![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshwidx0 | Structured version Visualization version GIF version |
Description: The symbol at index 0 of a cyclically shifted nonempty word is the symbol at index N of the original word. (Contributed by AV, 15-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) |
Ref | Expression |
---|---|
cshwidx0 | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hasheq0 14328 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅)) | |
2 | elfzo0 13679 | . . . . . . . 8 ⊢ (𝑁 ∈ (0..^(♯‘𝑊)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊))) | |
3 | elnnne0 12490 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0)) | |
4 | eqneqall 2945 | . . . . . . . . . . . 12 ⊢ ((♯‘𝑊) = 0 → ((♯‘𝑊) ≠ 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) | |
5 | 4 | com12 32 | . . . . . . . . . . 11 ⊢ ((♯‘𝑊) ≠ 0 → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
6 | 5 | adantl 481 | . . . . . . . . . 10 ⊢ (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
7 | 3, 6 | sylbi 216 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
8 | 7 | 3ad2ant2 1131 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
9 | 2, 8 | sylbi 216 | . . . . . . 7 ⊢ (𝑁 ∈ (0..^(♯‘𝑊)) → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
10 | 9 | com13 88 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 → (𝑁 ∈ (0..^(♯‘𝑊)) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
11 | 1, 10 | sylbird 260 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 = ∅ → (𝑁 ∈ (0..^(♯‘𝑊)) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
12 | 11 | com23 86 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → (𝑁 ∈ (0..^(♯‘𝑊)) → (𝑊 = ∅ → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
13 | 12 | imp 406 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊 = ∅ → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁))) |
14 | 13 | com12 32 | . 2 ⊢ (𝑊 = ∅ → ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁))) |
15 | simpl 482 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝑉) | |
16 | 15 | adantl 481 | . . . . 5 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → 𝑊 ∈ Word 𝑉) |
17 | simpl 482 | . . . . 5 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → 𝑊 ≠ ∅) | |
18 | elfzoelz 13638 | . . . . . 6 ⊢ (𝑁 ∈ (0..^(♯‘𝑊)) → 𝑁 ∈ ℤ) | |
19 | 18 | ad2antll 726 | . . . . 5 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → 𝑁 ∈ ℤ) |
20 | cshwidx0mod 14761 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘(𝑁 mod (♯‘𝑊)))) | |
21 | 16, 17, 19, 20 | syl3anc 1368 | . . . 4 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘(𝑁 mod (♯‘𝑊)))) |
22 | zmodidfzoimp 13872 | . . . . . 6 ⊢ (𝑁 ∈ (0..^(♯‘𝑊)) → (𝑁 mod (♯‘𝑊)) = 𝑁) | |
23 | 22 | ad2antll 726 | . . . . 5 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → (𝑁 mod (♯‘𝑊)) = 𝑁) |
24 | 23 | fveq2d 6889 | . . . 4 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → (𝑊‘(𝑁 mod (♯‘𝑊))) = (𝑊‘𝑁)) |
25 | 21, 24 | eqtrd 2766 | . . 3 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)) |
26 | 25 | ex 412 | . 2 ⊢ (𝑊 ≠ ∅ → ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁))) |
27 | 14, 26 | pm2.61ine 3019 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ∅c0 4317 class class class wbr 5141 ‘cfv 6537 (class class class)co 7405 0cc0 11112 < clt 11252 ℕcn 12216 ℕ0cn0 12476 ℤcz 12562 ..^cfzo 13633 mod cmo 13840 ♯chash 14295 Word cword 14470 cyclShift ccsh 14744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12981 df-fz 13491 df-fzo 13634 df-fl 13763 df-mod 13841 df-hash 14296 df-word 14471 df-concat 14527 df-substr 14597 df-pfx 14627 df-csh 14745 |
This theorem is referenced by: clwwisshclwws 29777 |
Copyright terms: Public domain | W3C validator |