| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pfxccatin12d | Structured version Visualization version GIF version | ||
| Description: The subword of a concatenation of two words within both of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by AV, 10-May-2020.) |
| Ref | Expression |
|---|---|
| swrdccatind.l | ⊢ (𝜑 → (♯‘𝐴) = 𝐿) |
| swrdccatind.w | ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
| pfxccatin12d.m | ⊢ (𝜑 → 𝑀 ∈ (0...𝐿)) |
| pfxccatin12d.n | ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) |
| Ref | Expression |
|---|---|
| pfxccatin12d | ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swrdccatind.w | . . 3 ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) | |
| 2 | pfxccatin12d.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (0...𝐿)) | |
| 3 | pfxccatin12d.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) | |
| 4 | swrdccatind.l | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐴) = 𝐿) | |
| 5 | 4 | oveq2d 7362 | . . . . . 6 ⊢ (𝜑 → (0...(♯‘𝐴)) = (0...𝐿)) |
| 6 | 5 | eleq2d 2817 | . . . . 5 ⊢ (𝜑 → (𝑀 ∈ (0...(♯‘𝐴)) ↔ 𝑀 ∈ (0...𝐿))) |
| 7 | 4 | oveq1d 7361 | . . . . . . 7 ⊢ (𝜑 → ((♯‘𝐴) + (♯‘𝐵)) = (𝐿 + (♯‘𝐵))) |
| 8 | 4, 7 | oveq12d 7364 | . . . . . 6 ⊢ (𝜑 → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) = (𝐿...(𝐿 + (♯‘𝐵)))) |
| 9 | 8 | eleq2d 2817 | . . . . 5 ⊢ (𝜑 → (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ↔ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
| 10 | 6, 9 | anbi12d 632 | . . . 4 ⊢ (𝜑 → ((𝑀 ∈ (0...(♯‘𝐴)) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) ↔ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 11 | 2, 3, 10 | mpbir2and 713 | . . 3 ⊢ (𝜑 → (𝑀 ∈ (0...(♯‘𝐴)) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))) |
| 12 | eqid 2731 | . . . 4 ⊢ (♯‘𝐴) = (♯‘𝐴) | |
| 13 | 12 | pfxccatin12 14637 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...(♯‘𝐴)) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, (♯‘𝐴)〉) ++ (𝐵 prefix (𝑁 − (♯‘𝐴)))))) |
| 14 | 1, 11, 13 | sylc 65 | . 2 ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, (♯‘𝐴)〉) ++ (𝐵 prefix (𝑁 − (♯‘𝐴))))) |
| 15 | 4 | opeq2d 4832 | . . . 4 ⊢ (𝜑 → 〈𝑀, (♯‘𝐴)〉 = 〈𝑀, 𝐿〉) |
| 16 | 15 | oveq2d 7362 | . . 3 ⊢ (𝜑 → (𝐴 substr 〈𝑀, (♯‘𝐴)〉) = (𝐴 substr 〈𝑀, 𝐿〉)) |
| 17 | 4 | oveq2d 7362 | . . . 4 ⊢ (𝜑 → (𝑁 − (♯‘𝐴)) = (𝑁 − 𝐿)) |
| 18 | 17 | oveq2d 7362 | . . 3 ⊢ (𝜑 → (𝐵 prefix (𝑁 − (♯‘𝐴))) = (𝐵 prefix (𝑁 − 𝐿))) |
| 19 | 16, 18 | oveq12d 7364 | . 2 ⊢ (𝜑 → ((𝐴 substr 〈𝑀, (♯‘𝐴)〉) ++ (𝐵 prefix (𝑁 − (♯‘𝐴)))) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))) |
| 20 | 14, 19 | eqtrd 2766 | 1 ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4582 ‘cfv 6481 (class class class)co 7346 0cc0 11003 + caddc 11006 − cmin 11341 ...cfz 13404 ♯chash 14234 Word cword 14417 ++ cconcat 14474 substr csubstr 14545 prefix cpfx 14575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-fzo 13552 df-hash 14235 df-word 14418 df-concat 14475 df-substr 14546 df-pfx 14576 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |