![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshwidx0 | Structured version Visualization version GIF version |
Description: The symbol at index 0 of a cyclically shifted nonempty word is the symbol at index N of the original word. (Contributed by AV, 15-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) |
Ref | Expression |
---|---|
cshwidx0 | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hasheq0 14364 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅)) | |
2 | elfzo0 13715 | . . . . . . . 8 ⊢ (𝑁 ∈ (0..^(♯‘𝑊)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊))) | |
3 | elnnne0 12526 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0)) | |
4 | eqneqall 2948 | . . . . . . . . . . . 12 ⊢ ((♯‘𝑊) = 0 → ((♯‘𝑊) ≠ 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) | |
5 | 4 | com12 32 | . . . . . . . . . . 11 ⊢ ((♯‘𝑊) ≠ 0 → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
6 | 5 | adantl 480 | . . . . . . . . . 10 ⊢ (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
7 | 3, 6 | sylbi 216 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
8 | 7 | 3ad2ant2 1131 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
9 | 2, 8 | sylbi 216 | . . . . . . 7 ⊢ (𝑁 ∈ (0..^(♯‘𝑊)) → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
10 | 9 | com13 88 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 → (𝑁 ∈ (0..^(♯‘𝑊)) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
11 | 1, 10 | sylbird 259 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 = ∅ → (𝑁 ∈ (0..^(♯‘𝑊)) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
12 | 11 | com23 86 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → (𝑁 ∈ (0..^(♯‘𝑊)) → (𝑊 = ∅ → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
13 | 12 | imp 405 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊 = ∅ → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁))) |
14 | 13 | com12 32 | . 2 ⊢ (𝑊 = ∅ → ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁))) |
15 | simpl 481 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝑉) | |
16 | 15 | adantl 480 | . . . . 5 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → 𝑊 ∈ Word 𝑉) |
17 | simpl 481 | . . . . 5 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → 𝑊 ≠ ∅) | |
18 | elfzoelz 13674 | . . . . . 6 ⊢ (𝑁 ∈ (0..^(♯‘𝑊)) → 𝑁 ∈ ℤ) | |
19 | 18 | ad2antll 727 | . . . . 5 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → 𝑁 ∈ ℤ) |
20 | cshwidx0mod 14797 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘(𝑁 mod (♯‘𝑊)))) | |
21 | 16, 17, 19, 20 | syl3anc 1368 | . . . 4 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘(𝑁 mod (♯‘𝑊)))) |
22 | zmodidfzoimp 13908 | . . . . . 6 ⊢ (𝑁 ∈ (0..^(♯‘𝑊)) → (𝑁 mod (♯‘𝑊)) = 𝑁) | |
23 | 22 | ad2antll 727 | . . . . 5 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → (𝑁 mod (♯‘𝑊)) = 𝑁) |
24 | 23 | fveq2d 6906 | . . . 4 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → (𝑊‘(𝑁 mod (♯‘𝑊))) = (𝑊‘𝑁)) |
25 | 21, 24 | eqtrd 2768 | . . 3 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)) |
26 | 25 | ex 411 | . 2 ⊢ (𝑊 ≠ ∅ → ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁))) |
27 | 14, 26 | pm2.61ine 3022 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 ∅c0 4326 class class class wbr 5152 ‘cfv 6553 (class class class)co 7426 0cc0 11148 < clt 11288 ℕcn 12252 ℕ0cn0 12512 ℤcz 12598 ..^cfzo 13669 mod cmo 13876 ♯chash 14331 Word cword 14506 cyclShift ccsh 14780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-pre-sup 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-sup 9475 df-inf 9476 df-card 9972 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12253 df-2 12315 df-n0 12513 df-z 12599 df-uz 12863 df-rp 13017 df-fz 13527 df-fzo 13670 df-fl 13799 df-mod 13877 df-hash 14332 df-word 14507 df-concat 14563 df-substr 14633 df-pfx 14663 df-csh 14781 |
This theorem is referenced by: clwwisshclwws 29853 |
Copyright terms: Public domain | W3C validator |