| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > swrdccatin2d | Structured version Visualization version GIF version | ||
| Description: The subword of a concatenation of two words within the second of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by Mario Carneiro/AV, 21-Oct-2018.) |
| Ref | Expression |
|---|---|
| swrdccatind.l | ⊢ (𝜑 → (♯‘𝐴) = 𝐿) |
| swrdccatind.w | ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
| swrdccatin2d.1 | ⊢ (𝜑 → 𝑀 ∈ (𝐿...𝑁)) |
| swrdccatin2d.2 | ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) |
| Ref | Expression |
|---|---|
| swrdccatin2d | ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swrdccatind.l | . 2 ⊢ (𝜑 → (♯‘𝐴) = 𝐿) | |
| 2 | swrdccatind.w | . . . . . . 7 ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) | |
| 3 | 2 | adantl 481 | . . . . . 6 ⊢ (((♯‘𝐴) = 𝐿 ∧ 𝜑) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
| 4 | swrdccatin2d.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ (𝐿...𝑁)) | |
| 5 | swrdccatin2d.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) | |
| 6 | 4, 5 | jca 511 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
| 7 | 6 | adantl 481 | . . . . . . 7 ⊢ (((♯‘𝐴) = 𝐿 ∧ 𝜑) → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
| 8 | oveq1 7360 | . . . . . . . . . 10 ⊢ ((♯‘𝐴) = 𝐿 → ((♯‘𝐴)...𝑁) = (𝐿...𝑁)) | |
| 9 | 8 | eleq2d 2814 | . . . . . . . . 9 ⊢ ((♯‘𝐴) = 𝐿 → (𝑀 ∈ ((♯‘𝐴)...𝑁) ↔ 𝑀 ∈ (𝐿...𝑁))) |
| 10 | id 22 | . . . . . . . . . . 11 ⊢ ((♯‘𝐴) = 𝐿 → (♯‘𝐴) = 𝐿) | |
| 11 | oveq1 7360 | . . . . . . . . . . 11 ⊢ ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) + (♯‘𝐵)) = (𝐿 + (♯‘𝐵))) | |
| 12 | 10, 11 | oveq12d 7371 | . . . . . . . . . 10 ⊢ ((♯‘𝐴) = 𝐿 → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) = (𝐿...(𝐿 + (♯‘𝐵)))) |
| 13 | 12 | eleq2d 2814 | . . . . . . . . 9 ⊢ ((♯‘𝐴) = 𝐿 → (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ↔ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
| 14 | 9, 13 | anbi12d 632 | . . . . . . . 8 ⊢ ((♯‘𝐴) = 𝐿 → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) ↔ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 15 | 14 | adantr 480 | . . . . . . 7 ⊢ (((♯‘𝐴) = 𝐿 ∧ 𝜑) → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) ↔ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 16 | 7, 15 | mpbird 257 | . . . . . 6 ⊢ (((♯‘𝐴) = 𝐿 ∧ 𝜑) → (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))) |
| 17 | 3, 16 | jca 511 | . . . . 5 ⊢ (((♯‘𝐴) = 𝐿 ∧ 𝜑) → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))))) |
| 18 | 17 | ex 412 | . . . 4 ⊢ ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))))) |
| 19 | eqid 2729 | . . . . . 6 ⊢ (♯‘𝐴) = (♯‘𝐴) | |
| 20 | 19 | swrdccatin2 14653 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))〉))) |
| 21 | 20 | imp 406 | . . . 4 ⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))〉)) |
| 22 | 18, 21 | syl6 35 | . . 3 ⊢ ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))〉))) |
| 23 | oveq2 7361 | . . . . . 6 ⊢ ((♯‘𝐴) = 𝐿 → (𝑀 − (♯‘𝐴)) = (𝑀 − 𝐿)) | |
| 24 | oveq2 7361 | . . . . . 6 ⊢ ((♯‘𝐴) = 𝐿 → (𝑁 − (♯‘𝐴)) = (𝑁 − 𝐿)) | |
| 25 | 23, 24 | opeq12d 4835 | . . . . 5 ⊢ ((♯‘𝐴) = 𝐿 → 〈(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))〉 = 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉) |
| 26 | 25 | oveq2d 7369 | . . . 4 ⊢ ((♯‘𝐴) = 𝐿 → (𝐵 substr 〈(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉)) |
| 27 | 26 | eqeq2d 2740 | . . 3 ⊢ ((♯‘𝐴) = 𝐿 → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))〉) ↔ ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉))) |
| 28 | 22, 27 | sylibd 239 | . 2 ⊢ ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉))) |
| 29 | 1, 28 | mpcom 38 | 1 ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4585 ‘cfv 6486 (class class class)co 7353 + caddc 11031 − cmin 11365 ...cfz 13428 ♯chash 14255 Word cword 14438 ++ cconcat 14495 substr csubstr 14565 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-concat 14496 df-substr 14566 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |