MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1c Structured version   Visualization version   GIF version

Theorem 2lgslem1c 25975
Description: Lemma 3 for 2lgslem1 25976. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2lgslem1c ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))

Proof of Theorem 2lgslem1c
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 prmnn 16007 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2 nnnn0 11892 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
3 oddnn02np1 15688 . . . 4 (𝑃 ∈ ℕ0 → (¬ 2 ∥ 𝑃 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑃))
41, 2, 33syl 18 . . 3 (𝑃 ∈ ℙ → (¬ 2 ∥ 𝑃 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑃))
5 iftrue 4445 . . . . . . . . 9 (2 ∥ 𝑛 → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = (𝑛 / 2))
65adantr 484 . . . . . . . 8 ((2 ∥ 𝑛𝑛 ∈ ℕ0) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = (𝑛 / 2))
7 2nn 11698 . . . . . . . . . 10 2 ∈ ℕ
8 nn0ledivnn 12490 . . . . . . . . . 10 ((𝑛 ∈ ℕ0 ∧ 2 ∈ ℕ) → (𝑛 / 2) ≤ 𝑛)
97, 8mpan2 690 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (𝑛 / 2) ≤ 𝑛)
109adantl 485 . . . . . . . 8 ((2 ∥ 𝑛𝑛 ∈ ℕ0) → (𝑛 / 2) ≤ 𝑛)
116, 10eqbrtrd 5064 . . . . . . 7 ((2 ∥ 𝑛𝑛 ∈ ℕ0) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)
12 iffalse 4448 . . . . . . . . 9 (¬ 2 ∥ 𝑛 → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = ((𝑛 − 1) / 2))
1312adantr 484 . . . . . . . 8 ((¬ 2 ∥ 𝑛𝑛 ∈ ℕ0) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = ((𝑛 − 1) / 2))
14 nn0re 11894 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
15 peano2rem 10942 . . . . . . . . . . . 12 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
1615rehalfcld 11872 . . . . . . . . . . 11 (𝑛 ∈ ℝ → ((𝑛 − 1) / 2) ∈ ℝ)
1714, 16syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((𝑛 − 1) / 2) ∈ ℝ)
1814rehalfcld 11872 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑛 / 2) ∈ ℝ)
1914lem1d 11562 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (𝑛 − 1) ≤ 𝑛)
2014, 15syl 17 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑛 − 1) ∈ ℝ)
21 2re 11699 . . . . . . . . . . . . . 14 2 ∈ ℝ
22 2pos 11728 . . . . . . . . . . . . . 14 0 < 2
2321, 22pm3.2i 474 . . . . . . . . . . . . 13 (2 ∈ ℝ ∧ 0 < 2)
2423a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (2 ∈ ℝ ∧ 0 < 2))
25 lediv1 11494 . . . . . . . . . . . 12 (((𝑛 − 1) ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑛 − 1) ≤ 𝑛 ↔ ((𝑛 − 1) / 2) ≤ (𝑛 / 2)))
2620, 14, 24, 25syl3anc 1368 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → ((𝑛 − 1) ≤ 𝑛 ↔ ((𝑛 − 1) / 2) ≤ (𝑛 / 2)))
2719, 26mpbid 235 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((𝑛 − 1) / 2) ≤ (𝑛 / 2))
2817, 18, 14, 27, 9letrd 10786 . . . . . . . . 9 (𝑛 ∈ ℕ0 → ((𝑛 − 1) / 2) ≤ 𝑛)
2928adantl 485 . . . . . . . 8 ((¬ 2 ∥ 𝑛𝑛 ∈ ℕ0) → ((𝑛 − 1) / 2) ≤ 𝑛)
3013, 29eqbrtrd 5064 . . . . . . 7 ((¬ 2 ∥ 𝑛𝑛 ∈ ℕ0) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)
3111, 30pm2.61ian 811 . . . . . 6 (𝑛 ∈ ℕ0 → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)
3231ad2antlr 726 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)
33 nn0z 11993 . . . . . . 7 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
3433adantl 485 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
35 eqcom 2829 . . . . . . 7 (((2 · 𝑛) + 1) = 𝑃𝑃 = ((2 · 𝑛) + 1))
3635biimpi 219 . . . . . 6 (((2 · 𝑛) + 1) = 𝑃𝑃 = ((2 · 𝑛) + 1))
37 flodddiv4 15753 . . . . . 6 ((𝑛 ∈ ℤ ∧ 𝑃 = ((2 · 𝑛) + 1)) → (⌊‘(𝑃 / 4)) = if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)))
3834, 36, 37syl2an 598 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (⌊‘(𝑃 / 4)) = if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)))
39 oveq1 7147 . . . . . . . . . 10 (𝑃 = ((2 · 𝑛) + 1) → (𝑃 − 1) = (((2 · 𝑛) + 1) − 1))
4039eqcoms 2830 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑃 → (𝑃 − 1) = (((2 · 𝑛) + 1) − 1))
4140adantl 485 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (𝑃 − 1) = (((2 · 𝑛) + 1) − 1))
42 2nn0 11902 . . . . . . . . . . . . 13 2 ∈ ℕ0
4342a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
44 id 22 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
4543, 44nn0mulcld 11948 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℕ0)
4645nn0cnd 11945 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℂ)
47 pncan1 11053 . . . . . . . . . 10 ((2 · 𝑛) ∈ ℂ → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
4846, 47syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
4948ad2antlr 726 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
5041, 49eqtrd 2857 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (𝑃 − 1) = (2 · 𝑛))
5150oveq1d 7155 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → ((𝑃 − 1) / 2) = ((2 · 𝑛) / 2))
52 nn0cn 11895 . . . . . . . 8 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
53 2cnd 11703 . . . . . . . 8 (𝑛 ∈ ℕ0 → 2 ∈ ℂ)
54 2ne0 11729 . . . . . . . . 9 2 ≠ 0
5554a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ0 → 2 ≠ 0)
5652, 53, 55divcan3d 11410 . . . . . . 7 (𝑛 ∈ ℕ0 → ((2 · 𝑛) / 2) = 𝑛)
5756ad2antlr 726 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → ((2 · 𝑛) / 2) = 𝑛)
5851, 57eqtrd 2857 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → ((𝑃 − 1) / 2) = 𝑛)
5932, 38, 583brtr4d 5074 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
6059rexlimdva2 3273 . . 3 (𝑃 ∈ ℙ → (∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑃 → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
614, 60sylbid 243 . 2 (𝑃 ∈ ℙ → (¬ 2 ∥ 𝑃 → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
6261imp 410 1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2114  wne 3011  wrex 3131  ifcif 4439   class class class wbr 5042  cfv 6334  (class class class)co 7140  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  4c4 11682  0cn0 11885  cz 11969  cfl 13155  cdvds 15598  cprime 16004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-dvds 15599  df-prm 16005
This theorem is referenced by:  2lgslem1  25976
  Copyright terms: Public domain W3C validator