MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccatin12d Structured version   Visualization version   GIF version

Theorem pfxccatin12d 14694
Description: The subword of a concatenation of two words within both of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by AV, 10-May-2020.)
Hypotheses
Ref Expression
swrdccatind.l (𝜑 → (♯‘𝐴) = 𝐿)
swrdccatind.w (𝜑 → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
pfxccatin12d.m (𝜑𝑀 ∈ (0...𝐿))
pfxccatin12d.n (𝜑𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
Assertion
Ref Expression
pfxccatin12d (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))

Proof of Theorem pfxccatin12d
StepHypRef Expression
1 swrdccatind.w . . 3 (𝜑 → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 pfxccatin12d.m . . . 4 (𝜑𝑀 ∈ (0...𝐿))
3 pfxccatin12d.n . . . 4 (𝜑𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
4 swrdccatind.l . . . . . . 7 (𝜑 → (♯‘𝐴) = 𝐿)
54oveq2d 7424 . . . . . 6 (𝜑 → (0...(♯‘𝐴)) = (0...𝐿))
65eleq2d 2819 . . . . 5 (𝜑 → (𝑀 ∈ (0...(♯‘𝐴)) ↔ 𝑀 ∈ (0...𝐿)))
74oveq1d 7423 . . . . . . 7 (𝜑 → ((♯‘𝐴) + (♯‘𝐵)) = (𝐿 + (♯‘𝐵)))
84, 7oveq12d 7426 . . . . . 6 (𝜑 → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) = (𝐿...(𝐿 + (♯‘𝐵))))
98eleq2d 2819 . . . . 5 (𝜑 → (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ↔ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
106, 9anbi12d 631 . . . 4 (𝜑 → ((𝑀 ∈ (0...(♯‘𝐴)) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) ↔ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
112, 3, 10mpbir2and 711 . . 3 (𝜑 → (𝑀 ∈ (0...(♯‘𝐴)) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))))
12 eqid 2732 . . . 4 (♯‘𝐴) = (♯‘𝐴)
1312pfxccatin12 14682 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...(♯‘𝐴)) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, (♯‘𝐴)⟩) ++ (𝐵 prefix (𝑁 − (♯‘𝐴))))))
141, 11, 13sylc 65 . 2 (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, (♯‘𝐴)⟩) ++ (𝐵 prefix (𝑁 − (♯‘𝐴)))))
154opeq2d 4880 . . . 4 (𝜑 → ⟨𝑀, (♯‘𝐴)⟩ = ⟨𝑀, 𝐿⟩)
1615oveq2d 7424 . . 3 (𝜑 → (𝐴 substr ⟨𝑀, (♯‘𝐴)⟩) = (𝐴 substr ⟨𝑀, 𝐿⟩))
174oveq2d 7424 . . . 4 (𝜑 → (𝑁 − (♯‘𝐴)) = (𝑁𝐿))
1817oveq2d 7424 . . 3 (𝜑 → (𝐵 prefix (𝑁 − (♯‘𝐴))) = (𝐵 prefix (𝑁𝐿)))
1916, 18oveq12d 7426 . 2 (𝜑 → ((𝐴 substr ⟨𝑀, (♯‘𝐴)⟩) ++ (𝐵 prefix (𝑁 − (♯‘𝐴)))) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))
2014, 19eqtrd 2772 1 (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cop 4634  cfv 6543  (class class class)co 7408  0cc0 11109   + caddc 11112  cmin 11443  ...cfz 13483  chash 14289  Word cword 14463   ++ cconcat 14519   substr csubstr 14589   prefix cpfx 14619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-hash 14290  df-word 14464  df-concat 14520  df-substr 14590  df-pfx 14620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator