Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 13prm | Structured version Visualization version GIF version |
Description: 13 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
13prm | ⊢ ;13 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 12299 | . . 3 ⊢ 1 ∈ ℕ0 | |
2 | 3nn 12102 | . . 3 ⊢ 3 ∈ ℕ | |
3 | 1, 2 | decnncl 12507 | . 2 ⊢ ;13 ∈ ℕ |
4 | 1nn 12034 | . . 3 ⊢ 1 ∈ ℕ | |
5 | 3nn0 12301 | . . 3 ⊢ 3 ∈ ℕ0 | |
6 | 1lt10 12626 | . . 3 ⊢ 1 < ;10 | |
7 | 4, 5, 1, 6 | declti 12525 | . 2 ⊢ 1 < ;13 |
8 | 2cn 12098 | . . . 4 ⊢ 2 ∈ ℂ | |
9 | 8 | mulid2i 11030 | . . 3 ⊢ (1 · 2) = 2 |
10 | df-3 12087 | . . 3 ⊢ 3 = (2 + 1) | |
11 | 1, 1, 9, 10 | dec2dvds 16813 | . 2 ⊢ ¬ 2 ∥ ;13 |
12 | 4nn0 12302 | . . 3 ⊢ 4 ∈ ℕ0 | |
13 | 2nn0 12300 | . . . 4 ⊢ 2 ∈ ℕ0 | |
14 | 2p1e3 12165 | . . . 4 ⊢ (2 + 1) = 3 | |
15 | 4cn 12108 | . . . . 5 ⊢ 4 ∈ ℂ | |
16 | 3cn 12104 | . . . . 5 ⊢ 3 ∈ ℂ | |
17 | 4t3e12 12585 | . . . . 5 ⊢ (4 · 3) = ;12 | |
18 | 15, 16, 17 | mulcomli 11034 | . . . 4 ⊢ (3 · 4) = ;12 |
19 | 1, 13, 14, 18 | decsuc 12518 | . . 3 ⊢ ((3 · 4) + 1) = ;13 |
20 | 1lt3 12196 | . . 3 ⊢ 1 < 3 | |
21 | 2, 12, 4, 19, 20 | ndvdsi 16170 | . 2 ⊢ ¬ 3 ∥ ;13 |
22 | 5nn0 12303 | . . 3 ⊢ 5 ∈ ℕ0 | |
23 | 3lt10 12624 | . . 3 ⊢ 3 < ;10 | |
24 | 1lt2 12194 | . . 3 ⊢ 1 < 2 | |
25 | 1, 13, 5, 22, 23, 24 | decltc 12516 | . 2 ⊢ ;13 < ;25 |
26 | 3, 7, 11, 21, 25 | prmlem1 16858 | 1 ⊢ ;13 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 (class class class)co 7307 1c1 10922 · cmul 10926 2c2 12078 3c3 12079 4c4 12080 5c5 12081 ;cdc 12487 ℙcprime 16425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9249 df-inf 9250 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-uz 12633 df-rp 12781 df-fz 13290 df-seq 13772 df-exp 13833 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 df-abs 14996 df-dvds 16013 df-prm 16426 |
This theorem is referenced by: 1259lem5 16885 bpos1 26480 |
Copyright terms: Public domain | W3C validator |