Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringlidm | Structured version Visualization version GIF version |
Description: The unit element of a ring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
rngidm.b | ⊢ 𝐵 = (Base‘𝑅) |
rngidm.t | ⊢ · = (.r‘𝑅) |
rngidm.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ringlidm | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 · 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngidm.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | rngidm.t | . . 3 ⊢ · = (.r‘𝑅) | |
3 | rngidm.u | . . 3 ⊢ 1 = (1r‘𝑅) | |
4 | 1, 2, 3 | ringidmlem 19854 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋)) |
5 | 4 | simpld 496 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 · 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 .rcmulr 17008 1rcur 19782 Ringcrg 19828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-plusg 17020 df-0g 17197 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-mgp 19766 df-ur 19783 df-ring 19830 |
This theorem is referenced by: rngo2times 19860 ringidss 19861 ringcom 19863 ring1eq0 19874 ringinvnzdiv 19877 ringnegl 19878 imasring 19903 opprring 19918 dvdsrid 19938 unitmulcl 19951 unitgrp 19954 1rinv 19966 dvreq1 19980 ringinvdv 19981 isdrng2 20046 drngmul0or 20057 isdrngd 20061 subrginv 20085 issubrg2 20089 abv1z 20137 issrngd 20166 sralmod 20502 unitrrg 20609 mulgrhm 20744 asclmul1 21135 psrlmod 21215 psrlidm 21217 mplmonmul 21282 evlslem1 21337 coe1pwmul 21495 mamulid 21635 madetsumid 21655 1mavmul 21742 m1detdiag 21791 mdetralt 21802 mdetunilem7 21812 mdetuni 21816 mdetmul 21817 m2detleib 21825 chfacfpmmulgsum 22058 cpmadugsumlemB 22068 nrginvrcnlem 23900 cphsubrglem 24386 ply1divex 25346 dvdschrmulg 31528 freshmansdream 31529 ress1r 31531 dvrcan5 31535 ornglmullt 31551 orng0le1 31556 isarchiofld 31561 elrspunidl 31651 mxidlprm 31685 madjusmdetlem1 31822 matunitlindflem1 35817 lfl0 37121 lfladd 37122 eqlkr3 37157 lcfrlem1 39598 hdmapinvlem4 39977 hdmapglem5 39978 ringlidmd 40279 mon1psubm 41069 lidldomn1 45537 invginvrid 45761 ply1sclrmsm 45782 ldepsprlem 45871 |
Copyright terms: Public domain | W3C validator |