MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsublen Structured version   Visualization version   GIF version

Theorem cshwsublen 14509
Description: Cyclically shifting a word is invariant regarding subtraction of the word's length. (Contributed by AV, 3-Nov-2018.)
Assertion
Ref Expression
cshwsublen ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊))))

Proof of Theorem cshwsublen
StepHypRef Expression
1 oveq2 7283 . . . . . 6 ((♯‘𝑊) = 0 → (𝑁 − (♯‘𝑊)) = (𝑁 − 0))
2 zcn 12324 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
32subid1d 11321 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 0) = 𝑁)
43adantl 482 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑁 − 0) = 𝑁)
51, 4sylan9eq 2798 . . . . 5 (((♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑁 − (♯‘𝑊)) = 𝑁)
65eqcomd 2744 . . . 4 (((♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → 𝑁 = (𝑁 − (♯‘𝑊)))
76oveq2d 7291 . . 3 (((♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊))))
87ex 413 . 2 ((♯‘𝑊) = 0 → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊)))))
9 zre 12323 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
109adantl 482 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
11 lencl 14236 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
12 elnnne0 12247 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0))
13 nnrp 12741 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
1412, 13sylbir 234 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → (♯‘𝑊) ∈ ℝ+)
1514ex 413 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ≠ 0 → (♯‘𝑊) ∈ ℝ+))
1611, 15syl 17 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 → (♯‘𝑊) ∈ ℝ+))
1716adantr 481 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ((♯‘𝑊) ≠ 0 → (♯‘𝑊) ∈ ℝ+))
1817impcom 408 . . . . . 6 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ ℝ+)
19 modeqmodmin 13661 . . . . . 6 ((𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → (𝑁 mod (♯‘𝑊)) = ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊)))
2010, 18, 19syl2an2 683 . . . . 5 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑁 mod (♯‘𝑊)) = ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊)))
2120oveq2d 7291 . . . 4 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = (𝑊 cyclShift ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊))))
22 cshwmodn 14508 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
2322adantl 482 . . . 4 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
24 simpl 483 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → 𝑊 ∈ Word 𝑉)
2511nn0zd 12424 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
26 zsubcl 12362 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (𝑁 − (♯‘𝑊)) ∈ ℤ)
2725, 26sylan2 593 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑊 ∈ Word 𝑉) → (𝑁 − (♯‘𝑊)) ∈ ℤ)
2827ancoms 459 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑁 − (♯‘𝑊)) ∈ ℤ)
2924, 28jca 512 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 ∈ Word 𝑉 ∧ (𝑁 − (♯‘𝑊)) ∈ ℤ))
3029adantl 482 . . . . 5 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 ∈ Word 𝑉 ∧ (𝑁 − (♯‘𝑊)) ∈ ℤ))
31 cshwmodn 14508 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 − (♯‘𝑊)) ∈ ℤ) → (𝑊 cyclShift (𝑁 − (♯‘𝑊))) = (𝑊 cyclShift ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊))))
3230, 31syl 17 . . . 4 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift (𝑁 − (♯‘𝑊))) = (𝑊 cyclShift ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊))))
3321, 23, 323eqtr4d 2788 . . 3 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊))))
3433ex 413 . 2 ((♯‘𝑊) ≠ 0 → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊)))))
358, 34pm2.61ine 3028 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  cmin 11205  cn 11973  0cn0 12233  cz 12319  +crp 12730   mod cmo 13589  chash 14044  Word cword 14217   cyclShift ccsh 14501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-hash 14045  df-word 14218  df-concat 14274  df-substr 14354  df-pfx 14384  df-csh 14502
This theorem is referenced by:  2cshwcshw  14538  cshwcsh2id  14541
  Copyright terms: Public domain W3C validator