MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumadd Structured version   Visualization version   GIF version

Theorem fsumadd 15380
Description: The sum of two finite sums. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumadd.1 (𝜑𝐴 ∈ Fin)
fsumadd.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumadd.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumadd (𝜑 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fsumadd
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 00id 11080 . . . . 5 (0 + 0) = 0
2 sum0 15361 . . . . . 6 Σ𝑘 ∈ ∅ 𝐵 = 0
3 sum0 15361 . . . . . 6 Σ𝑘 ∈ ∅ 𝐶 = 0
42, 3oveq12i 7267 . . . . 5 𝑘 ∈ ∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶) = (0 + 0)
5 sum0 15361 . . . . 5 Σ𝑘 ∈ ∅ (𝐵 + 𝐶) = 0
61, 4, 53eqtr4ri 2777 . . . 4 Σ𝑘 ∈ ∅ (𝐵 + 𝐶) = (Σ𝑘 ∈ ∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶)
7 sumeq1 15328 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 (𝐵 + 𝐶) = Σ𝑘 ∈ ∅ (𝐵 + 𝐶))
8 sumeq1 15328 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
9 sumeq1 15328 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 𝐶 = Σ𝑘 ∈ ∅ 𝐶)
108, 9oveq12d 7273 . . . 4 (𝐴 = ∅ → (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶) = (Σ𝑘 ∈ ∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶))
116, 7, 103eqtr4a 2805 . . 3 (𝐴 = ∅ → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
1211a1i 11 . 2 (𝜑 → (𝐴 = ∅ → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)))
13 simprl 767 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
14 nnuz 12550 . . . . . . . . 9 ℕ = (ℤ‘1)
1513, 14eleqtrdi 2849 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
16 fsumadd.2 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1716adantlr 711 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
1817fmpttd 6971 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
19 simprr 769 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
20 f1of 6700 . . . . . . . . . . 11 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
2119, 20syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
22 fco 6608 . . . . . . . . . 10 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2318, 21, 22syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2423ffvelrnda 6943 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) ∈ ℂ)
25 fsumadd.3 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2625adantlr 711 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
2726fmpttd 6971 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐶):𝐴⟶ℂ)
28 fco 6608 . . . . . . . . . 10 (((𝑘𝐴𝐶):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2927, 21, 28syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
3029ffvelrnda 6943 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) ∈ ℂ)
3121ffvelrnda 6943 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑓𝑛) ∈ 𝐴)
32 ovex 7288 . . . . . . . . . . . . . . 15 (𝐵 + 𝐶) ∈ V
33 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑘𝐴 ↦ (𝐵 + 𝐶)) = (𝑘𝐴 ↦ (𝐵 + 𝐶))
3433fvmpt2 6868 . . . . . . . . . . . . . . 15 ((𝑘𝐴 ∧ (𝐵 + 𝐶) ∈ V) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (𝐵 + 𝐶))
3532, 34mpan2 687 . . . . . . . . . . . . . 14 (𝑘𝐴 → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (𝐵 + 𝐶))
3635adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (𝐵 + 𝐶))
37 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝑘𝐴)
38 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
3938fvmpt2 6868 . . . . . . . . . . . . . . 15 ((𝑘𝐴𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
4037, 16, 39syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
41 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
4241fvmpt2 6868 . . . . . . . . . . . . . . 15 ((𝑘𝐴𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
4337, 25, 42syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
4440, 43oveq12d 7273 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)) = (𝐵 + 𝐶))
4536, 44eqtr4d 2781 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)))
4645ralrimiva 3107 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)))
4746ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)))
48 nffvmpt1 6767 . . . . . . . . . . . 12 𝑘((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛))
49 nffvmpt1 6767 . . . . . . . . . . . . 13 𝑘((𝑘𝐴𝐵)‘(𝑓𝑛))
50 nfcv 2906 . . . . . . . . . . . . 13 𝑘 +
51 nffvmpt1 6767 . . . . . . . . . . . . 13 𝑘((𝑘𝐴𝐶)‘(𝑓𝑛))
5249, 50, 51nfov 7285 . . . . . . . . . . . 12 𝑘(((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛)))
5348, 52nfeq 2919 . . . . . . . . . . 11 𝑘((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛)))
54 fveq2 6756 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)))
55 fveq2 6756 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑘) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
56 fveq2 6756 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑘) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
5755, 56oveq12d 7273 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛))))
5854, 57eqeq12d 2754 . . . . . . . . . . 11 (𝑘 = (𝑓𝑛) → (((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)) ↔ ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛)))))
5953, 58rspc 3539 . . . . . . . . . 10 ((𝑓𝑛) ∈ 𝐴 → (∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘𝐴𝐵)‘𝑘) + ((𝑘𝐴𝐶)‘𝑘)) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛)))))
6031, 47, 59sylc 65 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛))))
61 fvco3 6849 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)))
6221, 61sylan 579 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)))
63 fvco3 6849 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
6421, 63sylan 579 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
65 fvco3 6849 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
6621, 65sylan 579 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
6764, 66oveq12d 7273 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) + (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)) = (((𝑘𝐴𝐵)‘(𝑓𝑛)) + ((𝑘𝐴𝐶)‘(𝑓𝑛))))
6860, 62, 673eqtr4d 2788 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) + (((𝑘𝐴𝐶) ∘ 𝑓)‘𝑛)))
6915, 24, 30, 68seradd 13693 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( + , ((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓))‘(♯‘𝐴)) = ((seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)) + (seq1( + , ((𝑘𝐴𝐶) ∘ 𝑓))‘(♯‘𝐴))))
70 fveq2 6756 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘(𝑓𝑛)))
7117, 26addcld 10925 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑘𝐴) → (𝐵 + 𝐶) ∈ ℂ)
7271fmpttd 6971 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ)
7372ffvelrnda 6943 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) ∈ ℂ)
7470, 13, 19, 73, 62fsum 15360 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = (seq1( + , ((𝑘𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓))‘(♯‘𝐴)))
75 fveq2 6756 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
7618ffvelrnda 6943 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
7775, 13, 19, 76, 64fsum 15360 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
78 fveq2 6756 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐶)‘𝑚) = ((𝑘𝐴𝐶)‘(𝑓𝑛)))
7927ffvelrnda 6943 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
8078, 13, 19, 79, 66fsum 15360 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = (seq1( + , ((𝑘𝐴𝐶) ∘ 𝑓))‘(♯‘𝐴)))
8177, 80oveq12d 7273 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) + Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = ((seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)) + (seq1( + , ((𝑘𝐴𝐶) ∘ 𝑓))‘(♯‘𝐴))))
8269, 74, 813eqtr4d 2788 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = (Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) + Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)))
83 sumfc 15349 . . . . . 6 Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = Σ𝑘𝐴 (𝐵 + 𝐶)
84 sumfc 15349 . . . . . . 7 Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵
85 sumfc 15349 . . . . . . 7 Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶
8684, 85oveq12i 7267 . . . . . 6 𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) + Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚)) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)
8782, 83, 863eqtr3g 2802 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
8887expr 456 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)))
8988exlimdv 1937 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)))
9089expimpd 453 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶)))
91 fsumadd.1 . . 3 (𝜑𝐴 ∈ Fin)
92 fz1f1o 15350 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
9391, 92syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
9412, 90, 93mpjaod 856 1 (𝜑 → Σ𝑘𝐴 (𝐵 + 𝐶) = (Σ𝑘𝐴 𝐵 + Σ𝑘𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wex 1783  wcel 2108  wral 3063  Vcvv 3422  c0 4253  cmpt 5153  ccom 5584  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  0cc0 10802  1c1 10803   + caddc 10805  cn 11903  cuz 12511  ...cfz 13168  seqcseq 13649  chash 13972  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326
This theorem is referenced by:  fsumsplit  15381  fsumsub  15428  binomlem  15469  binomfallfaclem2  15678  pwp1fsum  16028  pcbc  16529  csbren  24468  trirn  24469  ovollb2lem  24557  ovoliunlem1  24571  itg1addlem5  24770  itgsplit  24905  plyaddlem1  25279  basellem8  26142  logfaclbnd  26275  dchrvmasum2if  26550  mudivsum  26583  logsqvma  26595  selberglem1  26598  selberglem2  26599  selberg  26601  selberg2  26604  selberg3lem1  26610  selberg4  26614  pntsval2  26629  ax5seglem9  27208  finsumvtxdg2ssteplem4  27818  dvnmul  43374  dirkertrigeqlem2  43530  sge0xaddlem1  43861  sge0xaddlem2  43862  hoidmvlelem2  44024  altgsumbcALT  45577
  Copyright terms: Public domain W3C validator