![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzo01 | Structured version Visualization version GIF version |
Description: Expressing the singleton of 0 as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
fzo01 | ⊢ (0..^1) = {0} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1e0p1 11994 | . . 3 ⊢ 1 = (0 + 1) | |
2 | 1 | oveq2i 7034 | . 2 ⊢ (0..^1) = (0..^(0 + 1)) |
3 | 0z 11846 | . . 3 ⊢ 0 ∈ ℤ | |
4 | fzosn 12962 | . . 3 ⊢ (0 ∈ ℤ → (0..^(0 + 1)) = {0}) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (0..^(0 + 1)) = {0} |
6 | 2, 5 | eqtri 2821 | 1 ⊢ (0..^1) = {0} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1525 ∈ wcel 2083 {csn 4478 (class class class)co 7023 0cc0 10390 1c1 10391 + caddc 10393 ℤcz 11835 ..^cfzo 12887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-n0 11752 df-z 11836 df-uz 12098 df-fz 12747 df-fzo 12888 |
This theorem is referenced by: fzo0sn0fzo1 12980 snopiswrd 13720 s1dm 13810 eqs1 13814 swrds1 13868 repsw1 13985 cshw1 14024 0bits 15625 dfphi2 15944 wlkl1loop 27106 rusgrnumwwlkl1 27433 clwlkclwwlklem2a4 27461 clwwlkn2 27508 1wlkdlem4 27605 cshw1s2 30304 cyc2fv1 30406 signstf0 31451 signstfvn 31452 iccelpart 43097 nn0sumshdiglemB 44183 nn0sumshdiglem1 44184 nn0sumshdiglem2 44185 |
Copyright terms: Public domain | W3C validator |