MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsublen Structured version   Visualization version   GIF version

Theorem cshwsublen 14751
Description: Cyclically shifting a word is invariant regarding subtraction of the word's length. (Contributed by AV, 3-Nov-2018.)
Assertion
Ref Expression
cshwsublen ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊))))

Proof of Theorem cshwsublen
StepHypRef Expression
1 oveq2 7420 . . . . . 6 ((♯‘𝑊) = 0 → (𝑁 − (♯‘𝑊)) = (𝑁 − 0))
2 zcn 12568 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
32subid1d 11565 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 0) = 𝑁)
43adantl 481 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑁 − 0) = 𝑁)
51, 4sylan9eq 2791 . . . . 5 (((♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑁 − (♯‘𝑊)) = 𝑁)
65eqcomd 2737 . . . 4 (((♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → 𝑁 = (𝑁 − (♯‘𝑊)))
76oveq2d 7428 . . 3 (((♯‘𝑊) = 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊))))
87ex 412 . 2 ((♯‘𝑊) = 0 → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊)))))
9 zre 12567 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
109adantl 481 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
11 lencl 14488 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
12 elnnne0 12491 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0))
13 nnrp 12990 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
1412, 13sylbir 234 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → (♯‘𝑊) ∈ ℝ+)
1514ex 412 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ≠ 0 → (♯‘𝑊) ∈ ℝ+))
1611, 15syl 17 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 → (♯‘𝑊) ∈ ℝ+))
1716adantr 480 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ((♯‘𝑊) ≠ 0 → (♯‘𝑊) ∈ ℝ+))
1817impcom 407 . . . . . 6 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ ℝ+)
19 modeqmodmin 13911 . . . . . 6 ((𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → (𝑁 mod (♯‘𝑊)) = ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊)))
2010, 18, 19syl2an2 683 . . . . 5 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑁 mod (♯‘𝑊)) = ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊)))
2120oveq2d 7428 . . . 4 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = (𝑊 cyclShift ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊))))
22 cshwmodn 14750 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
2322adantl 481 . . . 4 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
24 simpl 482 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → 𝑊 ∈ Word 𝑉)
2511nn0zd 12589 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
26 zsubcl 12609 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (𝑁 − (♯‘𝑊)) ∈ ℤ)
2725, 26sylan2 592 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑊 ∈ Word 𝑉) → (𝑁 − (♯‘𝑊)) ∈ ℤ)
2827ancoms 458 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑁 − (♯‘𝑊)) ∈ ℤ)
2924, 28jca 511 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 ∈ Word 𝑉 ∧ (𝑁 − (♯‘𝑊)) ∈ ℤ))
3029adantl 481 . . . . 5 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 ∈ Word 𝑉 ∧ (𝑁 − (♯‘𝑊)) ∈ ℤ))
31 cshwmodn 14750 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 − (♯‘𝑊)) ∈ ℤ) → (𝑊 cyclShift (𝑁 − (♯‘𝑊))) = (𝑊 cyclShift ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊))))
3230, 31syl 17 . . . 4 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift (𝑁 − (♯‘𝑊))) = (𝑊 cyclShift ((𝑁 − (♯‘𝑊)) mod (♯‘𝑊))))
3321, 23, 323eqtr4d 2781 . . 3 (((♯‘𝑊) ≠ 0 ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊))))
3433ex 412 . 2 ((♯‘𝑊) ≠ 0 → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊)))))
358, 34pm2.61ine 3024 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wne 2939  cfv 6544  (class class class)co 7412  cr 11112  0cc0 11113  cmin 11449  cn 12217  0cn0 12477  cz 12563  +crp 12979   mod cmo 13839  chash 14295  Word cword 14469   cyclShift ccsh 14743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-sup 9440  df-inf 9441  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-rp 12980  df-fz 13490  df-fzo 13633  df-fl 13762  df-mod 13840  df-hash 14296  df-word 14470  df-concat 14526  df-substr 14596  df-pfx 14626  df-csh 14744
This theorem is referenced by:  2cshwcshw  14781  cshwcsh2id  14784
  Copyright terms: Public domain W3C validator