MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringlidm Structured version   Visualization version   GIF version

Theorem ringlidm 20283
Description: The unity element of a ring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.)
Hypotheses
Ref Expression
ringidm.b 𝐵 = (Base‘𝑅)
ringidm.t · = (.r𝑅)
ringidm.u 1 = (1r𝑅)
Assertion
Ref Expression
ringlidm ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 1 · 𝑋) = 𝑋)

Proof of Theorem ringlidm
StepHypRef Expression
1 ringidm.b . . 3 𝐵 = (Base‘𝑅)
2 ringidm.t . . 3 · = (.r𝑅)
3 ringidm.u . . 3 1 = (1r𝑅)
41, 2, 3ringidmlem 20282 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋))
54simpld 494 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 1 · 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  .rcmulr 17299  1rcur 20199  Ringcrg 20251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mgp 20153  df-ur 20200  df-ring 20253
This theorem is referenced by:  ringlidmd  20286  ringo2times  20289  ringidss  20291  ringcomlem  20293  ring1eq0  20312  ringinvnzdiv  20315  ringnegl  20316  imasring  20344  xpsring1d  20347  opprring  20364  dvdsrid  20384  unitmulcl  20397  unitgrp  20400  1rinv  20412  dvreq1  20428  ringinvdv  20431  subrginv  20605  issubrg2  20609  unitrrg  20720  isdrng2  20760  drngmul0orOLD  20778  isdrngd  20782  isdrngdOLD  20784  abv1z  20842  issrngd  20873  sralmod  21212  rngqiprngfulem5  21343  mulgrhm  21506  dvdschrmulg  21561  freshmansdream  21611  asclmul1  21924  psrlmod  21998  psrlidm  22000  mplmonmul  22072  evlslem1  22124  coe1pwmul  22298  mamulid  22463  madetsumid  22483  1mavmul  22570  m1detdiag  22619  mdetralt  22630  mdetunilem7  22640  mdetuni  22644  mdetmul  22645  m2detleib  22653  chfacfpmmulgsum  22886  cpmadugsumlemB  22896  nrginvrcnlem  24728  cphsubrglem  25225  ply1divex  26191  ress1r  33224  dvrcan5  33226  ornglmullt  33317  orng0le1  33322  isarchiofld  33327  elrspunidl  33436  mxidlprm  33478  madjusmdetlem1  33788  matunitlindflem1  37603  lfl0  39047  lfladd  39048  eqlkr3  39083  lcfrlem1  41525  hdmapinvlem4  41904  hdmapglem5  41905  mon1psubm  43188  lidldomn1  48075  invginvrid  48212  ply1sclrmsm  48229  ldepsprlem  48318
  Copyright terms: Public domain W3C validator