![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pfxccatin12d | Structured version Visualization version GIF version |
Description: The subword of a concatenation of two words within both of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by AV, 10-May-2020.) |
Ref | Expression |
---|---|
swrdccatind.l | ⊢ (𝜑 → (♯‘𝐴) = 𝐿) |
swrdccatind.w | ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
pfxccatin12d.m | ⊢ (𝜑 → 𝑀 ∈ (0...𝐿)) |
pfxccatin12d.n | ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) |
Ref | Expression |
---|---|
pfxccatin12d | ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swrdccatind.w | . . 3 ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) | |
2 | pfxccatin12d.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (0...𝐿)) | |
3 | pfxccatin12d.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) | |
4 | swrdccatind.l | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐴) = 𝐿) | |
5 | 4 | oveq2d 7432 | . . . . . 6 ⊢ (𝜑 → (0...(♯‘𝐴)) = (0...𝐿)) |
6 | 5 | eleq2d 2812 | . . . . 5 ⊢ (𝜑 → (𝑀 ∈ (0...(♯‘𝐴)) ↔ 𝑀 ∈ (0...𝐿))) |
7 | 4 | oveq1d 7431 | . . . . . . 7 ⊢ (𝜑 → ((♯‘𝐴) + (♯‘𝐵)) = (𝐿 + (♯‘𝐵))) |
8 | 4, 7 | oveq12d 7434 | . . . . . 6 ⊢ (𝜑 → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) = (𝐿...(𝐿 + (♯‘𝐵)))) |
9 | 8 | eleq2d 2812 | . . . . 5 ⊢ (𝜑 → (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ↔ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
10 | 6, 9 | anbi12d 630 | . . . 4 ⊢ (𝜑 → ((𝑀 ∈ (0...(♯‘𝐴)) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) ↔ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
11 | 2, 3, 10 | mpbir2and 711 | . . 3 ⊢ (𝜑 → (𝑀 ∈ (0...(♯‘𝐴)) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))) |
12 | eqid 2726 | . . . 4 ⊢ (♯‘𝐴) = (♯‘𝐴) | |
13 | 12 | pfxccatin12 14736 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...(♯‘𝐴)) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, (♯‘𝐴)〉) ++ (𝐵 prefix (𝑁 − (♯‘𝐴)))))) |
14 | 1, 11, 13 | sylc 65 | . 2 ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, (♯‘𝐴)〉) ++ (𝐵 prefix (𝑁 − (♯‘𝐴))))) |
15 | 4 | opeq2d 4878 | . . . 4 ⊢ (𝜑 → 〈𝑀, (♯‘𝐴)〉 = 〈𝑀, 𝐿〉) |
16 | 15 | oveq2d 7432 | . . 3 ⊢ (𝜑 → (𝐴 substr 〈𝑀, (♯‘𝐴)〉) = (𝐴 substr 〈𝑀, 𝐿〉)) |
17 | 4 | oveq2d 7432 | . . . 4 ⊢ (𝜑 → (𝑁 − (♯‘𝐴)) = (𝑁 − 𝐿)) |
18 | 17 | oveq2d 7432 | . . 3 ⊢ (𝜑 → (𝐵 prefix (𝑁 − (♯‘𝐴))) = (𝐵 prefix (𝑁 − 𝐿))) |
19 | 16, 18 | oveq12d 7434 | . 2 ⊢ (𝜑 → ((𝐴 substr 〈𝑀, (♯‘𝐴)〉) ++ (𝐵 prefix (𝑁 − (♯‘𝐴)))) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))) |
20 | 14, 19 | eqtrd 2766 | 1 ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 〈cop 4629 ‘cfv 6546 (class class class)co 7416 0cc0 11149 + caddc 11152 − cmin 11485 ...cfz 13532 ♯chash 14342 Word cword 14517 ++ cconcat 14573 substr csubstr 14643 prefix cpfx 14673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-card 9975 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-n0 12519 df-z 12605 df-uz 12869 df-fz 13533 df-fzo 13676 df-hash 14343 df-word 14518 df-concat 14574 df-substr 14644 df-pfx 14674 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |