![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0split | Structured version Visualization version GIF version |
Description: Express the set of nonnegative integers as the disjoint (see nn0disj 13558) union of the first 𝑁 + 1 values and the rest. (Contributed by AV, 8-Nov-2019.) |
Ref | Expression |
---|---|
nn0split | ⊢ (𝑁 ∈ ℕ0 → ℕ0 = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 12806 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑁 ∈ ℕ0 → ℕ0 = (ℤ≥‘0)) |
3 | peano2nn0 12454 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
4 | 3, 1 | eleqtrdi 2848 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (ℤ≥‘0)) |
5 | uzsplit 13514 | . . 3 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘0) → (ℤ≥‘0) = ((0...((𝑁 + 1) − 1)) ∪ (ℤ≥‘(𝑁 + 1)))) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → (ℤ≥‘0) = ((0...((𝑁 + 1) − 1)) ∪ (ℤ≥‘(𝑁 + 1)))) |
7 | nn0cn 12424 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
8 | pncan1 11580 | . . . . 5 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁) |
10 | 9 | oveq2d 7374 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (0...((𝑁 + 1) − 1)) = (0...𝑁)) |
11 | 10 | uneq1d 4123 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((0...((𝑁 + 1) − 1)) ∪ (ℤ≥‘(𝑁 + 1))) = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
12 | 2, 6, 11 | 3eqtrd 2781 | 1 ⊢ (𝑁 ∈ ℕ0 → ℕ0 = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∪ cun 3909 ‘cfv 6497 (class class class)co 7358 ℂcc 11050 0cc0 11052 1c1 11053 + caddc 11055 − cmin 11386 ℕ0cn0 12414 ℤ≥cuz 12764 ...cfz 13425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-nn 12155 df-n0 12415 df-z 12501 df-uz 12765 df-fz 13426 |
This theorem is referenced by: chfacfscmulgsum 22212 chfacfpmmulgsum 22216 bccbc 42632 |
Copyright terms: Public domain | W3C validator |