![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 13prm | Structured version Visualization version GIF version |
Description: 13 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
13prm | ⊢ ;13 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 12487 | . . 3 ⊢ 1 ∈ ℕ0 | |
2 | 3nn 12290 | . . 3 ⊢ 3 ∈ ℕ | |
3 | 1, 2 | decnncl 12696 | . 2 ⊢ ;13 ∈ ℕ |
4 | 1nn 12222 | . . 3 ⊢ 1 ∈ ℕ | |
5 | 3nn0 12489 | . . 3 ⊢ 3 ∈ ℕ0 | |
6 | 1lt10 12815 | . . 3 ⊢ 1 < ;10 | |
7 | 4, 5, 1, 6 | declti 12714 | . 2 ⊢ 1 < ;13 |
8 | 2cn 12286 | . . . 4 ⊢ 2 ∈ ℂ | |
9 | 8 | mullidi 11218 | . . 3 ⊢ (1 · 2) = 2 |
10 | df-3 12275 | . . 3 ⊢ 3 = (2 + 1) | |
11 | 1, 1, 9, 10 | dec2dvds 17001 | . 2 ⊢ ¬ 2 ∥ ;13 |
12 | 4nn0 12490 | . . 3 ⊢ 4 ∈ ℕ0 | |
13 | 2nn0 12488 | . . . 4 ⊢ 2 ∈ ℕ0 | |
14 | 2p1e3 12353 | . . . 4 ⊢ (2 + 1) = 3 | |
15 | 4cn 12296 | . . . . 5 ⊢ 4 ∈ ℂ | |
16 | 3cn 12292 | . . . . 5 ⊢ 3 ∈ ℂ | |
17 | 4t3e12 12774 | . . . . 5 ⊢ (4 · 3) = ;12 | |
18 | 15, 16, 17 | mulcomli 11222 | . . . 4 ⊢ (3 · 4) = ;12 |
19 | 1, 13, 14, 18 | decsuc 12707 | . . 3 ⊢ ((3 · 4) + 1) = ;13 |
20 | 1lt3 12384 | . . 3 ⊢ 1 < 3 | |
21 | 2, 12, 4, 19, 20 | ndvdsi 16358 | . 2 ⊢ ¬ 3 ∥ ;13 |
22 | 5nn0 12491 | . . 3 ⊢ 5 ∈ ℕ0 | |
23 | 3lt10 12813 | . . 3 ⊢ 3 < ;10 | |
24 | 1lt2 12382 | . . 3 ⊢ 1 < 2 | |
25 | 1, 13, 5, 22, 23, 24 | decltc 12705 | . 2 ⊢ ;13 < ;25 |
26 | 3, 7, 11, 21, 25 | prmlem1 17046 | 1 ⊢ ;13 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 (class class class)co 7402 1c1 11108 · cmul 11112 2c2 12266 3c3 12267 4c4 12268 5c5 12269 ;cdc 12676 ℙcprime 16611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-inf 9435 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-rp 12976 df-fz 13486 df-seq 13968 df-exp 14029 df-cj 15048 df-re 15049 df-im 15050 df-sqrt 15184 df-abs 15185 df-dvds 16201 df-prm 16612 |
This theorem is referenced by: 1259lem5 17073 bpos1 27156 |
Copyright terms: Public domain | W3C validator |