Mathbox for Steven Nguyen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelsubgsubcld Structured version   Visualization version   GIF version

Theorem nelsubgsubcld 39450
 Description: A non-subgroup-member minus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.)
Hypotheses
Ref Expression
nelsubginvcld.g (𝜑𝐺 ∈ Grp)
nelsubginvcld.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
nelsubginvcld.x (𝜑𝑋 ∈ (𝐵𝑆))
nelsubginvcld.b 𝐵 = (Base‘𝐺)
nelsubgcld.y (𝜑𝑌𝑆)
nelsubgsubcld.p = (-g𝐺)
Assertion
Ref Expression
nelsubgsubcld (𝜑 → (𝑋 𝑌) ∈ (𝐵𝑆))

Proof of Theorem nelsubgsubcld
StepHypRef Expression
1 nelsubginvcld.x . . . 4 (𝜑𝑋 ∈ (𝐵𝑆))
21eldifad 3893 . . 3 (𝜑𝑋𝐵)
3 nelsubginvcld.s . . . . 5 (𝜑𝑆 ∈ (SubGrp‘𝐺))
4 nelsubginvcld.b . . . . . 6 𝐵 = (Base‘𝐺)
54subgss 18276 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
63, 5syl 17 . . . 4 (𝜑𝑆𝐵)
7 nelsubgcld.y . . . 4 (𝜑𝑌𝑆)
86, 7sseldd 3916 . . 3 (𝜑𝑌𝐵)
9 eqid 2798 . . . 4 (+g𝐺) = (+g𝐺)
10 eqid 2798 . . . 4 (invg𝐺) = (invg𝐺)
11 nelsubgsubcld.p . . . 4 = (-g𝐺)
124, 9, 10, 11grpsubval 18145 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
132, 8, 12syl2anc 587 . 2 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
14 nelsubginvcld.g . . 3 (𝜑𝐺 ∈ Grp)
1510subginvcl 18284 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑌𝑆) → ((invg𝐺)‘𝑌) ∈ 𝑆)
163, 7, 15syl2anc 587 . . 3 (𝜑 → ((invg𝐺)‘𝑌) ∈ 𝑆)
1714, 3, 1, 4, 16, 9nelsubgcld 39449 . 2 (𝜑 → (𝑋(+g𝐺)((invg𝐺)‘𝑌)) ∈ (𝐵𝑆))
1813, 17eqeltrd 2890 1 (𝜑 → (𝑋 𝑌) ∈ (𝐵𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111   ∖ cdif 3878   ⊆ wss 3881  ‘cfv 6325  (class class class)co 7136  Basecbs 16478  +gcplusg 16560  Grpcgrp 18098  invgcminusg 18099  -gcsg 18100  SubGrpcsubg 18269 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-2 11691  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-sbg 18103  df-subg 18272 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator