![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringlidm | Structured version Visualization version GIF version |
Description: The unity element of a ring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
ringidm.b | โข ๐ต = (Baseโ๐ ) |
ringidm.t | โข ยท = (.rโ๐ ) |
ringidm.u | โข 1 = (1rโ๐ ) |
Ref | Expression |
---|---|
ringlidm | โข ((๐ โ Ring โง ๐ โ ๐ต) โ ( 1 ยท ๐) = ๐) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringidm.b | . . 3 โข ๐ต = (Baseโ๐ ) | |
2 | ringidm.t | . . 3 โข ยท = (.rโ๐ ) | |
3 | ringidm.u | . . 3 โข 1 = (1rโ๐ ) | |
4 | 1, 2, 3 | ringidmlem 20085 | . 2 โข ((๐ โ Ring โง ๐ โ ๐ต) โ (( 1 ยท ๐) = ๐ โง (๐ ยท 1 ) = ๐)) |
5 | 4 | simpld 496 | 1 โข ((๐ โ Ring โง ๐ โ ๐ต) โ ( 1 ยท ๐) = ๐) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 397 = wceq 1542 โ wcel 2107 โcfv 6544 (class class class)co 7409 Basecbs 17144 .rcmulr 17198 1rcur 20004 Ringcrg 20056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-plusg 17210 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-mgp 19988 df-ur 20005 df-ring 20058 |
This theorem is referenced by: ringlidmd 20089 ringo2times 20092 ringidss 20094 ringcomlem 20096 ring1eq0 20110 ringinvnzdiv 20113 ringnegl 20114 imasring 20143 xpsring1d 20146 opprring 20161 dvdsrid 20181 unitmulcl 20194 unitgrp 20197 1rinv 20209 dvreq1 20225 ringinvdv 20228 subrginv 20335 issubrg2 20339 isdrng2 20371 drngmul0or 20386 isdrngd 20390 isdrngdOLD 20392 abv1z 20440 issrngd 20469 sralmod 20809 unitrrg 20909 mulgrhm 21047 asclmul1 21440 psrlmod 21521 psrlidm 21523 mplmonmul 21591 evlslem1 21645 coe1pwmul 21801 mamulid 21943 madetsumid 21963 1mavmul 22050 m1detdiag 22099 mdetralt 22110 mdetunilem7 22120 mdetuni 22124 mdetmul 22125 m2detleib 22133 chfacfpmmulgsum 22366 cpmadugsumlemB 22376 nrginvrcnlem 24208 cphsubrglem 24694 ply1divex 25654 dvdschrmulg 32380 freshmansdream 32381 ress1r 32383 dvrcan5 32385 ornglmullt 32425 orng0le1 32430 isarchiofld 32435 elrspunidl 32546 mxidlprm 32586 madjusmdetlem1 32807 matunitlindflem1 36484 lfl0 37935 lfladd 37936 eqlkr3 37971 lcfrlem1 40413 hdmapinvlem4 40792 hdmapglem5 40793 mon1psubm 41948 rngqiprngfulem5 46800 lidldomn1 46823 invginvrid 47043 ply1sclrmsm 47064 ldepsprlem 47153 |
Copyright terms: Public domain | W3C validator |