![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matplusg2 | Structured version Visualization version GIF version |
Description: Addition in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
matplusg2.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matplusg2.b | ⊢ 𝐵 = (Base‘𝐴) |
matplusg2.p | ⊢ ✚ = (+g‘𝐴) |
matplusg2.q | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
matplusg2 | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matplusg2.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | matplusg2.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
3 | 1, 2 | matrcl 22267 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
5 | eqid 2726 | . . . . . 6 ⊢ (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁)) | |
6 | 1, 5 | matplusg 22269 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (+g‘𝐴)) |
7 | matplusg2.p | . . . . 5 ⊢ ✚ = (+g‘𝐴) | |
8 | 6, 7 | eqtr4di 2784 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = ✚ ) |
9 | 4, 8 | syl 17 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = ✚ ) |
10 | 9 | oveqd 7422 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (𝑋 ✚ 𝑌)) |
11 | eqid 2726 | . . 3 ⊢ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) | |
12 | 4 | simprd 495 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ V) |
13 | 4 | simpld 494 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑁 ∈ Fin) |
14 | xpfi 9319 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) | |
15 | 13, 13, 14 | syl2anc 583 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁 × 𝑁) ∈ Fin) |
16 | simpl 482 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
17 | 1, 5 | matbas 22268 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴)) |
18 | 4, 17 | syl 17 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴)) |
19 | 18, 2 | eqtr4di 2784 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = 𝐵) |
20 | 16, 19 | eleqtrrd 2830 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))) |
21 | simpr 484 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
22 | 21, 19 | eleqtrrd 2830 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))) |
23 | matplusg2.q | . . 3 ⊢ + = (+g‘𝑅) | |
24 | eqid 2726 | . . 3 ⊢ (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) | |
25 | 5, 11, 12, 15, 20, 22, 23, 24 | frlmplusgval 21659 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (𝑋 ∘f + 𝑌)) |
26 | 10, 25 | eqtr3d 2768 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 × cxp 5667 ‘cfv 6537 (class class class)co 7405 ∘f cof 7665 Fincfn 8941 Basecbs 17153 +gcplusg 17206 freeLMod cfrlm 21641 Mat cmat 22262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-ot 4632 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13491 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-hom 17230 df-cco 17231 df-prds 17402 df-pws 17404 df-sra 21021 df-rgmod 21022 df-dsmm 21627 df-frlm 21642 df-mat 22263 |
This theorem is referenced by: matplusgcell 22290 matring 22300 mat2pmatghm 22587 pm2mpghm 22673 |
Copyright terms: Public domain | W3C validator |