MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccatin2d Structured version   Visualization version   GIF version

Theorem swrdccatin2d 14716
Description: The subword of a concatenation of two words within the second of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by Mario Carneiro/AV, 21-Oct-2018.)
Hypotheses
Ref Expression
swrdccatind.l (𝜑 → (♯‘𝐴) = 𝐿)
swrdccatind.w (𝜑 → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
swrdccatin2d.1 (𝜑𝑀 ∈ (𝐿...𝑁))
swrdccatin2d.2 (𝜑𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
Assertion
Ref Expression
swrdccatin2d (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))

Proof of Theorem swrdccatin2d
StepHypRef Expression
1 swrdccatind.l . 2 (𝜑 → (♯‘𝐴) = 𝐿)
2 swrdccatind.w . . . . . . 7 (𝜑 → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
32adantl 481 . . . . . 6 (((♯‘𝐴) = 𝐿𝜑) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
4 swrdccatin2d.1 . . . . . . . . 9 (𝜑𝑀 ∈ (𝐿...𝑁))
5 swrdccatin2d.2 . . . . . . . . 9 (𝜑𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
64, 5jca 511 . . . . . . . 8 (𝜑 → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
76adantl 481 . . . . . . 7 (((♯‘𝐴) = 𝐿𝜑) → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
8 oveq1 7397 . . . . . . . . . 10 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴)...𝑁) = (𝐿...𝑁))
98eleq2d 2815 . . . . . . . . 9 ((♯‘𝐴) = 𝐿 → (𝑀 ∈ ((♯‘𝐴)...𝑁) ↔ 𝑀 ∈ (𝐿...𝑁)))
10 id 22 . . . . . . . . . . 11 ((♯‘𝐴) = 𝐿 → (♯‘𝐴) = 𝐿)
11 oveq1 7397 . . . . . . . . . . 11 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) + (♯‘𝐵)) = (𝐿 + (♯‘𝐵)))
1210, 11oveq12d 7408 . . . . . . . . . 10 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) = (𝐿...(𝐿 + (♯‘𝐵))))
1312eleq2d 2815 . . . . . . . . 9 ((♯‘𝐴) = 𝐿 → (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ↔ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
149, 13anbi12d 632 . . . . . . . 8 ((♯‘𝐴) = 𝐿 → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) ↔ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
1514adantr 480 . . . . . . 7 (((♯‘𝐴) = 𝐿𝜑) → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) ↔ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
167, 15mpbird 257 . . . . . 6 (((♯‘𝐴) = 𝐿𝜑) → (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))))
173, 16jca 511 . . . . 5 (((♯‘𝐴) = 𝐿𝜑) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))))
1817ex 412 . . . 4 ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))))))
19 eqid 2730 . . . . . 6 (♯‘𝐴) = (♯‘𝐴)
2019swrdccatin2 14701 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩)))
2120imp 406 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩))
2218, 21syl6 35 . . 3 ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩)))
23 oveq2 7398 . . . . . 6 ((♯‘𝐴) = 𝐿 → (𝑀 − (♯‘𝐴)) = (𝑀𝐿))
24 oveq2 7398 . . . . . 6 ((♯‘𝐴) = 𝐿 → (𝑁 − (♯‘𝐴)) = (𝑁𝐿))
2523, 24opeq12d 4848 . . . . 5 ((♯‘𝐴) = 𝐿 → ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩ = ⟨(𝑀𝐿), (𝑁𝐿)⟩)
2625oveq2d 7406 . . . 4 ((♯‘𝐴) = 𝐿 → (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
2726eqeq2d 2741 . . 3 ((♯‘𝐴) = 𝐿 → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩) ↔ ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)))
2822, 27sylibd 239 . 2 ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)))
291, 28mpcom 38 1 (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cop 4598  cfv 6514  (class class class)co 7390   + caddc 11078  cmin 11412  ...cfz 13475  chash 14302  Word cword 14485   ++ cconcat 14542   substr csubstr 14612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-substr 14613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator