![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matplusg2 | Structured version Visualization version GIF version |
Description: Addition in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
matplusg2.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matplusg2.b | ⊢ 𝐵 = (Base‘𝐴) |
matplusg2.p | ⊢ ✚ = (+g‘𝐴) |
matplusg2.q | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
matplusg2 | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matplusg2.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | matplusg2.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
3 | 1, 2 | matrcl 22145 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
5 | eqid 2731 | . . . . . 6 ⊢ (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁)) | |
6 | 1, 5 | matplusg 22147 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (+g‘𝐴)) |
7 | matplusg2.p | . . . . 5 ⊢ ✚ = (+g‘𝐴) | |
8 | 6, 7 | eqtr4di 2789 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = ✚ ) |
9 | 4, 8 | syl 17 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = ✚ ) |
10 | 9 | oveqd 7429 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (𝑋 ✚ 𝑌)) |
11 | eqid 2731 | . . 3 ⊢ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) | |
12 | 4 | simprd 495 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ V) |
13 | 4 | simpld 494 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑁 ∈ Fin) |
14 | xpfi 9323 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) | |
15 | 13, 13, 14 | syl2anc 583 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁 × 𝑁) ∈ Fin) |
16 | simpl 482 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
17 | 1, 5 | matbas 22146 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴)) |
18 | 4, 17 | syl 17 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴)) |
19 | 18, 2 | eqtr4di 2789 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = 𝐵) |
20 | 16, 19 | eleqtrrd 2835 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))) |
21 | simpr 484 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
22 | 21, 19 | eleqtrrd 2835 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))) |
23 | matplusg2.q | . . 3 ⊢ + = (+g‘𝑅) | |
24 | eqid 2731 | . . 3 ⊢ (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) | |
25 | 5, 11, 12, 15, 20, 22, 23, 24 | frlmplusgval 21542 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (𝑋 ∘f + 𝑌)) |
26 | 10, 25 | eqtr3d 2773 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 × cxp 5674 ‘cfv 6543 (class class class)co 7412 ∘f cof 7672 Fincfn 8945 Basecbs 17151 +gcplusg 17204 freeLMod cfrlm 21524 Mat cmat 22140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-hom 17228 df-cco 17229 df-prds 17400 df-pws 17402 df-sra 20934 df-rgmod 20935 df-dsmm 21510 df-frlm 21525 df-mat 22141 |
This theorem is referenced by: matplusgcell 22168 matring 22178 mat2pmatghm 22465 pm2mpghm 22551 |
Copyright terms: Public domain | W3C validator |