MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsublen Structured version   Visualization version   GIF version

Theorem cshwsublen 14146
Description: Cyclically shifting a word is invariant regarding subtraction of the word's length. (Contributed by AV, 3-Nov-2018.)
Assertion
Ref Expression
cshwsublen ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊))))

Proof of Theorem cshwsublen
StepHypRef Expression
1 oveq2 7153 . . . . . 6 ((♯‘𝑊) = 0 → (𝑁 − (♯‘𝑊)) = (𝑁 − 0))
2 zcn 11974 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
32subid1d 10974 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 0) = 𝑁)
43adantl 482 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑁 − 0) = 𝑁)
51, 4sylan9eq 2873 . . . . 5 (((♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑁 − (♯‘𝑊)) = 𝑁)
65eqcomd 2824 . . . 4 (((♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → 𝑁 = (𝑁 − (♯‘𝑊)))
76oveq2d 7161 . . 3 (((♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊))))
87ex 413 . 2 ((♯‘𝑊) = 0 → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊)))))
9 zre 11973 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
109adantl 482 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
11 lencl 13871 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
12 elnnne0 11899 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0))
13 nnrp 12388 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
1412, 13sylbir 236 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → (♯‘𝑊) ∈ ℝ+)
1514ex 413 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ≠ 0 → (♯‘𝑊) ∈ ℝ+))
1611, 15syl 17 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 → (♯‘𝑊) ∈ ℝ+))
1716adantr 481 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ((♯‘𝑊) ≠ 0 → (♯‘𝑊) ∈ ℝ+))
1817impcom 408 . . . . . 6 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ ℝ+)
19 modeqmodmin 13297 . . . . . 6 ((𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → (𝑁 mod (♯‘𝑊)) = ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊)))
2010, 18, 19syl2an2 682 . . . . 5 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑁 mod (♯‘𝑊)) = ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊)))
2120oveq2d 7161 . . . 4 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = (𝑊 cyclShift ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊))))
22 cshwmodn 14145 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
2322adantl 482 . . . 4 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
24 simpl 483 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → 𝑊 ∈ Word 𝑉)
2511nn0zd 12073 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
26 zsubcl 12012 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (𝑁 − (♯‘𝑊)) ∈ ℤ)
2725, 26sylan2 592 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑊 ∈ Word 𝑉) → (𝑁 − (♯‘𝑊)) ∈ ℤ)
2827ancoms 459 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑁 − (♯‘𝑊)) ∈ ℤ)
2924, 28jca 512 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 ∈ Word 𝑉 ∧ (𝑁 − (♯‘𝑊)) ∈ ℤ))
3029adantl 482 . . . . 5 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 ∈ Word 𝑉 ∧ (𝑁 − (♯‘𝑊)) ∈ ℤ))
31 cshwmodn 14145 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 − (♯‘𝑊)) ∈ ℤ) → (𝑊 cyclShift (𝑁 − (♯‘𝑊))) = (𝑊 cyclShift ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊))))
3230, 31syl 17 . . . 4 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift (𝑁 − (♯‘𝑊))) = (𝑊 cyclShift ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊))))
3321, 23, 323eqtr4d 2863 . . 3 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊))))
3433ex 413 . 2 ((♯‘𝑊) ≠ 0 → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊)))))
358, 34pm2.61ine 3097 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3013  cfv 6348  (class class class)co 7145  cr 10524  0cc0 10525  cmin 10858  cn 11626  0cn0 11885  cz 11969  +crp 12377   mod cmo 13225  chash 13678  Word cword 13849   cyclShift ccsh 14138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-hash 13679  df-word 13850  df-concat 13911  df-substr 13991  df-pfx 14021  df-csh 14139
This theorem is referenced by:  2cshwcshw  14175  cshwcsh2id  14178
  Copyright terms: Public domain W3C validator