Step | Hyp | Ref
| Expression |
1 | | 00id 11150 |
. . . . 5
⊢ (0 + 0) =
0 |
2 | | sum0 15433 |
. . . . . 6
⊢
Σ𝑘 ∈
∅ 𝐵 =
0 |
3 | | sum0 15433 |
. . . . . 6
⊢
Σ𝑘 ∈
∅ 𝐶 =
0 |
4 | 2, 3 | oveq12i 7287 |
. . . . 5
⊢
(Σ𝑘 ∈
∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶) = (0 + 0) |
5 | | sum0 15433 |
. . . . 5
⊢
Σ𝑘 ∈
∅ (𝐵 + 𝐶) = 0 |
6 | 1, 4, 5 | 3eqtr4ri 2777 |
. . . 4
⊢
Σ𝑘 ∈
∅ (𝐵 + 𝐶) = (Σ𝑘 ∈ ∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶) |
7 | | sumeq1 15400 |
. . . 4
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) = Σ𝑘 ∈ ∅ (𝐵 + 𝐶)) |
8 | | sumeq1 15400 |
. . . . 5
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵) |
9 | | sumeq1 15400 |
. . . . 5
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ ∅ 𝐶) |
10 | 8, 9 | oveq12d 7293 |
. . . 4
⊢ (𝐴 = ∅ → (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶) = (Σ𝑘 ∈ ∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶)) |
11 | 6, 7, 10 | 3eqtr4a 2804 |
. . 3
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶)) |
12 | 11 | a1i 11 |
. 2
⊢ (𝜑 → (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶))) |
13 | | simprl 768 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
ℕ) |
14 | | nnuz 12621 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
15 | 13, 14 | eleqtrdi 2849 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
(ℤ≥‘1)) |
16 | | fsumadd.2 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
17 | 16 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
18 | 17 | fmpttd 6989 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
19 | | simprr 770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) |
20 | | f1of 6716 |
. . . . . . . . . . 11
⊢ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
21 | 19, 20 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
22 | | fco 6624 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) |
23 | 18, 21, 22 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) |
24 | 23 | ffvelrnda 6961 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) ∈ ℂ) |
25 | | fsumadd.3 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
26 | 25 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
27 | 26 | fmpttd 6989 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℂ) |
28 | | fco 6624 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) |
29 | 27, 21, 28 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) |
30 | 29 | ffvelrnda 6961 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛) ∈ ℂ) |
31 | 21 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑓‘𝑛) ∈ 𝐴) |
32 | | ovex 7308 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 + 𝐶) ∈ V |
33 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶)) = (𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶)) |
34 | 33 | fvmpt2 6886 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝐴 ∧ (𝐵 + 𝐶) ∈ V) → ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (𝐵 + 𝐶)) |
35 | 32, 34 | mpan2 688 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ 𝐴 → ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (𝐵 + 𝐶)) |
36 | 35 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (𝐵 + 𝐶)) |
37 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) |
38 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) |
39 | 38 | fvmpt2 6886 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝐴 ∧ 𝐵 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = 𝐵) |
40 | 37, 16, 39 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = 𝐵) |
41 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶) |
42 | 41 | fvmpt2 6886 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝐴 ∧ 𝐶 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = 𝐶) |
43 | 37, 25, 42 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = 𝐶) |
44 | 40, 43 | oveq12d 7293 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘)) = (𝐵 + 𝐶)) |
45 | 36, 44 | eqtr4d 2781 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘))) |
46 | 45 | ralrimiva 3103 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘))) |
47 | 46 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘))) |
48 | | nffvmpt1 6785 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘(𝑓‘𝑛)) |
49 | | nffvmpt1 6785 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) |
50 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘
+ |
51 | | nffvmpt1 6785 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛)) |
52 | 49, 50, 51 | nfov 7305 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
53 | 48, 52 | nfeq 2920 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘(𝑓‘𝑛)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
54 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘(𝑓‘𝑛))) |
55 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
56 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
57 | 55, 56 | oveq12d 7293 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑛) → (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛)))) |
58 | 54, 57 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑓‘𝑛) → (((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘)) ↔ ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘(𝑓‘𝑛)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))))) |
59 | 53, 58 | rspc 3549 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑛) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘)) → ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘(𝑓‘𝑛)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))))) |
60 | 31, 47, 59 | sylc 65 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘(𝑓‘𝑛)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛)))) |
61 | | fvco3 6867 |
. . . . . . . . . 10
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘(𝑓‘𝑛))) |
62 | 21, 61 | sylan 580 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘(𝑓‘𝑛))) |
63 | | fvco3 6867 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
64 | 21, 63 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
65 | | fvco3 6867 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
66 | 21, 65 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
67 | 64, 66 | oveq12d 7293 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) + (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛)))) |
68 | 60, 62, 67 | 3eqtr4d 2788 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) + (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛))) |
69 | 15, 24, 30, 68 | seradd 13765 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (seq1( + , ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓))‘(♯‘𝐴)) = ((seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴)) + (seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓))‘(♯‘𝐴)))) |
70 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘(𝑓‘𝑛))) |
71 | 17, 26 | addcld 10994 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → (𝐵 + 𝐶) ∈ ℂ) |
72 | 71 | fmpttd 6989 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ) |
73 | 72 | ffvelrnda 6961 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑚) ∈ ℂ) |
74 | 70, 13, 19, 73, 62 | fsum 15432 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓))‘(♯‘𝐴))) |
75 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
76 | 18 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) ∈ ℂ) |
77 | 75, 13, 19, 76, 64 | fsum 15432 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴))) |
78 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
79 | 27 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) ∈ ℂ) |
80 | 78, 13, 19, 79, 66 | fsum 15432 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓))‘(♯‘𝐴))) |
81 | 77, 80 | oveq12d 7293 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) + Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚)) = ((seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴)) + (seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓))‘(♯‘𝐴)))) |
82 | 69, 74, 81 | 3eqtr4d 2788 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = (Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) + Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚))) |
83 | | sumfc 15421 |
. . . . . 6
⊢
Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) |
84 | | sumfc 15421 |
. . . . . . 7
⊢
Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐵 |
85 | | sumfc 15421 |
. . . . . . 7
⊢
Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐶 |
86 | 84, 85 | oveq12i 7287 |
. . . . . 6
⊢
(Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) + Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚)) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶) |
87 | 82, 83, 86 | 3eqtr3g 2801 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶)) |
88 | 87 | expr 457 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶))) |
89 | 88 | exlimdv 1936 |
. . 3
⊢ ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) →
(∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶))) |
90 | 89 | expimpd 454 |
. 2
⊢ (𝜑 → (((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶))) |
91 | | fsumadd.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
92 | | fz1f1o 15422 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨
((♯‘𝐴) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
93 | 91, 92 | syl 17 |
. 2
⊢ (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
94 | 12, 90, 93 | mpjaod 857 |
1
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶)) |