![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshwidx0 | Structured version Visualization version GIF version |
Description: The symbol at index 0 of a cyclically shifted nonempty word is the symbol at index N of the original word. (Contributed by AV, 15-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) |
Ref | Expression |
---|---|
cshwidx0 | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hasheq0 14319 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅)) | |
2 | elfzo0 13669 | . . . . . . . 8 ⊢ (𝑁 ∈ (0..^(♯‘𝑊)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊))) | |
3 | elnnne0 12482 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0)) | |
4 | eqneqall 2951 | . . . . . . . . . . . 12 ⊢ ((♯‘𝑊) = 0 → ((♯‘𝑊) ≠ 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) | |
5 | 4 | com12 32 | . . . . . . . . . . 11 ⊢ ((♯‘𝑊) ≠ 0 → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
6 | 5 | adantl 482 | . . . . . . . . . 10 ⊢ (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
7 | 3, 6 | sylbi 216 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
8 | 7 | 3ad2ant2 1134 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
9 | 2, 8 | sylbi 216 | . . . . . . 7 ⊢ (𝑁 ∈ (0..^(♯‘𝑊)) → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
10 | 9 | com13 88 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 → (𝑁 ∈ (0..^(♯‘𝑊)) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
11 | 1, 10 | sylbird 259 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 = ∅ → (𝑁 ∈ (0..^(♯‘𝑊)) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
12 | 11 | com23 86 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → (𝑁 ∈ (0..^(♯‘𝑊)) → (𝑊 = ∅ → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
13 | 12 | imp 407 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊 = ∅ → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁))) |
14 | 13 | com12 32 | . 2 ⊢ (𝑊 = ∅ → ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁))) |
15 | simpl 483 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝑉) | |
16 | 15 | adantl 482 | . . . . 5 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → 𝑊 ∈ Word 𝑉) |
17 | simpl 483 | . . . . 5 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → 𝑊 ≠ ∅) | |
18 | elfzoelz 13628 | . . . . . 6 ⊢ (𝑁 ∈ (0..^(♯‘𝑊)) → 𝑁 ∈ ℤ) | |
19 | 18 | ad2antll 727 | . . . . 5 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → 𝑁 ∈ ℤ) |
20 | cshwidx0mod 14751 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘(𝑁 mod (♯‘𝑊)))) | |
21 | 16, 17, 19, 20 | syl3anc 1371 | . . . 4 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘(𝑁 mod (♯‘𝑊)))) |
22 | zmodidfzoimp 13862 | . . . . . 6 ⊢ (𝑁 ∈ (0..^(♯‘𝑊)) → (𝑁 mod (♯‘𝑊)) = 𝑁) | |
23 | 22 | ad2antll 727 | . . . . 5 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → (𝑁 mod (♯‘𝑊)) = 𝑁) |
24 | 23 | fveq2d 6892 | . . . 4 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → (𝑊‘(𝑁 mod (♯‘𝑊))) = (𝑊‘𝑁)) |
25 | 21, 24 | eqtrd 2772 | . . 3 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)) |
26 | 25 | ex 413 | . 2 ⊢ (𝑊 ≠ ∅ → ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁))) |
27 | 14, 26 | pm2.61ine 3025 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∅c0 4321 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 0cc0 11106 < clt 11244 ℕcn 12208 ℕ0cn0 12468 ℤcz 12554 ..^cfzo 13623 mod cmo 13830 ♯chash 14286 Word cword 14460 cyclShift ccsh 14734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-hash 14287 df-word 14461 df-concat 14517 df-substr 14587 df-pfx 14617 df-csh 14735 |
This theorem is referenced by: clwwisshclwws 29257 |
Copyright terms: Public domain | W3C validator |