MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringlidm Structured version   Visualization version   GIF version

Theorem ringlidm 19250
Description: The unit element of a ring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.)
Hypotheses
Ref Expression
rngidm.b 𝐵 = (Base‘𝑅)
rngidm.t · = (.r𝑅)
rngidm.u 1 = (1r𝑅)
Assertion
Ref Expression
ringlidm ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 1 · 𝑋) = 𝑋)

Proof of Theorem ringlidm
StepHypRef Expression
1 rngidm.b . . 3 𝐵 = (Base‘𝑅)
2 rngidm.t . . 3 · = (.r𝑅)
3 rngidm.u . . 3 1 = (1r𝑅)
41, 2, 3ringidmlem 19249 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋))
54simpld 495 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 1 · 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145  Basecbs 16471  .rcmulr 16554  1rcur 19180  Ringcrg 19226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-plusg 16566  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mgp 19169  df-ur 19181  df-ring 19228
This theorem is referenced by:  rngo2times  19255  ringidss  19256  ringcom  19258  ring1eq0  19269  ringinvnzdiv  19272  ringnegl  19273  imasring  19298  opprring  19310  dvdsrid  19330  unitmulcl  19343  unitgrp  19346  1rinv  19358  dvreq1  19372  ringinvdv  19373  isdrng2  19441  drngmul0or  19452  isdrngd  19456  subrginv  19480  issubrg2  19484  abv1z  19532  issrngd  19561  sralmod  19888  unitrrg  19994  asclmul1  20042  ascldimulOLD  20045  psrlmod  20109  psrlidm  20111  mplmonmul  20173  evlslem1  20223  coe1pwmul  20375  mulgrhm  20573  mamulid  20978  madetsumid  20998  1mavmul  21085  m1detdiag  21134  mdetralt  21145  mdetunilem7  21155  mdetuni  21159  mdetmul  21160  m2detleib  21168  chfacfpmmulgsum  21400  cpmadugsumlemB  21410  nrginvrcnlem  23227  cphsubrglem  23708  ply1divex  24657  dvdschrmulg  30785  freshmansdream  30786  ress1r  30787  dvrcan5  30791  ornglmullt  30807  orng0le1  30812  isarchiofld  30817  madjusmdetlem1  30991  matunitlindflem1  34769  lfl0  36081  lfladd  36082  eqlkr3  36117  lcfrlem1  38558  hdmapinvlem4  38937  hdmapglem5  38938  mon1psubm  39684  lidldomn1  44120  invginvrid  44343  ply1sclrmsm  44365  ldepsprlem  44455
  Copyright terms: Public domain W3C validator