| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringlidm | Structured version Visualization version GIF version | ||
| Description: The unity element of a ring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| ringidm.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringidm.t | ⊢ · = (.r‘𝑅) |
| ringidm.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ringlidm | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 · 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringidm.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | ringidm.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 3 | ringidm.u | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 4 | 1, 2, 3 | ringidmlem 20153 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋)) |
| 5 | 4 | simpld 494 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 · 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 .rcmulr 17197 1rcur 20066 Ringcrg 20118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mgp 20026 df-ur 20067 df-ring 20120 |
| This theorem is referenced by: ringlidmd 20157 ringo2times 20160 ringidss 20162 ringcomlem 20164 ring1eq0 20183 ringinvnzdiv 20186 ringnegl 20187 imasring 20215 xpsring1d 20218 opprring 20232 dvdsrid 20252 unitmulcl 20265 unitgrp 20268 1rinv 20280 dvreq1 20296 ringinvdv 20299 subrginv 20473 issubrg2 20477 unitrrg 20588 isdrng2 20628 drngmul0orOLD 20646 isdrngd 20650 isdrngdOLD 20652 abv1z 20709 issrngd 20740 sralmod 21070 rngqiprngfulem5 21201 mulgrhm 21363 dvdschrmulg 21414 freshmansdream 21460 asclmul1 21771 psrlmod 21845 psrlidm 21847 mplmonmul 21919 evlslem1 21965 coe1pwmul 22141 mamulid 22304 madetsumid 22324 1mavmul 22411 m1detdiag 22460 mdetralt 22471 mdetunilem7 22481 mdetuni 22485 mdetmul 22486 m2detleib 22494 chfacfpmmulgsum 22727 cpmadugsumlemB 22737 nrginvrcnlem 24555 cphsubrglem 25053 ply1divex 26018 ress1r 33158 dvrcan5 33160 ornglmullt 33258 orng0le1 33263 isarchiofld 33268 elrspunidl 33372 mxidlprm 33414 madjusmdetlem1 33790 matunitlindflem1 37583 lfl0 39031 lfladd 39032 eqlkr3 39067 lcfrlem1 41509 hdmapinvlem4 41888 hdmapglem5 41889 mon1psubm 43161 lidldomn1 48192 invginvrid 48328 ply1sclrmsm 48345 ldepsprlem 48434 |
| Copyright terms: Public domain | W3C validator |