| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringlidm | Structured version Visualization version GIF version | ||
| Description: The unity element of a ring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| ringidm.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringidm.t | ⊢ · = (.r‘𝑅) |
| ringidm.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ringlidm | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 · 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringidm.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | ringidm.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 3 | ringidm.u | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 4 | 1, 2, 3 | ringidmlem 20181 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋)) |
| 5 | 4 | simpld 494 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 · 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 .rcmulr 17157 1rcur 20094 Ringcrg 20146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mgp 20054 df-ur 20095 df-ring 20148 |
| This theorem is referenced by: ringlidmd 20185 ringo2times 20188 ringidss 20190 ringcomlem 20192 ring1eq0 20211 ringinvnzdiv 20214 ringnegl 20215 imasring 20243 xpsring1d 20246 opprring 20260 dvdsrid 20280 unitmulcl 20293 unitgrp 20296 1rinv 20308 dvreq1 20324 ringinvdv 20327 subrginv 20498 issubrg2 20502 unitrrg 20613 isdrng2 20653 drngmul0orOLD 20671 isdrngd 20675 isdrngdOLD 20677 abv1z 20734 issrngd 20765 ornglmullt 20779 orng0le1 20784 sralmod 21116 rngqiprngfulem5 21247 mulgrhm 21409 dvdschrmulg 21460 freshmansdream 21506 asclmul1 21818 psrlmod 21892 psrlidm 21894 mplmonmul 21966 evlslem1 22012 coe1pwmul 22188 mamulid 22351 madetsumid 22371 1mavmul 22458 m1detdiag 22507 mdetralt 22518 mdetunilem7 22528 mdetuni 22532 mdetmul 22533 m2detleib 22541 chfacfpmmulgsum 22774 cpmadugsumlemB 22784 nrginvrcnlem 24601 cphsubrglem 25099 ply1divex 26064 isarchiofld 33160 ress1r 33193 dvrcan5 33195 elrspunidl 33385 mxidlprm 33427 madjusmdetlem1 33832 matunitlindflem1 37656 lfl0 39104 lfladd 39105 eqlkr3 39140 lcfrlem1 41581 hdmapinvlem4 41960 hdmapglem5 41961 mon1psubm 43232 lidldomn1 48262 invginvrid 48398 ply1sclrmsm 48415 ldepsprlem 48504 |
| Copyright terms: Public domain | W3C validator |