| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m2detleiblem6 | Structured version Visualization version GIF version | ||
| Description: Lemma 6 for m2detleib 22518. (Contributed by AV, 20-Dec-2018.) |
| Ref | Expression |
|---|---|
| m2detleiblem1.n | ⊢ 𝑁 = {1, 2} |
| m2detleiblem1.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| m2detleiblem1.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
| m2detleiblem1.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
| m2detleiblem1.o | ⊢ 1 = (1r‘𝑅) |
| m2detleiblem1.i | ⊢ 𝐼 = (invg‘𝑅) |
| Ref | Expression |
|---|---|
| m2detleiblem6 | ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (𝑌‘(𝑆‘𝑄)) = (𝐼‘ 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex 11170 | . . . . 5 ⊢ 1 ∈ V | |
| 2 | 2nn 12259 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 3 | prex 5392 | . . . . . . 7 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ V | |
| 4 | 3 | prid2 4727 | . . . . . 6 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} |
| 5 | eqid 2729 | . . . . . . 7 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
| 6 | m2detleiblem1.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
| 7 | m2detleiblem1.n | . . . . . . 7 ⊢ 𝑁 = {1, 2} | |
| 8 | 5, 6, 7 | symg2bas 19323 | . . . . . 6 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}}) |
| 9 | 4, 8 | eleqtrrid 2835 | . . . . 5 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → {〈1, 2〉, 〈2, 1〉} ∈ 𝑃) |
| 10 | 1, 2, 9 | mp2an 692 | . . . 4 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ 𝑃 |
| 11 | eleq1 2816 | . . . 4 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → (𝑄 ∈ 𝑃 ↔ {〈1, 2〉, 〈2, 1〉} ∈ 𝑃)) | |
| 12 | 10, 11 | mpbiri 258 | . . 3 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → 𝑄 ∈ 𝑃) |
| 13 | m2detleiblem1.y | . . . 4 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
| 14 | m2detleiblem1.s | . . . 4 ⊢ 𝑆 = (pmSgn‘𝑁) | |
| 15 | m2detleiblem1.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 16 | 7, 6, 13, 14, 15 | m2detleiblem1 22511 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
| 17 | 12, 16 | sylan2 593 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
| 18 | fveq2 6858 | . . . . 5 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → ((pmSgn‘𝑁)‘𝑄) = ((pmSgn‘𝑁)‘{〈1, 2〉, 〈2, 1〉})) | |
| 19 | 18 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → ((pmSgn‘𝑁)‘𝑄) = ((pmSgn‘𝑁)‘{〈1, 2〉, 〈2, 1〉})) |
| 20 | eqid 2729 | . . . . 5 ⊢ ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁) | |
| 21 | eqid 2729 | . . . . 5 ⊢ (pmSgn‘𝑁) = (pmSgn‘𝑁) | |
| 22 | 7, 5, 6, 20, 21 | psgnprfval2 19453 | . . . 4 ⊢ ((pmSgn‘𝑁)‘{〈1, 2〉, 〈2, 1〉}) = -1 |
| 23 | 19, 22 | eqtrdi 2780 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → ((pmSgn‘𝑁)‘𝑄) = -1) |
| 24 | 23 | oveq1d 7402 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 ) = (-1(.g‘𝑅) 1 )) |
| 25 | ringgrp 20147 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 26 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 27 | 26, 15 | ringidcl 20174 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
| 28 | eqid 2729 | . . . . 5 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 29 | m2detleiblem1.i | . . . . 5 ⊢ 𝐼 = (invg‘𝑅) | |
| 30 | 26, 28, 29 | mulgm1 19026 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ (Base‘𝑅)) → (-1(.g‘𝑅) 1 ) = (𝐼‘ 1 )) |
| 31 | 25, 27, 30 | syl2anc 584 | . . 3 ⊢ (𝑅 ∈ Ring → (-1(.g‘𝑅) 1 ) = (𝐼‘ 1 )) |
| 32 | 31 | adantr 480 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (-1(.g‘𝑅) 1 ) = (𝐼‘ 1 )) |
| 33 | 17, 24, 32 | 3eqtrd 2768 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (𝑌‘(𝑆‘𝑄)) = (𝐼‘ 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {cpr 4591 〈cop 4595 ran crn 5639 ‘cfv 6511 (class class class)co 7387 1c1 11069 -cneg 11406 ℕcn 12186 2c2 12241 Basecbs 17179 Grpcgrp 18865 invgcminusg 18866 .gcmg 18999 SymGrpcsymg 19299 pmTrspcpmtr 19371 pmSgncpsgn 19419 1rcur 20090 Ringcrg 20142 ℤRHomczrh 21409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-word 14479 df-lsw 14528 df-concat 14536 df-s1 14561 df-substr 14606 df-pfx 14636 df-splice 14715 df-reverse 14724 df-s2 14814 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-gsum 17405 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-efmnd 18796 df-grp 18868 df-minusg 18869 df-mulg 19000 df-subg 19055 df-ghm 19145 df-gim 19191 df-oppg 19278 df-symg 19300 df-pmtr 19372 df-psgn 19421 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-cnfld 21265 df-zring 21357 df-zrh 21413 |
| This theorem is referenced by: m2detleib 22518 |
| Copyright terms: Public domain | W3C validator |