MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringlidm Structured version   Visualization version   GIF version

Theorem ringlidm 20182
Description: The unity element of a ring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.)
Hypotheses
Ref Expression
ringidm.b 𝐵 = (Base‘𝑅)
ringidm.t · = (.r𝑅)
ringidm.u 1 = (1r𝑅)
Assertion
Ref Expression
ringlidm ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 1 · 𝑋) = 𝑋)

Proof of Theorem ringlidm
StepHypRef Expression
1 ringidm.b . . 3 𝐵 = (Base‘𝑅)
2 ringidm.t . . 3 · = (.r𝑅)
3 ringidm.u . . 3 1 = (1r𝑅)
41, 2, 3ringidmlem 20181 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋))
54simpld 494 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 1 · 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6476  (class class class)co 7341  Basecbs 17115  .rcmulr 17157  1rcur 20094  Ringcrg 20146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mgp 20054  df-ur 20095  df-ring 20148
This theorem is referenced by:  ringlidmd  20185  ringo2times  20188  ringidss  20190  ringcomlem  20192  ring1eq0  20211  ringinvnzdiv  20214  ringnegl  20215  imasring  20243  xpsring1d  20246  opprring  20260  dvdsrid  20280  unitmulcl  20293  unitgrp  20296  1rinv  20308  dvreq1  20324  ringinvdv  20327  subrginv  20498  issubrg2  20502  unitrrg  20613  isdrng2  20653  drngmul0orOLD  20671  isdrngd  20675  isdrngdOLD  20677  abv1z  20734  issrngd  20765  ornglmullt  20779  orng0le1  20784  sralmod  21116  rngqiprngfulem5  21247  mulgrhm  21409  dvdschrmulg  21460  freshmansdream  21506  asclmul1  21818  psrlmod  21892  psrlidm  21894  mplmonmul  21966  evlslem1  22012  coe1pwmul  22188  mamulid  22351  madetsumid  22371  1mavmul  22458  m1detdiag  22507  mdetralt  22518  mdetunilem7  22528  mdetuni  22532  mdetmul  22533  m2detleib  22541  chfacfpmmulgsum  22774  cpmadugsumlemB  22784  nrginvrcnlem  24601  cphsubrglem  25099  ply1divex  26064  isarchiofld  33160  ress1r  33193  dvrcan5  33195  elrspunidl  33385  mxidlprm  33427  madjusmdetlem1  33832  matunitlindflem1  37656  lfl0  39104  lfladd  39105  eqlkr3  39140  lcfrlem1  41581  hdmapinvlem4  41960  hdmapglem5  41961  mon1psubm  43232  lidldomn1  48262  invginvrid  48398  ply1sclrmsm  48415  ldepsprlem  48504
  Copyright terms: Public domain W3C validator