Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > m2detleiblem6 | Structured version Visualization version GIF version |
Description: Lemma 6 for m2detleib 21761. (Contributed by AV, 20-Dec-2018.) |
Ref | Expression |
---|---|
m2detleiblem1.n | ⊢ 𝑁 = {1, 2} |
m2detleiblem1.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
m2detleiblem1.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
m2detleiblem1.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
m2detleiblem1.o | ⊢ 1 = (1r‘𝑅) |
m2detleiblem1.i | ⊢ 𝐼 = (invg‘𝑅) |
Ref | Expression |
---|---|
m2detleiblem6 | ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (𝑌‘(𝑆‘𝑄)) = (𝐼‘ 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ex 10955 | . . . . 5 ⊢ 1 ∈ V | |
2 | 2nn 12029 | . . . . 5 ⊢ 2 ∈ ℕ | |
3 | prex 5358 | . . . . . . 7 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ V | |
4 | 3 | prid2 4704 | . . . . . 6 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} |
5 | eqid 2739 | . . . . . . 7 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
6 | m2detleiblem1.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
7 | m2detleiblem1.n | . . . . . . 7 ⊢ 𝑁 = {1, 2} | |
8 | 5, 6, 7 | symg2bas 18981 | . . . . . 6 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}}) |
9 | 4, 8 | eleqtrrid 2847 | . . . . 5 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → {〈1, 2〉, 〈2, 1〉} ∈ 𝑃) |
10 | 1, 2, 9 | mp2an 688 | . . . 4 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ 𝑃 |
11 | eleq1 2827 | . . . 4 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → (𝑄 ∈ 𝑃 ↔ {〈1, 2〉, 〈2, 1〉} ∈ 𝑃)) | |
12 | 10, 11 | mpbiri 257 | . . 3 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → 𝑄 ∈ 𝑃) |
13 | m2detleiblem1.y | . . . 4 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
14 | m2detleiblem1.s | . . . 4 ⊢ 𝑆 = (pmSgn‘𝑁) | |
15 | m2detleiblem1.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
16 | 7, 6, 13, 14, 15 | m2detleiblem1 21754 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
17 | 12, 16 | sylan2 592 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
18 | fveq2 6768 | . . . . 5 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → ((pmSgn‘𝑁)‘𝑄) = ((pmSgn‘𝑁)‘{〈1, 2〉, 〈2, 1〉})) | |
19 | 18 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → ((pmSgn‘𝑁)‘𝑄) = ((pmSgn‘𝑁)‘{〈1, 2〉, 〈2, 1〉})) |
20 | eqid 2739 | . . . . 5 ⊢ ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁) | |
21 | eqid 2739 | . . . . 5 ⊢ (pmSgn‘𝑁) = (pmSgn‘𝑁) | |
22 | 7, 5, 6, 20, 21 | psgnprfval2 19112 | . . . 4 ⊢ ((pmSgn‘𝑁)‘{〈1, 2〉, 〈2, 1〉}) = -1 |
23 | 19, 22 | eqtrdi 2795 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → ((pmSgn‘𝑁)‘𝑄) = -1) |
24 | 23 | oveq1d 7283 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 ) = (-1(.g‘𝑅) 1 )) |
25 | ringgrp 19769 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
26 | eqid 2739 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
27 | 26, 15 | ringidcl 19788 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
28 | eqid 2739 | . . . . 5 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
29 | m2detleiblem1.i | . . . . 5 ⊢ 𝐼 = (invg‘𝑅) | |
30 | 26, 28, 29 | mulgm1 18705 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ (Base‘𝑅)) → (-1(.g‘𝑅) 1 ) = (𝐼‘ 1 )) |
31 | 25, 27, 30 | syl2anc 583 | . . 3 ⊢ (𝑅 ∈ Ring → (-1(.g‘𝑅) 1 ) = (𝐼‘ 1 )) |
32 | 31 | adantr 480 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (-1(.g‘𝑅) 1 ) = (𝐼‘ 1 )) |
33 | 17, 24, 32 | 3eqtrd 2783 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (𝑌‘(𝑆‘𝑄)) = (𝐼‘ 1 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 {cpr 4568 〈cop 4572 ran crn 5589 ‘cfv 6430 (class class class)co 7268 1c1 10856 -cneg 11189 ℕcn 11956 2c2 12011 Basecbs 16893 Grpcgrp 18558 invgcminusg 18559 .gcmg 18681 SymGrpcsymg 18955 pmTrspcpmtr 19030 pmSgncpsgn 19078 1rcur 19718 Ringcrg 19764 ℤRHomczrh 20682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-addf 10934 ax-mulf 10935 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-xor 1506 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-ot 4575 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-tpos 8026 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-oadd 8285 df-er 8472 df-map 8591 df-pm 8592 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-dju 9643 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-xnn0 12289 df-z 12303 df-dec 12420 df-uz 12565 df-rp 12713 df-fz 13222 df-fzo 13365 df-seq 13703 df-exp 13764 df-fac 13969 df-bc 13998 df-hash 14026 df-word 14199 df-lsw 14247 df-concat 14255 df-s1 14282 df-substr 14335 df-pfx 14365 df-splice 14444 df-reverse 14453 df-s2 14542 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-starv 16958 df-tset 16962 df-ple 16963 df-ds 16965 df-unif 16966 df-0g 17133 df-gsum 17134 df-mre 17276 df-mrc 17277 df-acs 17279 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-mhm 18411 df-submnd 18412 df-efmnd 18489 df-grp 18561 df-minusg 18562 df-mulg 18682 df-subg 18733 df-ghm 18813 df-gim 18856 df-oppg 18931 df-symg 18956 df-pmtr 19031 df-psgn 19080 df-cmn 19369 df-mgp 19702 df-ur 19719 df-ring 19766 df-cring 19767 df-rnghom 19940 df-subrg 20003 df-cnfld 20579 df-zring 20652 df-zrh 20686 |
This theorem is referenced by: m2detleib 21761 |
Copyright terms: Public domain | W3C validator |