MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringlidm Structured version   Visualization version   GIF version

Theorem ringlidm 20172
Description: The unity element of a ring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.)
Hypotheses
Ref Expression
ringidm.b 𝐵 = (Base‘𝑅)
ringidm.t · = (.r𝑅)
ringidm.u 1 = (1r𝑅)
Assertion
Ref Expression
ringlidm ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 1 · 𝑋) = 𝑋)

Proof of Theorem ringlidm
StepHypRef Expression
1 ringidm.b . . 3 𝐵 = (Base‘𝑅)
2 ringidm.t . . 3 · = (.r𝑅)
3 ringidm.u . . 3 1 = (1r𝑅)
41, 2, 3ringidmlem 20171 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋))
54simpld 494 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 1 · 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17138  .rcmulr 17180  1rcur 20084  Ringcrg 20136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mgp 20044  df-ur 20085  df-ring 20138
This theorem is referenced by:  ringlidmd  20175  ringo2times  20178  ringidss  20180  ringcomlem  20182  ring1eq0  20201  ringinvnzdiv  20204  ringnegl  20205  imasring  20233  xpsring1d  20236  opprring  20250  dvdsrid  20270  unitmulcl  20283  unitgrp  20286  1rinv  20298  dvreq1  20314  ringinvdv  20317  subrginv  20491  issubrg2  20495  unitrrg  20606  isdrng2  20646  drngmul0orOLD  20664  isdrngd  20668  isdrngdOLD  20670  abv1z  20727  issrngd  20758  ornglmullt  20772  orng0le1  20777  sralmod  21109  rngqiprngfulem5  21240  mulgrhm  21402  dvdschrmulg  21453  freshmansdream  21499  asclmul1  21811  psrlmod  21885  psrlidm  21887  mplmonmul  21959  evlslem1  22005  coe1pwmul  22181  mamulid  22344  madetsumid  22364  1mavmul  22451  m1detdiag  22500  mdetralt  22511  mdetunilem7  22521  mdetuni  22525  mdetmul  22526  m2detleib  22534  chfacfpmmulgsum  22767  cpmadugsumlemB  22777  nrginvrcnlem  24595  cphsubrglem  25093  ply1divex  26058  isarchiofld  33154  ress1r  33187  dvrcan5  33189  elrspunidl  33378  mxidlprm  33420  madjusmdetlem1  33796  matunitlindflem1  37598  lfl0  39046  lfladd  39047  eqlkr3  39082  lcfrlem1  41524  hdmapinvlem4  41903  hdmapglem5  41904  mon1psubm  43175  lidldomn1  48219  invginvrid  48355  ply1sclrmsm  48372  ldepsprlem  48461
  Copyright terms: Public domain W3C validator