![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshwidx0 | Structured version Visualization version GIF version |
Description: The symbol at index 0 of a cyclically shifted nonempty word is the symbol at index N of the original word. (Contributed by AV, 15-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) |
Ref | Expression |
---|---|
cshwidx0 | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hasheq0 14270 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅)) | |
2 | elfzo0 13620 | . . . . . . . 8 ⊢ (𝑁 ∈ (0..^(♯‘𝑊)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊))) | |
3 | elnnne0 12434 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0)) | |
4 | eqneqall 2955 | . . . . . . . . . . . 12 ⊢ ((♯‘𝑊) = 0 → ((♯‘𝑊) ≠ 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) | |
5 | 4 | com12 32 | . . . . . . . . . . 11 ⊢ ((♯‘𝑊) ≠ 0 → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
6 | 5 | adantl 483 | . . . . . . . . . 10 ⊢ (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
7 | 3, 6 | sylbi 216 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
8 | 7 | 3ad2ant2 1135 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
9 | 2, 8 | sylbi 216 | . . . . . . 7 ⊢ (𝑁 ∈ (0..^(♯‘𝑊)) → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
10 | 9 | com13 88 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 → (𝑁 ∈ (0..^(♯‘𝑊)) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
11 | 1, 10 | sylbird 260 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 = ∅ → (𝑁 ∈ (0..^(♯‘𝑊)) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
12 | 11 | com23 86 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → (𝑁 ∈ (0..^(♯‘𝑊)) → (𝑊 = ∅ → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
13 | 12 | imp 408 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊 = ∅ → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁))) |
14 | 13 | com12 32 | . 2 ⊢ (𝑊 = ∅ → ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁))) |
15 | simpl 484 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝑉) | |
16 | 15 | adantl 483 | . . . . 5 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → 𝑊 ∈ Word 𝑉) |
17 | simpl 484 | . . . . 5 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → 𝑊 ≠ ∅) | |
18 | elfzoelz 13579 | . . . . . 6 ⊢ (𝑁 ∈ (0..^(♯‘𝑊)) → 𝑁 ∈ ℤ) | |
19 | 18 | ad2antll 728 | . . . . 5 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → 𝑁 ∈ ℤ) |
20 | cshwidx0mod 14700 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘(𝑁 mod (♯‘𝑊)))) | |
21 | 16, 17, 19, 20 | syl3anc 1372 | . . . 4 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘(𝑁 mod (♯‘𝑊)))) |
22 | zmodidfzoimp 13813 | . . . . . 6 ⊢ (𝑁 ∈ (0..^(♯‘𝑊)) → (𝑁 mod (♯‘𝑊)) = 𝑁) | |
23 | 22 | ad2antll 728 | . . . . 5 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → (𝑁 mod (♯‘𝑊)) = 𝑁) |
24 | 23 | fveq2d 6851 | . . . 4 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → (𝑊‘(𝑁 mod (♯‘𝑊))) = (𝑊‘𝑁)) |
25 | 21, 24 | eqtrd 2777 | . . 3 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)) |
26 | 25 | ex 414 | . 2 ⊢ (𝑊 ≠ ∅ → ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁))) |
27 | 14, 26 | pm2.61ine 3029 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2944 ∅c0 4287 class class class wbr 5110 ‘cfv 6501 (class class class)co 7362 0cc0 11058 < clt 11196 ℕcn 12160 ℕ0cn0 12420 ℤcz 12506 ..^cfzo 13574 mod cmo 13781 ♯chash 14237 Word cword 14409 cyclShift ccsh 14683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 ax-pre-sup 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-sup 9385 df-inf 9386 df-card 9882 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-div 11820 df-nn 12161 df-2 12223 df-n0 12421 df-z 12507 df-uz 12771 df-rp 12923 df-fz 13432 df-fzo 13575 df-fl 13704 df-mod 13782 df-hash 14238 df-word 14410 df-concat 14466 df-substr 14536 df-pfx 14566 df-csh 14684 |
This theorem is referenced by: clwwisshclwws 29001 |
Copyright terms: Public domain | W3C validator |