp ∧ 1 ∈ (Base‘𝑅)) → (-1(.g𝑅) 1 ) = (𝐼1 ))
3125, 27, 30syl2anc 583 . . 3 (𝑅 ∈ Ring → (-1(.g𝑅) 1 ) = (𝐼1 ))
3231adantr 480 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → (-1(.g𝑅) 1 ) = (𝐼1 ))
3317, 24, 323eqtrd 2783 1 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → (𝑌‘(𝑆𝑄)) = (𝐼1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  {cpr 4568  cop 4572  ran crn 5589  cfv 6430  (class class class)co 7268  1c1 10856  -cneg 11189  cn 11956  2c2 12011  Basecbs 16893  Grpcgrp 18558  invgcminusg 18559  .gcmg 18681  SymGrpcsymg 18955  pmTrspcpmtr 19030  pmSgncpsgn 19078  1rcur 19718  Ringcrg 19764  ℤRHomczrh 20682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-addf 10934  ax-mulf 10935
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-xor 1506  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-ot 4575  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-tpos 8026  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-oadd 8285  df-er 8472  df-map 8591  df-pm 8592  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-dju 9643  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-xnn0 12289  df-z 12303  df-dec 12420  df-uz 12565  df-rp 12713  df-fz 13222  df-fzo 13365  df-seq 13703  df-exp 13764  df-fac 13969  df-bc 13998  df-hash 14026  df-word 14199  df-lsw 14247  df-concat 14255  df-s1 14282  df-substr 14335  df-pfx 14365  df-splice 14444  df-reverse 14453  df-s2 14542  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-starv 16958  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-0g 17133  df-gsum 17134  df-mre 17276  df-mrc 17277  df-acs 17279  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-mhm 18411  df-submnd 18412  df-efmnd 18489  df-grp 18561  df-minusg 18562  df-mulg 18682  df-subg 18733  df-ghm 18813  df-gim 18856  df-oppg 18931  df-symg 18956  df-pmtr 19031  df-psgn 19080  df-cmn 19369  df-mgp 19702  df-ur 19719  df-ring 19766  df-cring 19767  df-rnghom 19940  df-subrg 20003  df-cnfld 20579  df-zring 20652  df-zrh 20686
This theorem is referenced by:  m2detleib  21761
  Copyright terms: Public domain W3C validator