Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > risefaccllem | Structured version Visualization version GIF version |
Description: Lemma for rising factorial closure laws. (Contributed by Scott Fenton, 5-Jan-2018.) |
Ref | Expression |
---|---|
risefallfaccllem.1 | ⊢ 𝑆 ⊆ ℂ |
risefallfaccllem.2 | ⊢ 1 ∈ 𝑆 |
risefallfaccllem.3 | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 · 𝑦) ∈ 𝑆) |
risefaccllem.4 | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐴 + 𝑘) ∈ 𝑆) |
Ref | Expression |
---|---|
risefaccllem | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risefallfaccllem.1 | . . . 4 ⊢ 𝑆 ⊆ ℂ | |
2 | 1 | sseli 3888 | . . 3 ⊢ (𝐴 ∈ 𝑆 → 𝐴 ∈ ℂ) |
3 | risefacval 15410 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘)) | |
4 | 2, 3 | sylan 583 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘)) |
5 | 1 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 𝑆 ⊆ ℂ) |
6 | risefallfaccllem.3 | . . . . 5 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 · 𝑦) ∈ 𝑆) | |
7 | 6 | adantl 485 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
8 | fzfid 13390 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → (0...(𝑁 − 1)) ∈ Fin) | |
9 | elfznn0 13049 | . . . . 5 ⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0) | |
10 | risefaccllem.4 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐴 + 𝑘) ∈ 𝑆) | |
11 | 9, 10 | sylan2 595 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴 + 𝑘) ∈ 𝑆) |
12 | risefallfaccllem.2 | . . . . 5 ⊢ 1 ∈ 𝑆 | |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 1 ∈ 𝑆) |
14 | 5, 7, 8, 11, 13 | fprodcllem 15353 | . . 3 ⊢ (𝐴 ∈ 𝑆 → ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘) ∈ 𝑆) |
15 | 14 | adantr 484 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘) ∈ 𝑆) |
16 | 4, 15 | eqeltrd 2852 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ⊆ wss 3858 (class class class)co 7150 ℂcc 10573 0cc0 10575 1c1 10576 + caddc 10578 · cmul 10580 − cmin 10908 ℕ0cn0 11934 ...cfz 12939 ∏cprod 15307 RiseFac crisefac 15407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-sup 8939 df-oi 9007 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-n0 11935 df-z 12021 df-uz 12283 df-rp 12431 df-fz 12940 df-fzo 13083 df-seq 13419 df-exp 13480 df-hash 13741 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-clim 14893 df-prod 15308 df-risefac 15408 |
This theorem is referenced by: risefaccl 15417 rerisefaccl 15419 nnrisefaccl 15421 zrisefaccl 15422 nn0risefaccl 15424 rprisefaccl 15425 |
Copyright terms: Public domain | W3C validator |