| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > swrdccatin2d | Structured version Visualization version GIF version | ||
| Description: The subword of a concatenation of two words within the second of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by Mario Carneiro/AV, 21-Oct-2018.) |
| Ref | Expression |
|---|---|
| swrdccatind.l | ⊢ (𝜑 → (♯‘𝐴) = 𝐿) |
| swrdccatind.w | ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
| swrdccatin2d.1 | ⊢ (𝜑 → 𝑀 ∈ (𝐿...𝑁)) |
| swrdccatin2d.2 | ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) |
| Ref | Expression |
|---|---|
| swrdccatin2d | ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swrdccatind.l | . 2 ⊢ (𝜑 → (♯‘𝐴) = 𝐿) | |
| 2 | swrdccatind.w | . . . . . . 7 ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) | |
| 3 | 2 | adantl 481 | . . . . . 6 ⊢ (((♯‘𝐴) = 𝐿 ∧ 𝜑) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
| 4 | swrdccatin2d.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ (𝐿...𝑁)) | |
| 5 | swrdccatin2d.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) | |
| 6 | 4, 5 | jca 511 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
| 7 | 6 | adantl 481 | . . . . . . 7 ⊢ (((♯‘𝐴) = 𝐿 ∧ 𝜑) → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
| 8 | oveq1 7397 | . . . . . . . . . 10 ⊢ ((♯‘𝐴) = 𝐿 → ((♯‘𝐴)...𝑁) = (𝐿...𝑁)) | |
| 9 | 8 | eleq2d 2815 | . . . . . . . . 9 ⊢ ((♯‘𝐴) = 𝐿 → (𝑀 ∈ ((♯‘𝐴)...𝑁) ↔ 𝑀 ∈ (𝐿...𝑁))) |
| 10 | id 22 | . . . . . . . . . . 11 ⊢ ((♯‘𝐴) = 𝐿 → (♯‘𝐴) = 𝐿) | |
| 11 | oveq1 7397 | . . . . . . . . . . 11 ⊢ ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) + (♯‘𝐵)) = (𝐿 + (♯‘𝐵))) | |
| 12 | 10, 11 | oveq12d 7408 | . . . . . . . . . 10 ⊢ ((♯‘𝐴) = 𝐿 → ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) = (𝐿...(𝐿 + (♯‘𝐵)))) |
| 13 | 12 | eleq2d 2815 | . . . . . . . . 9 ⊢ ((♯‘𝐴) = 𝐿 → (𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))) ↔ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
| 14 | 9, 13 | anbi12d 632 | . . . . . . . 8 ⊢ ((♯‘𝐴) = 𝐿 → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) ↔ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 15 | 14 | adantr 480 | . . . . . . 7 ⊢ (((♯‘𝐴) = 𝐿 ∧ 𝜑) → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) ↔ (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 16 | 7, 15 | mpbird 257 | . . . . . 6 ⊢ (((♯‘𝐴) = 𝐿 ∧ 𝜑) → (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))) |
| 17 | 3, 16 | jca 511 | . . . . 5 ⊢ (((♯‘𝐴) = 𝐿 ∧ 𝜑) → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))))) |
| 18 | 17 | ex 412 | . . . 4 ⊢ ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))))) |
| 19 | eqid 2730 | . . . . . 6 ⊢ (♯‘𝐴) = (♯‘𝐴) | |
| 20 | 19 | swrdccatin2 14701 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))〉))) |
| 21 | 20 | imp 406 | . . . 4 ⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ((♯‘𝐴)...𝑁) ∧ 𝑁 ∈ ((♯‘𝐴)...((♯‘𝐴) + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))〉)) |
| 22 | 18, 21 | syl6 35 | . . 3 ⊢ ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))〉))) |
| 23 | oveq2 7398 | . . . . . 6 ⊢ ((♯‘𝐴) = 𝐿 → (𝑀 − (♯‘𝐴)) = (𝑀 − 𝐿)) | |
| 24 | oveq2 7398 | . . . . . 6 ⊢ ((♯‘𝐴) = 𝐿 → (𝑁 − (♯‘𝐴)) = (𝑁 − 𝐿)) | |
| 25 | 23, 24 | opeq12d 4848 | . . . . 5 ⊢ ((♯‘𝐴) = 𝐿 → 〈(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))〉 = 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉) |
| 26 | 25 | oveq2d 7406 | . . . 4 ⊢ ((♯‘𝐴) = 𝐿 → (𝐵 substr 〈(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉)) |
| 27 | 26 | eqeq2d 2741 | . . 3 ⊢ ((♯‘𝐴) = 𝐿 → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − (♯‘𝐴)), (𝑁 − (♯‘𝐴))〉) ↔ ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉))) |
| 28 | 22, 27 | sylibd 239 | . 2 ⊢ ((♯‘𝐴) = 𝐿 → (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉))) |
| 29 | 1, 28 | mpcom 38 | 1 ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 ‘cfv 6514 (class class class)co 7390 + caddc 11078 − cmin 11412 ...cfz 13475 ♯chash 14302 Word cword 14485 ++ cconcat 14542 substr csubstr 14612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-concat 14543 df-substr 14613 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |