MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzonn0 Structured version   Visualization version   GIF version

Theorem elfzonn0 13607
Description: A member of a half-open range of nonnegative integers is a nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018.)
Assertion
Ref Expression
elfzonn0 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0)

Proof of Theorem elfzonn0
StepHypRef Expression
1 elfzouz 13563 . 2 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ (ℤ‘0))
2 elnn0uz 12777 . 2 (𝐾 ∈ ℕ0𝐾 ∈ (ℤ‘0))
31, 2sylibr 234 1 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cfv 6481  (class class class)co 7346  0cc0 11006  0cn0 12381  cuz 12732  ..^cfzo 13554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555
This theorem is referenced by:  fzo0ssnn0  13646  modsumfzodifsn  13851  resunimafz0  14352  ccatrn  14497  pfxmpt  14586  pfxsuffeqwrdeq  14605  swrdccatin1  14632  swrdccatin2  14636  splfv2a  14663  repswswrd  14691  pwdif  15775  pwm1geoser  15776  fzo0dvdseq  16234  smueqlem  16401  hashgcdlem  16699  cshwsidrepsw  17005  chnrev  18533  chnpof1  18536  smndex1gbas  18810  smndex1igid  18812  advlogexp  26592  upgrwlkdvdelem  29715  crctcshwlkn0lem2  29790  crctcshwlkn0lem4  29792  crctcshwlkn0  29800  crctcsh  29803  clwwlkel  30024  clwwlknonex2lem2  30086  eucrctshift  30221  cycpmco2lem4  33096  cycpmco2lem5  33097  cycpmco2lem6  33098  cycpmco2lem7  33099  cycpmco2  33100  ply1gsumz  33557  ply1degltdimlem  33633  ply1degltdim  33634  signsplypnf  34561  poimirlem5  37671  poimirlem6  37672  poimirlem7  37673  poimirlem10  37676  poimirlem11  37677  poimirlem12  37678  poimirlem16  37682  poimirlem17  37683  poimirlem19  37685  poimirlem20  37686  poimirlem22  37688  poimirlem23  37689  poimirlem25  37691  poimirlem29  37695  poimirlem30  37696  poimirlem31  37697  frlmvscadiccat  42545  fltnltalem  42701  dvnmul  45987  fourierdlem48  46198  2pwp1prm  47626  gpgedgvtx1  48099  nnpw2pb  48625  nn0sumshdiglemA  48657  nn0sumshdiglemB  48658  nn0mullong  48663
  Copyright terms: Public domain W3C validator