MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1c Structured version   Visualization version   GIF version

Theorem 2lgslem1c 27302
Description: Lemma 3 for 2lgslem1 27303. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2lgslem1c ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))

Proof of Theorem 2lgslem1c
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 prmnn 16585 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2 nnnn0 12391 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
3 oddnn02np1 16259 . . . 4 (𝑃 ∈ ℕ0 → (¬ 2 ∥ 𝑃 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑃))
41, 2, 33syl 18 . . 3 (𝑃 ∈ ℙ → (¬ 2 ∥ 𝑃 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑃))
5 iftrue 4482 . . . . . . . . 9 (2 ∥ 𝑛 → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = (𝑛 / 2))
65adantr 480 . . . . . . . 8 ((2 ∥ 𝑛𝑛 ∈ ℕ0) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = (𝑛 / 2))
7 2nn 12201 . . . . . . . . . 10 2 ∈ ℕ
8 nn0ledivnn 13008 . . . . . . . . . 10 ((𝑛 ∈ ℕ0 ∧ 2 ∈ ℕ) → (𝑛 / 2) ≤ 𝑛)
97, 8mpan2 691 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (𝑛 / 2) ≤ 𝑛)
109adantl 481 . . . . . . . 8 ((2 ∥ 𝑛𝑛 ∈ ℕ0) → (𝑛 / 2) ≤ 𝑛)
116, 10eqbrtrd 5114 . . . . . . 7 ((2 ∥ 𝑛𝑛 ∈ ℕ0) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)
12 iffalse 4485 . . . . . . . . 9 (¬ 2 ∥ 𝑛 → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = ((𝑛 − 1) / 2))
1312adantr 480 . . . . . . . 8 ((¬ 2 ∥ 𝑛𝑛 ∈ ℕ0) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = ((𝑛 − 1) / 2))
14 nn0re 12393 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
15 peano2rem 11431 . . . . . . . . . . . 12 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
1615rehalfcld 12371 . . . . . . . . . . 11 (𝑛 ∈ ℝ → ((𝑛 − 1) / 2) ∈ ℝ)
1714, 16syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((𝑛 − 1) / 2) ∈ ℝ)
1814rehalfcld 12371 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑛 / 2) ∈ ℝ)
1914lem1d 12058 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (𝑛 − 1) ≤ 𝑛)
2014, 15syl 17 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑛 − 1) ∈ ℝ)
21 2re 12202 . . . . . . . . . . . . . 14 2 ∈ ℝ
22 2pos 12231 . . . . . . . . . . . . . 14 0 < 2
2321, 22pm3.2i 470 . . . . . . . . . . . . 13 (2 ∈ ℝ ∧ 0 < 2)
2423a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (2 ∈ ℝ ∧ 0 < 2))
25 lediv1 11990 . . . . . . . . . . . 12 (((𝑛 − 1) ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑛 − 1) ≤ 𝑛 ↔ ((𝑛 − 1) / 2) ≤ (𝑛 / 2)))
2620, 14, 24, 25syl3anc 1373 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → ((𝑛 − 1) ≤ 𝑛 ↔ ((𝑛 − 1) / 2) ≤ (𝑛 / 2)))
2719, 26mpbid 232 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((𝑛 − 1) / 2) ≤ (𝑛 / 2))
2817, 18, 14, 27, 9letrd 11273 . . . . . . . . 9 (𝑛 ∈ ℕ0 → ((𝑛 − 1) / 2) ≤ 𝑛)
2928adantl 481 . . . . . . . 8 ((¬ 2 ∥ 𝑛𝑛 ∈ ℕ0) → ((𝑛 − 1) / 2) ≤ 𝑛)
3013, 29eqbrtrd 5114 . . . . . . 7 ((¬ 2 ∥ 𝑛𝑛 ∈ ℕ0) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)
3111, 30pm2.61ian 811 . . . . . 6 (𝑛 ∈ ℕ0 → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)
3231ad2antlr 727 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)
33 nn0z 12496 . . . . . . 7 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
3433adantl 481 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
35 eqcom 2736 . . . . . . 7 (((2 · 𝑛) + 1) = 𝑃𝑃 = ((2 · 𝑛) + 1))
3635biimpi 216 . . . . . 6 (((2 · 𝑛) + 1) = 𝑃𝑃 = ((2 · 𝑛) + 1))
37 flodddiv4 16326 . . . . . 6 ((𝑛 ∈ ℤ ∧ 𝑃 = ((2 · 𝑛) + 1)) → (⌊‘(𝑃 / 4)) = if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)))
3834, 36, 37syl2an 596 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (⌊‘(𝑃 / 4)) = if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)))
39 oveq1 7356 . . . . . . . . . 10 (𝑃 = ((2 · 𝑛) + 1) → (𝑃 − 1) = (((2 · 𝑛) + 1) − 1))
4039eqcoms 2737 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑃 → (𝑃 − 1) = (((2 · 𝑛) + 1) − 1))
4140adantl 481 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (𝑃 − 1) = (((2 · 𝑛) + 1) − 1))
42 2nn0 12401 . . . . . . . . . . . . 13 2 ∈ ℕ0
4342a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
44 id 22 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
4543, 44nn0mulcld 12450 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℕ0)
4645nn0cnd 12447 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℂ)
47 pncan1 11544 . . . . . . . . . 10 ((2 · 𝑛) ∈ ℂ → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
4846, 47syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
4948ad2antlr 727 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
5041, 49eqtrd 2764 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (𝑃 − 1) = (2 · 𝑛))
5150oveq1d 7364 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → ((𝑃 − 1) / 2) = ((2 · 𝑛) / 2))
52 nn0cn 12394 . . . . . . . 8 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
53 2cnd 12206 . . . . . . . 8 (𝑛 ∈ ℕ0 → 2 ∈ ℂ)
54 2ne0 12232 . . . . . . . . 9 2 ≠ 0
5554a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ0 → 2 ≠ 0)
5652, 53, 55divcan3d 11905 . . . . . . 7 (𝑛 ∈ ℕ0 → ((2 · 𝑛) / 2) = 𝑛)
5756ad2antlr 727 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → ((2 · 𝑛) / 2) = 𝑛)
5851, 57eqtrd 2764 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → ((𝑃 − 1) / 2) = 𝑛)
5932, 38, 583brtr4d 5124 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
6059rexlimdva2 3132 . . 3 (𝑃 ∈ ℙ → (∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑃 → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
614, 60sylbid 240 . 2 (𝑃 ∈ ℙ → (¬ 2 ∥ 𝑃 → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
6261imp 406 1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  ifcif 4476   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  2c2 12183  4c4 12185  0cn0 12384  cz 12471  cfl 13694  cdvds 16163  cprime 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fl 13696  df-dvds 16164  df-prm 16583
This theorem is referenced by:  2lgslem1  27303
  Copyright terms: Public domain W3C validator