MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1c Structured version   Visualization version   GIF version

Theorem 2lgslem1c 26741
Description: Lemma 3 for 2lgslem1 26742. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2lgslem1c ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))

Proof of Theorem 2lgslem1c
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 prmnn 16550 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2 nnnn0 12420 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
3 oddnn02np1 16230 . . . 4 (𝑃 ∈ ℕ0 → (¬ 2 ∥ 𝑃 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑃))
41, 2, 33syl 18 . . 3 (𝑃 ∈ ℙ → (¬ 2 ∥ 𝑃 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑃))
5 iftrue 4492 . . . . . . . . 9 (2 ∥ 𝑛 → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = (𝑛 / 2))
65adantr 481 . . . . . . . 8 ((2 ∥ 𝑛𝑛 ∈ ℕ0) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = (𝑛 / 2))
7 2nn 12226 . . . . . . . . . 10 2 ∈ ℕ
8 nn0ledivnn 13028 . . . . . . . . . 10 ((𝑛 ∈ ℕ0 ∧ 2 ∈ ℕ) → (𝑛 / 2) ≤ 𝑛)
97, 8mpan2 689 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (𝑛 / 2) ≤ 𝑛)
109adantl 482 . . . . . . . 8 ((2 ∥ 𝑛𝑛 ∈ ℕ0) → (𝑛 / 2) ≤ 𝑛)
116, 10eqbrtrd 5127 . . . . . . 7 ((2 ∥ 𝑛𝑛 ∈ ℕ0) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)
12 iffalse 4495 . . . . . . . . 9 (¬ 2 ∥ 𝑛 → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = ((𝑛 − 1) / 2))
1312adantr 481 . . . . . . . 8 ((¬ 2 ∥ 𝑛𝑛 ∈ ℕ0) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = ((𝑛 − 1) / 2))
14 nn0re 12422 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
15 peano2rem 11468 . . . . . . . . . . . 12 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
1615rehalfcld 12400 . . . . . . . . . . 11 (𝑛 ∈ ℝ → ((𝑛 − 1) / 2) ∈ ℝ)
1714, 16syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((𝑛 − 1) / 2) ∈ ℝ)
1814rehalfcld 12400 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑛 / 2) ∈ ℝ)
1914lem1d 12088 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (𝑛 − 1) ≤ 𝑛)
2014, 15syl 17 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑛 − 1) ∈ ℝ)
21 2re 12227 . . . . . . . . . . . . . 14 2 ∈ ℝ
22 2pos 12256 . . . . . . . . . . . . . 14 0 < 2
2321, 22pm3.2i 471 . . . . . . . . . . . . 13 (2 ∈ ℝ ∧ 0 < 2)
2423a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (2 ∈ ℝ ∧ 0 < 2))
25 lediv1 12020 . . . . . . . . . . . 12 (((𝑛 − 1) ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑛 − 1) ≤ 𝑛 ↔ ((𝑛 − 1) / 2) ≤ (𝑛 / 2)))
2620, 14, 24, 25syl3anc 1371 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → ((𝑛 − 1) ≤ 𝑛 ↔ ((𝑛 − 1) / 2) ≤ (𝑛 / 2)))
2719, 26mpbid 231 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((𝑛 − 1) / 2) ≤ (𝑛 / 2))
2817, 18, 14, 27, 9letrd 11312 . . . . . . . . 9 (𝑛 ∈ ℕ0 → ((𝑛 − 1) / 2) ≤ 𝑛)
2928adantl 482 . . . . . . . 8 ((¬ 2 ∥ 𝑛𝑛 ∈ ℕ0) → ((𝑛 − 1) / 2) ≤ 𝑛)
3013, 29eqbrtrd 5127 . . . . . . 7 ((¬ 2 ∥ 𝑛𝑛 ∈ ℕ0) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)
3111, 30pm2.61ian 810 . . . . . 6 (𝑛 ∈ ℕ0 → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)
3231ad2antlr 725 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)
33 nn0z 12524 . . . . . . 7 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
3433adantl 482 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
35 eqcom 2743 . . . . . . 7 (((2 · 𝑛) + 1) = 𝑃𝑃 = ((2 · 𝑛) + 1))
3635biimpi 215 . . . . . 6 (((2 · 𝑛) + 1) = 𝑃𝑃 = ((2 · 𝑛) + 1))
37 flodddiv4 16295 . . . . . 6 ((𝑛 ∈ ℤ ∧ 𝑃 = ((2 · 𝑛) + 1)) → (⌊‘(𝑃 / 4)) = if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)))
3834, 36, 37syl2an 596 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (⌊‘(𝑃 / 4)) = if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)))
39 oveq1 7364 . . . . . . . . . 10 (𝑃 = ((2 · 𝑛) + 1) → (𝑃 − 1) = (((2 · 𝑛) + 1) − 1))
4039eqcoms 2744 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑃 → (𝑃 − 1) = (((2 · 𝑛) + 1) − 1))
4140adantl 482 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (𝑃 − 1) = (((2 · 𝑛) + 1) − 1))
42 2nn0 12430 . . . . . . . . . . . . 13 2 ∈ ℕ0
4342a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
44 id 22 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
4543, 44nn0mulcld 12478 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℕ0)
4645nn0cnd 12475 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℂ)
47 pncan1 11579 . . . . . . . . . 10 ((2 · 𝑛) ∈ ℂ → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
4846, 47syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
4948ad2antlr 725 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
5041, 49eqtrd 2776 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (𝑃 − 1) = (2 · 𝑛))
5150oveq1d 7372 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → ((𝑃 − 1) / 2) = ((2 · 𝑛) / 2))
52 nn0cn 12423 . . . . . . . 8 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
53 2cnd 12231 . . . . . . . 8 (𝑛 ∈ ℕ0 → 2 ∈ ℂ)
54 2ne0 12257 . . . . . . . . 9 2 ≠ 0
5554a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ0 → 2 ≠ 0)
5652, 53, 55divcan3d 11936 . . . . . . 7 (𝑛 ∈ ℕ0 → ((2 · 𝑛) / 2) = 𝑛)
5756ad2antlr 725 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → ((2 · 𝑛) / 2) = 𝑛)
5851, 57eqtrd 2776 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → ((𝑃 − 1) / 2) = 𝑛)
5932, 38, 583brtr4d 5137 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
6059rexlimdva2 3154 . . 3 (𝑃 ∈ ℙ → (∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑃 → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
614, 60sylbid 239 . 2 (𝑃 ∈ ℙ → (¬ 2 ∥ 𝑃 → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
6261imp 407 1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wrex 3073  ifcif 4486   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  4c4 12210  0cn0 12413  cz 12499  cfl 13695  cdvds 16136  cprime 16547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fl 13697  df-dvds 16137  df-prm 16548
This theorem is referenced by:  2lgslem1  26742
  Copyright terms: Public domain W3C validator