Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > matplusg2 | Structured version Visualization version GIF version |
Description: Addition in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
matplusg2.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matplusg2.b | ⊢ 𝐵 = (Base‘𝐴) |
matplusg2.p | ⊢ ✚ = (+g‘𝐴) |
matplusg2.q | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
matplusg2 | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matplusg2.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | matplusg2.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
3 | 1, 2 | matrcl 21469 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
5 | eqid 2738 | . . . . . 6 ⊢ (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁)) | |
6 | 1, 5 | matplusg 21471 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (+g‘𝐴)) |
7 | matplusg2.p | . . . . 5 ⊢ ✚ = (+g‘𝐴) | |
8 | 6, 7 | eqtr4di 2797 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = ✚ ) |
9 | 4, 8 | syl 17 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = ✚ ) |
10 | 9 | oveqd 7272 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (𝑋 ✚ 𝑌)) |
11 | eqid 2738 | . . 3 ⊢ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) | |
12 | 4 | simprd 495 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ V) |
13 | 4 | simpld 494 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑁 ∈ Fin) |
14 | xpfi 9015 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) | |
15 | 13, 13, 14 | syl2anc 583 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁 × 𝑁) ∈ Fin) |
16 | simpl 482 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
17 | 1, 5 | matbas 21470 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴)) |
18 | 4, 17 | syl 17 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴)) |
19 | 18, 2 | eqtr4di 2797 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = 𝐵) |
20 | 16, 19 | eleqtrrd 2842 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))) |
21 | simpr 484 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
22 | 21, 19 | eleqtrrd 2842 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))) |
23 | matplusg2.q | . . 3 ⊢ + = (+g‘𝑅) | |
24 | eqid 2738 | . . 3 ⊢ (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) | |
25 | 5, 11, 12, 15, 20, 22, 23, 24 | frlmplusgval 20881 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (𝑋 ∘f + 𝑌)) |
26 | 10, 25 | eqtr3d 2780 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 Fincfn 8691 Basecbs 16840 +gcplusg 16888 freeLMod cfrlm 20863 Mat cmat 21464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-prds 17075 df-pws 17077 df-sra 20349 df-rgmod 20350 df-dsmm 20849 df-frlm 20864 df-mat 21465 |
This theorem is referenced by: matplusgcell 21490 matring 21500 mat2pmatghm 21787 pm2mpghm 21873 |
Copyright terms: Public domain | W3C validator |