![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > swrdccatin2d | Structured version Visualization version GIF version |
Description: The subword of a concatenation of two words within the second of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by Mario Carneiro/AV, 21-Oct-2018.) |
Ref | Expression |
---|---|
swrdccatind.l | ⊢ (𝜑 → (♯‘𝐴) = 𝐿) |
swrdccatind.w | ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
swrdccatin2d.1 | ⊢ (𝜑 → 𝑀 ∈ (𝐿...𝑁)) |
swrdccatin2d.2 | ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) |
Ref | Expression |
---|---|
swrdccatin2d | ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − 𝐿), (𝑁 − 𝐿)⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swrdccatind.l | . 2 ⊢ (𝜑 → (♯‘𝐴) = 𝐿) | |
2 | swrdccatind.w | . . . . . . 7 ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) | |
3 | 2 | adantl 480 | . . . . . 6 ⊢ (((♯‘𝐴) = 𝐿 ∧ 𝜑) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
4 | swrdccatin2d.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ (𝐿...𝑁)) | |
5 | swrdccatin2d.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) | |
6 | 4, 5 | jca 510 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
7 | 6 | adantl 480 | . . . . . . 7 ⊢ (((♯‘𝐴) = 𝐿 ∧ 𝜑) → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
8 | oveq1 7420 | . . . . . . . . . 10 ⊢ ((♯‘𝐴) = 𝐿 → ((♯‘𝐴)...𝑁) = (𝐿...𝑁)) | |
9 | 8 | eleq2d 2811 | . . . . . . . . 9 ⊢ ((♯‘𝐴) = 𝐿 → (𝑀 ∈ ((♯‘𝐴)...𝑁) ↔ 𝑀 ∈ (𝐿...𝑁))) |
10 | id 22 | . . . . . . . . . . 11 ⊢ ((♯‘𝐴) = 𝐿 → (♯‘𝐴) = 𝐿) | |
11 | oveq1 7420 | . . . . . . . . . . 11 ⊢ ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) + (♯‘𝐵)) = (𝐿 + (♯‘𝐵))) | |
12 | 10, 11 | oveq12d 7431 | . . . . . . . . . 10 ⊢ ((♯‘𝐴) = 𝐿 → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) = (𝐿...(𝐿 + (♯‘𝐵)))) |
13 | 12 | eleq2d 2811 | . . . . . . . . 9 ⊢ ((♯‘𝐴) = 𝐿 → (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ↔ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
14 | 9, 13 | anbi12d 630 | . . . . . . . 8 ⊢ ((♯‘𝐴) = 𝐿 → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) ↔ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
15 | 14 | adantr 479 | . . . . . . 7 ⊢ (((♯‘𝐴) = 𝐿 ∧ 𝜑) → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) ↔ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
16 | 7, 15 | mpbird 256 | . . . . . 6 ⊢ (((♯‘𝐴) = 𝐿 ∧ 𝜑) → (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))) |
17 | 3, 16 | jca 510 | . . . . 5 ⊢ (((♯‘𝐴) = 𝐿 ∧ 𝜑) → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))))) |
18 | 17 | ex 411 | . . . 4 ⊢ ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))))) |
19 | eqid 2725 | . . . . . 6 ⊢ (♯‘𝐴) = (♯‘𝐴) | |
20 | 19 | swrdccatin2 14706 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩))) |
21 | 20 | imp 405 | . . . 4 ⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩)) |
22 | 18, 21 | syl6 35 | . . 3 ⊢ ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩))) |
23 | oveq2 7421 | . . . . . 6 ⊢ ((♯‘𝐴) = 𝐿 → (𝑀 − (♯‘𝐴)) = (𝑀 − 𝐿)) | |
24 | oveq2 7421 | . . . . . 6 ⊢ ((♯‘𝐴) = 𝐿 → (𝑁 − (♯‘𝐴)) = (𝑁 − 𝐿)) | |
25 | 23, 24 | opeq12d 4878 | . . . . 5 ⊢ ((♯‘𝐴) = 𝐿 → ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩ = ⟨(𝑀 − 𝐿), (𝑁 − 𝐿)⟩) |
26 | 25 | oveq2d 7429 | . . . 4 ⊢ ((♯‘𝐴) = 𝐿 → (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩) = (𝐵 substr ⟨(𝑀 − 𝐿), (𝑁 − 𝐿)⟩)) |
27 | 26 | eqeq2d 2736 | . . 3 ⊢ ((♯‘𝐴) = 𝐿 → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩) ↔ ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − 𝐿), (𝑁 − 𝐿)⟩))) |
28 | 22, 27 | sylibd 238 | . 2 ⊢ ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − 𝐿), (𝑁 − 𝐿)⟩))) |
29 | 1, 28 | mpcom 38 | 1 ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − 𝐿), (𝑁 − 𝐿)⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⟨cop 4631 ‘cfv 6543 (class class class)co 7413 + caddc 11136 − cmin 11469 ...cfz 13511 ♯chash 14316 Word cword 14491 ++ cconcat 14547 substr csubstr 14617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-n0 12498 df-z 12584 df-uz 12848 df-fz 13512 df-fzo 13655 df-hash 14317 df-word 14492 df-concat 14548 df-substr 14618 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |