![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > swrdccatin2d | Structured version Visualization version GIF version |
Description: The subword of a concatenation of two words within the second of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by Mario Carneiro/AV, 21-Oct-2018.) |
Ref | Expression |
---|---|
swrdccatind.l | ⊢ (𝜑 → (♯‘𝐴) = 𝐿) |
swrdccatind.w | ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
swrdccatin2d.1 | ⊢ (𝜑 → 𝑀 ∈ (𝐿...𝑁)) |
swrdccatin2d.2 | ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) |
Ref | Expression |
---|---|
swrdccatin2d | ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − 𝐿), (𝑁 − 𝐿)⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swrdccatind.l | . 2 ⊢ (𝜑 → (♯‘𝐴) = 𝐿) | |
2 | swrdccatind.w | . . . . . . 7 ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) | |
3 | 2 | adantl 483 | . . . . . 6 ⊢ (((♯‘𝐴) = 𝐿 ∧ 𝜑) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
4 | swrdccatin2d.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ (𝐿...𝑁)) | |
5 | swrdccatin2d.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) | |
6 | 4, 5 | jca 513 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
7 | 6 | adantl 483 | . . . . . . 7 ⊢ (((♯‘𝐴) = 𝐿 ∧ 𝜑) → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
8 | oveq1 7416 | . . . . . . . . . 10 ⊢ ((♯‘𝐴) = 𝐿 → ((♯‘𝐴)...𝑁) = (𝐿...𝑁)) | |
9 | 8 | eleq2d 2820 | . . . . . . . . 9 ⊢ ((♯‘𝐴) = 𝐿 → (𝑀 ∈ ((♯‘𝐴)...𝑁) ↔ 𝑀 ∈ (𝐿...𝑁))) |
10 | id 22 | . . . . . . . . . . 11 ⊢ ((♯‘𝐴) = 𝐿 → (♯‘𝐴) = 𝐿) | |
11 | oveq1 7416 | . . . . . . . . . . 11 ⊢ ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) + (♯‘𝐵)) = (𝐿 + (♯‘𝐵))) | |
12 | 10, 11 | oveq12d 7427 | . . . . . . . . . 10 ⊢ ((♯‘𝐴) = 𝐿 → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) = (𝐿...(𝐿 + (♯‘𝐵)))) |
13 | 12 | eleq2d 2820 | . . . . . . . . 9 ⊢ ((♯‘𝐴) = 𝐿 → (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ↔ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
14 | 9, 13 | anbi12d 632 | . . . . . . . 8 ⊢ ((♯‘𝐴) = 𝐿 → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) ↔ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
15 | 14 | adantr 482 | . . . . . . 7 ⊢ (((♯‘𝐴) = 𝐿 ∧ 𝜑) → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) ↔ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
16 | 7, 15 | mpbird 257 | . . . . . 6 ⊢ (((♯‘𝐴) = 𝐿 ∧ 𝜑) → (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))) |
17 | 3, 16 | jca 513 | . . . . 5 ⊢ (((♯‘𝐴) = 𝐿 ∧ 𝜑) → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))))) |
18 | 17 | ex 414 | . . . 4 ⊢ ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))))) |
19 | eqid 2733 | . . . . . 6 ⊢ (♯‘𝐴) = (♯‘𝐴) | |
20 | 19 | swrdccatin2 14679 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩))) |
21 | 20 | imp 408 | . . . 4 ⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩)) |
22 | 18, 21 | syl6 35 | . . 3 ⊢ ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩))) |
23 | oveq2 7417 | . . . . . 6 ⊢ ((♯‘𝐴) = 𝐿 → (𝑀 − (♯‘𝐴)) = (𝑀 − 𝐿)) | |
24 | oveq2 7417 | . . . . . 6 ⊢ ((♯‘𝐴) = 𝐿 → (𝑁 − (♯‘𝐴)) = (𝑁 − 𝐿)) | |
25 | 23, 24 | opeq12d 4882 | . . . . 5 ⊢ ((♯‘𝐴) = 𝐿 → ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩ = ⟨(𝑀 − 𝐿), (𝑁 − 𝐿)⟩) |
26 | 25 | oveq2d 7425 | . . . 4 ⊢ ((♯‘𝐴) = 𝐿 → (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩) = (𝐵 substr ⟨(𝑀 − 𝐿), (𝑁 − 𝐿)⟩)) |
27 | 26 | eqeq2d 2744 | . . 3 ⊢ ((♯‘𝐴) = 𝐿 → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))⟩) ↔ ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − 𝐿), (𝑁 − 𝐿)⟩))) |
28 | 22, 27 | sylibd 238 | . 2 ⊢ ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − 𝐿), (𝑁 − 𝐿)⟩))) |
29 | 1, 28 | mpcom 38 | 1 ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀 − 𝐿), (𝑁 − 𝐿)⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ⟨cop 4635 ‘cfv 6544 (class class class)co 7409 + caddc 11113 − cmin 11444 ...cfz 13484 ♯chash 14290 Word cword 14464 ++ cconcat 14520 substr csubstr 14590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-fzo 13628 df-hash 14291 df-word 14465 df-concat 14521 df-substr 14591 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |