Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pfxccatin12d | Structured version Visualization version GIF version |
Description: The subword of a concatenation of two words within both of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by AV, 10-May-2020.) |
Ref | Expression |
---|---|
swrdccatind.l | ⊢ (𝜑 → (♯‘𝐴) = 𝐿) |
swrdccatind.w | ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
pfxccatin12d.m | ⊢ (𝜑 → 𝑀 ∈ (0...𝐿)) |
pfxccatin12d.n | ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) |
Ref | Expression |
---|---|
pfxccatin12d | ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swrdccatind.w | . . 3 ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) | |
2 | pfxccatin12d.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (0...𝐿)) | |
3 | pfxccatin12d.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) | |
4 | swrdccatind.l | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐴) = 𝐿) | |
5 | 4 | oveq2d 7271 | . . . . . 6 ⊢ (𝜑 → (0...(♯‘𝐴)) = (0...𝐿)) |
6 | 5 | eleq2d 2824 | . . . . 5 ⊢ (𝜑 → (𝑀 ∈ (0...(♯‘𝐴)) ↔ 𝑀 ∈ (0...𝐿))) |
7 | 4 | oveq1d 7270 | . . . . . . 7 ⊢ (𝜑 → ((♯‘𝐴) + (♯‘𝐵)) = (𝐿 + (♯‘𝐵))) |
8 | 4, 7 | oveq12d 7273 | . . . . . 6 ⊢ (𝜑 → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) = (𝐿...(𝐿 + (♯‘𝐵)))) |
9 | 8 | eleq2d 2824 | . . . . 5 ⊢ (𝜑 → (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ↔ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
10 | 6, 9 | anbi12d 630 | . . . 4 ⊢ (𝜑 → ((𝑀 ∈ (0...(♯‘𝐴)) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) ↔ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
11 | 2, 3, 10 | mpbir2and 709 | . . 3 ⊢ (𝜑 → (𝑀 ∈ (0...(♯‘𝐴)) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))) |
12 | eqid 2738 | . . . 4 ⊢ (♯‘𝐴) = (♯‘𝐴) | |
13 | 12 | pfxccatin12 14374 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...(♯‘𝐴)) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, (♯‘𝐴)〉) ++ (𝐵 prefix (𝑁 − (♯‘𝐴)))))) |
14 | 1, 11, 13 | sylc 65 | . 2 ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, (♯‘𝐴)〉) ++ (𝐵 prefix (𝑁 − (♯‘𝐴))))) |
15 | 4 | opeq2d 4808 | . . . 4 ⊢ (𝜑 → 〈𝑀, (♯‘𝐴)〉 = 〈𝑀, 𝐿〉) |
16 | 15 | oveq2d 7271 | . . 3 ⊢ (𝜑 → (𝐴 substr 〈𝑀, (♯‘𝐴)〉) = (𝐴 substr 〈𝑀, 𝐿〉)) |
17 | 4 | oveq2d 7271 | . . . 4 ⊢ (𝜑 → (𝑁 − (♯‘𝐴)) = (𝑁 − 𝐿)) |
18 | 17 | oveq2d 7271 | . . 3 ⊢ (𝜑 → (𝐵 prefix (𝑁 − (♯‘𝐴))) = (𝐵 prefix (𝑁 − 𝐿))) |
19 | 16, 18 | oveq12d 7273 | . 2 ⊢ (𝜑 → ((𝐴 substr 〈𝑀, (♯‘𝐴)〉) ++ (𝐵 prefix (𝑁 − (♯‘𝐴)))) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))) |
20 | 14, 19 | eqtrd 2778 | 1 ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 ‘cfv 6418 (class class class)co 7255 0cc0 10802 + caddc 10805 − cmin 11135 ...cfz 13168 ♯chash 13972 Word cword 14145 ++ cconcat 14201 substr csubstr 14281 prefix cpfx 14311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-substr 14282 df-pfx 14312 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |