Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzo01 | Structured version Visualization version GIF version |
Description: Expressing the singleton of 0 as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
fzo01 | ⊢ (0..^1) = {0} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1e0p1 12180 | . . 3 ⊢ 1 = (0 + 1) | |
2 | 1 | oveq2i 7162 | . 2 ⊢ (0..^1) = (0..^(0 + 1)) |
3 | 0z 12032 | . . 3 ⊢ 0 ∈ ℤ | |
4 | fzosn 13158 | . . 3 ⊢ (0 ∈ ℤ → (0..^(0 + 1)) = {0}) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (0..^(0 + 1)) = {0} |
6 | 2, 5 | eqtri 2782 | 1 ⊢ (0..^1) = {0} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2112 {csn 4523 (class class class)co 7151 0cc0 10576 1c1 10577 + caddc 10579 ℤcz 12021 ..^cfzo 13083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-nn 11676 df-n0 11936 df-z 12022 df-uz 12284 df-fz 12941 df-fzo 13084 |
This theorem is referenced by: fzo0sn0fzo1 13176 snopiswrd 13923 s1dm 14010 eqs1 14014 swrds1 14076 repsw1 14193 cshw1 14232 0bits 15839 dfphi2 16167 wlkl1loop 27527 rusgrnumwwlkl1 27854 clwlkclwwlklem2a4 27882 clwwlkn2 27929 1wlkdlem4 28025 cshw1s2 30757 cyc2fv1 30915 signstf0 32067 iccelpart 44319 nn0sumshdiglemB 45400 nn0sumshdiglem1 45401 nn0sumshdiglem2 45402 1aryfvalel 45416 |
Copyright terms: Public domain | W3C validator |