| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 13prm | Structured version Visualization version GIF version | ||
| Description: 13 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
| Ref | Expression |
|---|---|
| 13prm | ⊢ ;13 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 12465 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 2 | 3nn 12272 | . . 3 ⊢ 3 ∈ ℕ | |
| 3 | 1, 2 | decnncl 12676 | . 2 ⊢ ;13 ∈ ℕ |
| 4 | 1nn 12204 | . . 3 ⊢ 1 ∈ ℕ | |
| 5 | 3nn0 12467 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 6 | 1lt10 12795 | . . 3 ⊢ 1 < ;10 | |
| 7 | 4, 5, 1, 6 | declti 12694 | . 2 ⊢ 1 < ;13 |
| 8 | 2cn 12268 | . . . 4 ⊢ 2 ∈ ℂ | |
| 9 | 8 | mullidi 11186 | . . 3 ⊢ (1 · 2) = 2 |
| 10 | df-3 12257 | . . 3 ⊢ 3 = (2 + 1) | |
| 11 | 1, 1, 9, 10 | dec2dvds 17041 | . 2 ⊢ ¬ 2 ∥ ;13 |
| 12 | 4nn0 12468 | . . 3 ⊢ 4 ∈ ℕ0 | |
| 13 | 2nn0 12466 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 14 | 2p1e3 12330 | . . . 4 ⊢ (2 + 1) = 3 | |
| 15 | 4cn 12278 | . . . . 5 ⊢ 4 ∈ ℂ | |
| 16 | 3cn 12274 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 17 | 4t3e12 12754 | . . . . 5 ⊢ (4 · 3) = ;12 | |
| 18 | 15, 16, 17 | mulcomli 11190 | . . . 4 ⊢ (3 · 4) = ;12 |
| 19 | 1, 13, 14, 18 | decsuc 12687 | . . 3 ⊢ ((3 · 4) + 1) = ;13 |
| 20 | 1lt3 12361 | . . 3 ⊢ 1 < 3 | |
| 21 | 2, 12, 4, 19, 20 | ndvdsi 16389 | . 2 ⊢ ¬ 3 ∥ ;13 |
| 22 | 5nn0 12469 | . . 3 ⊢ 5 ∈ ℕ0 | |
| 23 | 3lt10 12793 | . . 3 ⊢ 3 < ;10 | |
| 24 | 1lt2 12359 | . . 3 ⊢ 1 < 2 | |
| 25 | 1, 13, 5, 22, 23, 24 | decltc 12685 | . 2 ⊢ ;13 < ;25 |
| 26 | 3, 7, 11, 21, 25 | prmlem1 17085 | 1 ⊢ ;13 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7390 1c1 11076 · cmul 11080 2c2 12248 3c3 12249 4c4 12250 5c5 12251 ;cdc 12656 ℙcprime 16648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-prm 16649 |
| This theorem is referenced by: 1259lem5 17112 bpos1 27201 |
| Copyright terms: Public domain | W3C validator |