| Step | Hyp | Ref
| Expression |
| 1 | | 00id 11436 |
. . . . 5
⊢ (0 + 0) =
0 |
| 2 | | sum0 15757 |
. . . . . 6
⊢
Σ𝑘 ∈
∅ 𝐵 =
0 |
| 3 | | sum0 15757 |
. . . . . 6
⊢
Σ𝑘 ∈
∅ 𝐶 =
0 |
| 4 | 2, 3 | oveq12i 7443 |
. . . . 5
⊢
(Σ𝑘 ∈
∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶) = (0 + 0) |
| 5 | | sum0 15757 |
. . . . 5
⊢
Σ𝑘 ∈
∅ (𝐵 + 𝐶) = 0 |
| 6 | 1, 4, 5 | 3eqtr4ri 2776 |
. . . 4
⊢
Σ𝑘 ∈
∅ (𝐵 + 𝐶) = (Σ𝑘 ∈ ∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶) |
| 7 | | sumeq1 15725 |
. . . 4
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) = Σ𝑘 ∈ ∅ (𝐵 + 𝐶)) |
| 8 | | sumeq1 15725 |
. . . . 5
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵) |
| 9 | | sumeq1 15725 |
. . . . 5
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ ∅ 𝐶) |
| 10 | 8, 9 | oveq12d 7449 |
. . . 4
⊢ (𝐴 = ∅ → (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶) = (Σ𝑘 ∈ ∅ 𝐵 + Σ𝑘 ∈ ∅ 𝐶)) |
| 11 | 6, 7, 10 | 3eqtr4a 2803 |
. . 3
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶)) |
| 12 | 11 | a1i 11 |
. 2
⊢ (𝜑 → (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶))) |
| 13 | | simprl 771 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
ℕ) |
| 14 | | nnuz 12921 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
| 15 | 13, 14 | eleqtrdi 2851 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
(ℤ≥‘1)) |
| 16 | | fsumadd.2 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 17 | 16 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 18 | 17 | fmpttd 7135 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
| 19 | | simprr 773 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) |
| 20 | | f1of 6848 |
. . . . . . . . . . 11
⊢ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
| 21 | 19, 20 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
| 22 | | fco 6760 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) |
| 23 | 18, 21, 22 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) |
| 24 | 23 | ffvelcdmda 7104 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) ∈ ℂ) |
| 25 | | fsumadd.3 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 26 | 25 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 27 | 26 | fmpttd 7135 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℂ) |
| 28 | | fco 6760 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) |
| 29 | 27, 21, 28 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) |
| 30 | 29 | ffvelcdmda 7104 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛) ∈ ℂ) |
| 31 | 21 | ffvelcdmda 7104 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑓‘𝑛) ∈ 𝐴) |
| 32 | | ovex 7464 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 + 𝐶) ∈ V |
| 33 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶)) = (𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶)) |
| 34 | 33 | fvmpt2 7027 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝐴 ∧ (𝐵 + 𝐶) ∈ V) → ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (𝐵 + 𝐶)) |
| 35 | 32, 34 | mpan2 691 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ 𝐴 → ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (𝐵 + 𝐶)) |
| 36 | 35 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (𝐵 + 𝐶)) |
| 37 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) |
| 38 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) |
| 39 | 38 | fvmpt2 7027 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝐴 ∧ 𝐵 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = 𝐵) |
| 40 | 37, 16, 39 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = 𝐵) |
| 41 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶) |
| 42 | 41 | fvmpt2 7027 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝐴 ∧ 𝐶 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = 𝐶) |
| 43 | 37, 25, 42 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = 𝐶) |
| 44 | 40, 43 | oveq12d 7449 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘)) = (𝐵 + 𝐶)) |
| 45 | 36, 44 | eqtr4d 2780 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘))) |
| 46 | 45 | ralrimiva 3146 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘))) |
| 47 | 46 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘))) |
| 48 | | nffvmpt1 6917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘(𝑓‘𝑛)) |
| 49 | | nffvmpt1 6917 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) |
| 50 | | nfcv 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘
+ |
| 51 | | nffvmpt1 6917 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛)) |
| 52 | 49, 50, 51 | nfov 7461 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 53 | 48, 52 | nfeq 2919 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘(𝑓‘𝑛)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 54 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘(𝑓‘𝑛))) |
| 55 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
| 56 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 57 | 55, 56 | oveq12d 7449 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑛) → (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛)))) |
| 58 | 54, 57 | eqeq12d 2753 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑓‘𝑛) → (((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘)) ↔ ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘(𝑓‘𝑛)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))))) |
| 59 | 53, 58 | rspc 3610 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑛) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑘) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘)) → ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘(𝑓‘𝑛)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))))) |
| 60 | 31, 47, 59 | sylc 65 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘(𝑓‘𝑛)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛)))) |
| 61 | | fvco3 7008 |
. . . . . . . . . 10
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘(𝑓‘𝑛))) |
| 62 | 21, 61 | sylan 580 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘(𝑓‘𝑛))) |
| 63 | | fvco3 7008 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
| 64 | 21, 63 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
| 65 | | fvco3 7008 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 66 | 21, 65 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 67 | 64, 66 | oveq12d 7449 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) + (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) + ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛)))) |
| 68 | 60, 62, 67 | 3eqtr4d 2787 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓)‘𝑛) = ((((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) + (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛))) |
| 69 | 15, 24, 30, 68 | seradd 14085 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (seq1( + , ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓))‘(♯‘𝐴)) = ((seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴)) + (seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓))‘(♯‘𝐴)))) |
| 70 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘(𝑓‘𝑛))) |
| 71 | 17, 26 | addcld 11280 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → (𝐵 + 𝐶) ∈ ℂ) |
| 72 | 71 | fmpttd 7135 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ) |
| 73 | 72 | ffvelcdmda 7104 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑚) ∈ ℂ) |
| 74 | 70, 13, 19, 73, 62 | fsum 15756 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∘ 𝑓))‘(♯‘𝐴))) |
| 75 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
| 76 | 18 | ffvelcdmda 7104 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) ∈ ℂ) |
| 77 | 75, 13, 19, 76, 64 | fsum 15756 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴))) |
| 78 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 79 | 27 | ffvelcdmda 7104 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) ∈ ℂ) |
| 80 | 78, 13, 19, 79, 66 | fsum 15756 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓))‘(♯‘𝐴))) |
| 81 | 77, 80 | oveq12d 7449 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) + Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚)) = ((seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴)) + (seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓))‘(♯‘𝐴)))) |
| 82 | 69, 74, 81 | 3eqtr4d 2787 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = (Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) + Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚))) |
| 83 | | sumfc 15745 |
. . . . . 6
⊢
Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 + 𝐶))‘𝑚) = Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) |
| 84 | | sumfc 15745 |
. . . . . . 7
⊢
Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐵 |
| 85 | | sumfc 15745 |
. . . . . . 7
⊢
Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐶 |
| 86 | 84, 85 | oveq12i 7443 |
. . . . . 6
⊢
(Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) + Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚)) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶) |
| 87 | 82, 83, 86 | 3eqtr3g 2800 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶)) |
| 88 | 87 | expr 456 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶))) |
| 89 | 88 | exlimdv 1933 |
. . 3
⊢ ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) →
(∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶))) |
| 90 | 89 | expimpd 453 |
. 2
⊢ (𝜑 → (((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶))) |
| 91 | | fsumadd.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 92 | | fz1f1o 15746 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨
((♯‘𝐴) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
| 93 | 91, 92 | syl 17 |
. 2
⊢ (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
| 94 | 12, 90, 93 | mpjaod 861 |
1
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶)) |