MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccatin12d Structured version   Visualization version   GIF version

Theorem pfxccatin12d 14722
Description: The subword of a concatenation of two words within both of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by AV, 10-May-2020.)
Hypotheses
Ref Expression
swrdccatind.l (𝜑 → (♯‘𝐴) = 𝐿)
swrdccatind.w (𝜑 → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
pfxccatin12d.m (𝜑𝑀 ∈ (0...𝐿))
pfxccatin12d.n (𝜑𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
Assertion
Ref Expression
pfxccatin12d (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))

Proof of Theorem pfxccatin12d
StepHypRef Expression
1 swrdccatind.w . . 3 (𝜑 → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 pfxccatin12d.m . . . 4 (𝜑𝑀 ∈ (0...𝐿))
3 pfxccatin12d.n . . . 4 (𝜑𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
4 swrdccatind.l . . . . . . 7 (𝜑 → (♯‘𝐴) = 𝐿)
54oveq2d 7429 . . . . . 6 (𝜑 → (0...(♯‘𝐴)) = (0...𝐿))
65eleq2d 2811 . . . . 5 (𝜑 → (𝑀 ∈ (0...(♯‘𝐴)) ↔ 𝑀 ∈ (0...𝐿)))
74oveq1d 7428 . . . . . . 7 (𝜑 → ((♯‘𝐴) + (♯‘𝐵)) = (𝐿 + (♯‘𝐵)))
84, 7oveq12d 7431 . . . . . 6 (𝜑 → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) = (𝐿...(𝐿 + (♯‘𝐵))))
98eleq2d 2811 . . . . 5 (𝜑 → (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ↔ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
106, 9anbi12d 630 . . . 4 (𝜑 → ((𝑀 ∈ (0...(♯‘𝐴)) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) ↔ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
112, 3, 10mpbir2and 711 . . 3 (𝜑 → (𝑀 ∈ (0...(♯‘𝐴)) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))))
12 eqid 2725 . . . 4 (♯‘𝐴) = (♯‘𝐴)
1312pfxccatin12 14710 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...(♯‘𝐴)) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, (♯‘𝐴)⟩) ++ (𝐵 prefix (𝑁 − (♯‘𝐴))))))
141, 11, 13sylc 65 . 2 (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, (♯‘𝐴)⟩) ++ (𝐵 prefix (𝑁 − (♯‘𝐴)))))
154opeq2d 4877 . . . 4 (𝜑 → ⟨𝑀, (♯‘𝐴)⟩ = ⟨𝑀, 𝐿⟩)
1615oveq2d 7429 . . 3 (𝜑 → (𝐴 substr ⟨𝑀, (♯‘𝐴)⟩) = (𝐴 substr ⟨𝑀, 𝐿⟩))
174oveq2d 7429 . . . 4 (𝜑 → (𝑁 − (♯‘𝐴)) = (𝑁𝐿))
1817oveq2d 7429 . . 3 (𝜑 → (𝐵 prefix (𝑁 − (♯‘𝐴))) = (𝐵 prefix (𝑁𝐿)))
1916, 18oveq12d 7431 . 2 (𝜑 → ((𝐴 substr ⟨𝑀, (♯‘𝐴)⟩) ++ (𝐵 prefix (𝑁 − (♯‘𝐴)))) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))
2014, 19eqtrd 2765 1 (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cop 4631  cfv 6543  (class class class)co 7413  0cc0 11133   + caddc 11136  cmin 11469  ...cfz 13511  chash 14316  Word cword 14491   ++ cconcat 14547   substr csubstr 14617   prefix cpfx 14647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-n0 12498  df-z 12584  df-uz 12848  df-fz 13512  df-fzo 13655  df-hash 14317  df-word 14492  df-concat 14548  df-substr 14618  df-pfx 14648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator