MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumadd Structured version   Visualization version   GIF version

Theorem fsumadd 15647
Description: The sum of two finite sums. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumadd.1 (𝜑𝐴 ∈ Fin)
fsumadd.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumadd.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumadd (𝜑 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fsumadd
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 00id 11288 . . . . 5 (0 + 0) = 0
2 sum0 15628 . . . . . 6 Σ𝑘 ∈ ∅ 𝐵 = 0
3 sum0 15628 . . . . . 6 Σ𝑘 ∈ ∅ 𝐶 = 0
42, 3oveq12i 7358 . . . . 5 𝑘 ∈ ∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶) = (0 + 0)
5 sum0 15628 . . . . 5 Σ𝑘 ∈ ∅ (𝐵 + 𝐶) = 0
61, 4, 53eqtr4ri 2765 . . . 4 Σ𝑘 ∈ ∅ (𝐵 + 𝐶) = (Σ𝑘 ∈ ∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶)
7 sumeq1 15596 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 (𝐵 + 𝐶) = Σ𝑘 ∈ ∅ (𝐵 + 𝐶))
8 sumeq1 15596 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
9 sumeq1 15596 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 𝐶 = Σ𝑘 ∈ ∅ 𝐶)
108, 9oveq12d 7364 . . . 4 (𝐴 = ∅ → (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶) = (Σ𝑘 ∈ ∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶))
116, 7, 103eqtr4a 2792 . . 3 (𝐴 = ∅ → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
1211a1i 11 . 2 (𝜑 → (𝐴 = ∅ → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)))
13 simprl 770 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
14 nnuz 12775 . . . . . . . . 9 ℕ = (ℤ‘1)
1513, 14eleqtrdi 2841 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
16 fsumadd.2 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1716adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
1817fmpttd 7048 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
19 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
20 f1of 6763 . . . . . . . . . . 11 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
2119, 20syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
22 fco 6675 . . . . . . . . . 10 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2318, 21, 22syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2423ffvelcdmda 7017 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) ∈ ℂ)
25 fsumadd.3 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2625adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
2726fmpttd 7048 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐶):𝐴⟶ℂ)
28 fco 6675 . . . . . . . . . 10 (((𝑘𝐴𝐶):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2927, 21, 28syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
3029ffvelcdmda 7017 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) ∈ ℂ)
3121ffvelcdmda 7017 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑓𝑛) ∈ 𝐴)
32 ovex 7379 . . . . . . . . . . . . . . 15 (𝐵 + 𝐶) ∈ V
33 eqid 2731 . . . . . . . . . . . . . . . 16 (𝑘𝐴 ↦ (𝐵 + 𝐶)) = (𝑘𝐴 ↦ (𝐵 + 𝐶))
3433fvmpt2 6940 . . . . . . . . . . . . . . 15 ((𝑘𝐴 ∧ (𝐵 + 𝐶) ∈ V) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (𝐵 + 𝐶))
3532, 34mpan2 691 . . . . . . . . . . . . . 14 (𝑘𝐴 → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (𝐵 + 𝐶))
3635adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (𝐵 + 𝐶))
37 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝑘𝐴)
38 eqid 2731 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
3938fvmpt2 6940 . . . . . . . . . . . . . . 15 ((𝑘𝐴𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
4037, 16, 39syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
41 eqid 2731 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
4241fvmpt2 6940 . . . . . . . . . . . . . . 15 ((𝑘𝐴𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
4337, 25, 42syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
4440, 43oveq12d 7364 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)) = (𝐵 + 𝐶))
4536, 44eqtr4d 2769 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)))
4645ralrimiva 3124 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)))
4746ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)))
48 nffvmpt1 6833 . . . . . . . . . . . 12 𝑘((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛))
49 nffvmpt1 6833 . . . . . . . . . . . . 13 𝑘((𝑘𝐴𝐵)‘(𝑓𝑛))
50 nfcv 2894 . . . . . . . . . . . . 13 𝑘 +
51 nffvmpt1 6833 . . . . . . . . . . . . 13 𝑘((𝑘𝐴𝐶)‘(𝑓𝑛))
5249, 50, 51nfov 7376 . . . . . . . . . . . 12 𝑘(((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛)))
5348, 52nfeq 2908 . . . . . . . . . . 11 𝑘((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛)))
54 fveq2 6822 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)))
55 fveq2 6822 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑘) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
56 fveq2 6822 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑘) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
5755, 56oveq12d 7364 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛))))
5854, 57eqeq12d 2747 . . . . . . . . . . 11 (𝑘 = (𝑓𝑛) → (((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)) ↔ ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛)))))
5953, 58rspc 3560 . . . . . . . . . 10 ((𝑓𝑛) ∈ 𝐴 → (∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛)))))
6031, 47, 59sylc 65 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛))))
61 fvco3 6921 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)))
6221, 61sylan 580 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)))
63 fvco3 6921 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
6421, 63sylan 580 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
65 fvco3 6921 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
6621, 65sylan 580 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
6764, 66oveq12d 7364 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) + (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛))))
6860, 62, 673eqtr4d 2776 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) + (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)))
6915, 24, 30, 68seradd 13951 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( + , ((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓))‘(♯‘𝐴)) = ((seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)) + (seq1( + , ((𝑘𝐴𝐶) ∘ 𝑓))‘(♯‘𝐴))))
70 fveq2 6822 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)))
7117, 26addcld 11131 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → (𝐵 + 𝐶) ∈ ℂ)
7271fmpttd 7048 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ)
7372ffvelcdmda 7017 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) ∈ ℂ)
7470, 13, 19, 73, 62fsum 15627 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = (seq1( + , ((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓))‘(♯‘𝐴)))
75 fveq2 6822 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
7618ffvelcdmda 7017 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
7775, 13, 19, 76, 64fsum 15627 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
78 fveq2 6822 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑚) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
7927ffvelcdmda 7017 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
8078, 13, 19, 79, 66fsum 15627 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = (seq1( + , ((𝑘𝐴𝐶) ∘ 𝑓))‘(♯‘𝐴)))
8177, 80oveq12d 7364 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) + Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = ((seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)) + (seq1( + , ((𝑘𝐴𝐶) ∘ 𝑓))‘(♯‘𝐴))))
8269, 74, 813eqtr4d 2776 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = (Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) + Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)))
83 sumfc 15616 . . . . . 6 Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = Σ𝑘𝐴 (𝐵 + 𝐶)
84 sumfc 15616 . . . . . . 7 Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵
85 sumfc 15616 . . . . . . 7 Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶
8684, 85oveq12i 7358 . . . . . 6 𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) + Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)
8782, 83, 863eqtr3g 2789 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
8887expr 456 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)))
8988exlimdv 1934 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)))
9089expimpd 453 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)))
91 fsumadd.1 . . 3 (𝜑𝐴 ∈ Fin)
92 fz1f1o 15617 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
9391, 92syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
9412, 90, 93mpjaod 860 1 (𝜑 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2111  wral 3047  Vcvv 3436  c0 4280  cmpt 5170  ccom 5618  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11004  0cc0 11006  1c1 11007   + caddc 11009  cn 12125  cuz 12732  ...cfz 13407  seqcseq 13908  chash 14237  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by:  fsumsplit  15648  fsumsub  15695  binomlem  15736  binomfallfaclem2  15947  pwp1fsum  16302  pcbc  16812  csbren  25326  trirn  25327  ovollb2lem  25416  ovoliunlem1  25430  itg1addlem5  25628  itgsplit  25764  plyaddlem1  26145  basellem8  27025  logfaclbnd  27160  dchrvmasum2if  27435  mudivsum  27468  logsqvma  27480  selberglem1  27483  selberglem2  27484  selberg  27486  selberg2  27489  selberg3lem1  27495  selberg4  27499  pntsval2  27514  ax5seglem9  28915  finsumvtxdg2ssteplem4  29527  nicomachus  42353  dvnmul  45989  dirkertrigeqlem2  46145  sge0xaddlem1  46479  sge0xaddlem2  46480  hoidmvlelem2  46642  altgsumbcALT  48392
  Copyright terms: Public domain W3C validator