MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsublen Structured version   Visualization version   GIF version

Theorem cshwsublen 13947
Description: Cyclically shifting a word is invariant regarding subtraction of the word's length. (Contributed by AV, 3-Nov-2018.)
Assertion
Ref Expression
cshwsublen ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊))))

Proof of Theorem cshwsublen
StepHypRef Expression
1 oveq2 6930 . . . . . 6 ((♯‘𝑊) = 0 → (𝑁 − (♯‘𝑊)) = (𝑁 − 0))
2 zcn 11733 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
32subid1d 10723 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 0) = 𝑁)
43adantl 475 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑁 − 0) = 𝑁)
51, 4sylan9eq 2833 . . . . 5 (((♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑁 − (♯‘𝑊)) = 𝑁)
65eqcomd 2783 . . . 4 (((♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → 𝑁 = (𝑁 − (♯‘𝑊)))
76oveq2d 6938 . . 3 (((♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊))))
87ex 403 . 2 ((♯‘𝑊) = 0 → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊)))))
9 zre 11732 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
109adantl 475 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
11 lencl 13621 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
12 elnnne0 11658 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0))
13 nnrp 12150 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
1412, 13sylbir 227 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → (♯‘𝑊) ∈ ℝ+)
1514ex 403 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ≠ 0 → (♯‘𝑊) ∈ ℝ+))
1611, 15syl 17 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 → (♯‘𝑊) ∈ ℝ+))
1716adantr 474 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ((♯‘𝑊) ≠ 0 → (♯‘𝑊) ∈ ℝ+))
1817impcom 398 . . . . . 6 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ ℝ+)
19 modeqmodmin 13059 . . . . . 6 ((𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → (𝑁 mod (♯‘𝑊)) = ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊)))
2010, 18, 19syl2an2 676 . . . . 5 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑁 mod (♯‘𝑊)) = ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊)))
2120oveq2d 6938 . . . 4 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = (𝑊 cyclShift ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊))))
22 cshwmodn 13946 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
2322adantl 475 . . . 4 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
24 simpl 476 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → 𝑊 ∈ Word 𝑉)
2511nn0zd 11832 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
26 zsubcl 11771 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (𝑁 − (♯‘𝑊)) ∈ ℤ)
2725, 26sylan2 586 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑊 ∈ Word 𝑉) → (𝑁 − (♯‘𝑊)) ∈ ℤ)
2827ancoms 452 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑁 − (♯‘𝑊)) ∈ ℤ)
2924, 28jca 507 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 ∈ Word 𝑉 ∧ (𝑁 − (♯‘𝑊)) ∈ ℤ))
3029adantl 475 . . . . 5 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 ∈ Word 𝑉 ∧ (𝑁 − (♯‘𝑊)) ∈ ℤ))
31 cshwmodn 13946 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 − (♯‘𝑊)) ∈ ℤ) → (𝑊 cyclShift (𝑁 − (♯‘𝑊))) = (𝑊 cyclShift ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊))))
3230, 31syl 17 . . . 4 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift (𝑁 − (♯‘𝑊))) = (𝑊 cyclShift ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊))))
3321, 23, 323eqtr4d 2823 . . 3 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊))))
3433ex 403 . 2 ((♯‘𝑊) ≠ 0 → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊)))))
358, 34pm2.61ine 3052 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106  wne 2968  cfv 6135  (class class class)co 6922  cr 10271  0cc0 10272  cmin 10606  cn 11374  0cn0 11642  cz 11728  +crp 12137   mod cmo 12987  chash 13435  Word cword 13599   cyclShift ccsh 13934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-hash 13436  df-word 13600  df-concat 13661  df-substr 13731  df-pfx 13780  df-csh 13936
This theorem is referenced by:  2cshwcshw  13976  cshwcsh2id  13979
  Copyright terms: Public domain W3C validator