MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnn0uz Structured version   Visualization version   GIF version

Theorem elnn0uz 12921
Description: A nonnegative integer expressed as a member an upper set of integers. (Contributed by NM, 6-Jun-2006.)
Assertion
Ref Expression
elnn0uz (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))

Proof of Theorem elnn0uz
StepHypRef Expression
1 nn0uz 12918 . 2 0 = (ℤ‘0)
21eleq2i 2831 1 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2106  cfv 6563  0cc0 11153  0cn0 12524  cuz 12876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877
This theorem is referenced by:  fz0dif1  13643  elfz2nn0  13655  4fvwrd4  13685  2ffzeq  13686  elfzo0  13737  elfzonn0  13744  elfzom1elp1fzo  13768  cardfz  14008  nn0sinds  14027  hashfz0  14468  resunimafz0  14481  ffz0iswrd  14576  swrdccatin2  14764  pfxccatin12lem2  14766  pfxccatin12lem3  14767  cshwidxmod  14838  scshwfzeqfzo  14862  bcxmas  15868  mertenslem2  15918  risefacp1  16062  fallfacp1  16063  pwp1fsum  16425  bitsmod  16470  4sqlem19  16997  gsmsymgrfixlem1  19460  gsmsymgreqlem2  19464  efgsrel  19767  gsummptfzsplit  19965  gsummptfzsplitl  19966  pmatcollpw3fi  22807  cpmadugsumlemF  22898  wlkn0  29654  wlkp1lem8  29713  wlkp1  29714  spthonepeq  29785  crctcshwlkn0lem5  29844  crctcshwlkn0lem7  29846  wwlksnext  29923  clwwlkccatlem  30018  clwlkclwwlklem2a1  30021  clwlkclwwlkf1lem3  30035  clwwlkinwwlk  30069  clwwlkel  30075  clwwlkwwlksb  30083  wwlksext2clwwlk  30086  eupthp1  30245  sseqfn  34372  sseqf  34374  bccolsum  35719  knoppcnlem7  36482  knoppcnlem11  36486  knoppndvlem15  36509  frlmvscadiccat  42493  fltnltalem  42649  stoweidlem34  45990  1fzopredsuc  47274  subsubelfzo0  47276  iccpartgt  47352  iccpartleu  47353  iccpartgel  47354  fmtnorec2lem  47467  altgsumbcALT  48198  nn0sumshdiglemA  48469  nn0sumshdiglemB  48470
  Copyright terms: Public domain W3C validator