| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m2detleiblem6 | Structured version Visualization version GIF version | ||
| Description: Lemma 6 for m2detleib 22551. (Contributed by AV, 20-Dec-2018.) |
| Ref | Expression |
|---|---|
| m2detleiblem1.n | ⊢ 𝑁 = {1, 2} |
| m2detleiblem1.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| m2detleiblem1.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
| m2detleiblem1.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
| m2detleiblem1.o | ⊢ 1 = (1r‘𝑅) |
| m2detleiblem1.i | ⊢ 𝐼 = (invg‘𝑅) |
| Ref | Expression |
|---|---|
| m2detleiblem6 | ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (𝑌‘(𝑆‘𝑄)) = (𝐼‘ 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex 11146 | . . . . 5 ⊢ 1 ∈ V | |
| 2 | 2nn 12235 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 3 | prex 5387 | . . . . . . 7 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ V | |
| 4 | 3 | prid2 4723 | . . . . . 6 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} |
| 5 | eqid 2729 | . . . . . . 7 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
| 6 | m2detleiblem1.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
| 7 | m2detleiblem1.n | . . . . . . 7 ⊢ 𝑁 = {1, 2} | |
| 8 | 5, 6, 7 | symg2bas 19307 | . . . . . 6 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}}) |
| 9 | 4, 8 | eleqtrrid 2835 | . . . . 5 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → {〈1, 2〉, 〈2, 1〉} ∈ 𝑃) |
| 10 | 1, 2, 9 | mp2an 692 | . . . 4 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ 𝑃 |
| 11 | eleq1 2816 | . . . 4 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → (𝑄 ∈ 𝑃 ↔ {〈1, 2〉, 〈2, 1〉} ∈ 𝑃)) | |
| 12 | 10, 11 | mpbiri 258 | . . 3 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → 𝑄 ∈ 𝑃) |
| 13 | m2detleiblem1.y | . . . 4 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
| 14 | m2detleiblem1.s | . . . 4 ⊢ 𝑆 = (pmSgn‘𝑁) | |
| 15 | m2detleiblem1.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 16 | 7, 6, 13, 14, 15 | m2detleiblem1 22544 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
| 17 | 12, 16 | sylan2 593 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
| 18 | fveq2 6840 | . . . . 5 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → ((pmSgn‘𝑁)‘𝑄) = ((pmSgn‘𝑁)‘{〈1, 2〉, 〈2, 1〉})) | |
| 19 | 18 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → ((pmSgn‘𝑁)‘𝑄) = ((pmSgn‘𝑁)‘{〈1, 2〉, 〈2, 1〉})) |
| 20 | eqid 2729 | . . . . 5 ⊢ ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁) | |
| 21 | eqid 2729 | . . . . 5 ⊢ (pmSgn‘𝑁) = (pmSgn‘𝑁) | |
| 22 | 7, 5, 6, 20, 21 | psgnprfval2 19437 | . . . 4 ⊢ ((pmSgn‘𝑁)‘{〈1, 2〉, 〈2, 1〉}) = -1 |
| 23 | 19, 22 | eqtrdi 2780 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → ((pmSgn‘𝑁)‘𝑄) = -1) |
| 24 | 23 | oveq1d 7384 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 ) = (-1(.g‘𝑅) 1 )) |
| 25 | ringgrp 20158 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 26 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 27 | 26, 15 | ringidcl 20185 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
| 28 | eqid 2729 | . . . . 5 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 29 | m2detleiblem1.i | . . . . 5 ⊢ 𝐼 = (invg‘𝑅) | |
| 30 | 26, 28, 29 | mulgm1 19008 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ (Base‘𝑅)) → (-1(.g‘𝑅) 1 ) = (𝐼‘ 1 )) |
| 31 | 25, 27, 30 | syl2anc 584 | . . 3 ⊢ (𝑅 ∈ Ring → (-1(.g‘𝑅) 1 ) = (𝐼‘ 1 )) |
| 32 | 31 | adantr 480 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (-1(.g‘𝑅) 1 ) = (𝐼‘ 1 )) |
| 33 | 17, 24, 32 | 3eqtrd 2768 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (𝑌‘(𝑆‘𝑄)) = (𝐼‘ 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 {cpr 4587 〈cop 4591 ran crn 5632 ‘cfv 6499 (class class class)co 7369 1c1 11045 -cneg 11382 ℕcn 12162 2c2 12217 Basecbs 17155 Grpcgrp 18847 invgcminusg 18848 .gcmg 18981 SymGrpcsymg 19283 pmTrspcpmtr 19355 pmSgncpsgn 19403 1rcur 20101 Ringcrg 20153 ℤRHomczrh 21441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 df-hash 14272 df-word 14455 df-lsw 14504 df-concat 14512 df-s1 14537 df-substr 14582 df-pfx 14612 df-splice 14691 df-reverse 14700 df-s2 14790 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-gsum 17381 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-submnd 18693 df-efmnd 18778 df-grp 18850 df-minusg 18851 df-mulg 18982 df-subg 19037 df-ghm 19127 df-gim 19173 df-oppg 19260 df-symg 19284 df-pmtr 19356 df-psgn 19405 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-rhm 20392 df-subrng 20466 df-subrg 20490 df-cnfld 21297 df-zring 21389 df-zrh 21445 |
| This theorem is referenced by: m2detleib 22551 |
| Copyright terms: Public domain | W3C validator |