![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pfxccatin12d | Structured version Visualization version GIF version |
Description: The subword of a concatenation of two words within both of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by AV, 10-May-2020.) |
Ref | Expression |
---|---|
swrdccatind.l | ⊢ (𝜑 → (♯‘𝐴) = 𝐿) |
swrdccatind.w | ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
pfxccatin12d.m | ⊢ (𝜑 → 𝑀 ∈ (0...𝐿)) |
pfxccatin12d.n | ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) |
Ref | Expression |
---|---|
pfxccatin12d | ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁 − 𝐿)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swrdccatind.w | . . 3 ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) | |
2 | pfxccatin12d.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (0...𝐿)) | |
3 | pfxccatin12d.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) | |
4 | swrdccatind.l | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐴) = 𝐿) | |
5 | 4 | oveq2d 7430 | . . . . . 6 ⊢ (𝜑 → (0...(♯‘𝐴)) = (0...𝐿)) |
6 | 5 | eleq2d 2814 | . . . . 5 ⊢ (𝜑 → (𝑀 ∈ (0...(♯‘𝐴)) ↔ 𝑀 ∈ (0...𝐿))) |
7 | 4 | oveq1d 7429 | . . . . . . 7 ⊢ (𝜑 → ((♯‘𝐴) + (♯‘𝐵)) = (𝐿 + (♯‘𝐵))) |
8 | 4, 7 | oveq12d 7432 | . . . . . 6 ⊢ (𝜑 → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) = (𝐿...(𝐿 + (♯‘𝐵)))) |
9 | 8 | eleq2d 2814 | . . . . 5 ⊢ (𝜑 → (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ↔ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
10 | 6, 9 | anbi12d 630 | . . . 4 ⊢ (𝜑 → ((𝑀 ∈ (0...(♯‘𝐴)) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) ↔ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
11 | 2, 3, 10 | mpbir2and 712 | . . 3 ⊢ (𝜑 → (𝑀 ∈ (0...(♯‘𝐴)) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))) |
12 | eqid 2727 | . . . 4 ⊢ (♯‘𝐴) = (♯‘𝐴) | |
13 | 12 | pfxccatin12 14701 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...(♯‘𝐴)) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, (♯‘𝐴)⟩) ++ (𝐵 prefix (𝑁 − (♯‘𝐴)))))) |
14 | 1, 11, 13 | sylc 65 | . 2 ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, (♯‘𝐴)⟩) ++ (𝐵 prefix (𝑁 − (♯‘𝐴))))) |
15 | 4 | opeq2d 4876 | . . . 4 ⊢ (𝜑 → ⟨𝑀, (♯‘𝐴)⟩ = ⟨𝑀, 𝐿⟩) |
16 | 15 | oveq2d 7430 | . . 3 ⊢ (𝜑 → (𝐴 substr ⟨𝑀, (♯‘𝐴)⟩) = (𝐴 substr ⟨𝑀, 𝐿⟩)) |
17 | 4 | oveq2d 7430 | . . . 4 ⊢ (𝜑 → (𝑁 − (♯‘𝐴)) = (𝑁 − 𝐿)) |
18 | 17 | oveq2d 7430 | . . 3 ⊢ (𝜑 → (𝐵 prefix (𝑁 − (♯‘𝐴))) = (𝐵 prefix (𝑁 − 𝐿))) |
19 | 16, 18 | oveq12d 7432 | . 2 ⊢ (𝜑 → ((𝐴 substr ⟨𝑀, (♯‘𝐴)⟩) ++ (𝐵 prefix (𝑁 − (♯‘𝐴)))) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁 − 𝐿)))) |
20 | 14, 19 | eqtrd 2767 | 1 ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁 − 𝐿)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ⟨cop 4630 ‘cfv 6542 (class class class)co 7414 0cc0 11124 + caddc 11127 − cmin 11460 ...cfz 13502 ♯chash 14307 Word cword 14482 ++ cconcat 14538 substr csubstr 14608 prefix cpfx 14638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-n0 12489 df-z 12575 df-uz 12839 df-fz 13503 df-fzo 13646 df-hash 14308 df-word 14483 df-concat 14539 df-substr 14609 df-pfx 14639 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |