![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chpdifbndlem2 | Structured version Visualization version GIF version |
Description: Lemma for chpdifbnd 26903. (Contributed by Mario Carneiro, 25-May-2016.) |
Ref | Expression |
---|---|
chpdifbnd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
chpdifbnd.1 | ⊢ (𝜑 → 1 ≤ 𝐴) |
chpdifbnd.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
chpdifbnd.2 | ⊢ (𝜑 → ∀𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵) |
chpdifbnd.c | ⊢ 𝐶 = ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) |
Ref | Expression |
---|---|
chpdifbndlem2 | ⊢ (𝜑 → ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦 − 𝑥)) + (𝑐 · (𝑥 / (log‘𝑥))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chpdifbnd.c | . . 3 ⊢ 𝐶 = ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) | |
2 | chpdifbnd.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
3 | chpdifbnd.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
4 | 1rp 12919 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
5 | rpaddcl 12937 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝐴 + 1) ∈ ℝ+) | |
6 | 3, 4, 5 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ+) |
7 | 2, 6 | rpmulcld 12973 | . . . . . 6 ⊢ (𝜑 → (𝐵 · (𝐴 + 1)) ∈ ℝ+) |
8 | 7 | rpred 12957 | . . . . 5 ⊢ (𝜑 → (𝐵 · (𝐴 + 1)) ∈ ℝ) |
9 | 2rp 12920 | . . . . . . . 8 ⊢ 2 ∈ ℝ+ | |
10 | rpmulcl 12938 | . . . . . . . 8 ⊢ ((2 ∈ ℝ+ ∧ 𝐴 ∈ ℝ+) → (2 · 𝐴) ∈ ℝ+) | |
11 | 9, 3, 10 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → (2 · 𝐴) ∈ ℝ+) |
12 | 11 | rpred 12957 | . . . . . 6 ⊢ (𝜑 → (2 · 𝐴) ∈ ℝ) |
13 | 3 | relogcld 25978 | . . . . . 6 ⊢ (𝜑 → (log‘𝐴) ∈ ℝ) |
14 | 12, 13 | remulcld 11185 | . . . . 5 ⊢ (𝜑 → ((2 · 𝐴) · (log‘𝐴)) ∈ ℝ) |
15 | 8, 14 | readdcld 11184 | . . . 4 ⊢ (𝜑 → ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) ∈ ℝ) |
16 | 7 | rpgt0d 12960 | . . . . 5 ⊢ (𝜑 → 0 < (𝐵 · (𝐴 + 1))) |
17 | 11 | rprege0d 12964 | . . . . . 6 ⊢ (𝜑 → ((2 · 𝐴) ∈ ℝ ∧ 0 ≤ (2 · 𝐴))) |
18 | log1 25941 | . . . . . . 7 ⊢ (log‘1) = 0 | |
19 | chpdifbnd.1 | . . . . . . . 8 ⊢ (𝜑 → 1 ≤ 𝐴) | |
20 | logleb 25958 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ+ ∧ 𝐴 ∈ ℝ+) → (1 ≤ 𝐴 ↔ (log‘1) ≤ (log‘𝐴))) | |
21 | 4, 3, 20 | sylancr 587 | . . . . . . . 8 ⊢ (𝜑 → (1 ≤ 𝐴 ↔ (log‘1) ≤ (log‘𝐴))) |
22 | 19, 21 | mpbid 231 | . . . . . . 7 ⊢ (𝜑 → (log‘1) ≤ (log‘𝐴)) |
23 | 18, 22 | eqbrtrrid 5141 | . . . . . 6 ⊢ (𝜑 → 0 ≤ (log‘𝐴)) |
24 | mulge0 11673 | . . . . . 6 ⊢ ((((2 · 𝐴) ∈ ℝ ∧ 0 ≤ (2 · 𝐴)) ∧ ((log‘𝐴) ∈ ℝ ∧ 0 ≤ (log‘𝐴))) → 0 ≤ ((2 · 𝐴) · (log‘𝐴))) | |
25 | 17, 13, 23, 24 | syl12anc 835 | . . . . 5 ⊢ (𝜑 → 0 ≤ ((2 · 𝐴) · (log‘𝐴))) |
26 | 8, 14, 16, 25 | addgtge0d 11729 | . . . 4 ⊢ (𝜑 → 0 < ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴)))) |
27 | 15, 26 | elrpd 12954 | . . 3 ⊢ (𝜑 → ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) ∈ ℝ+) |
28 | 1, 27 | eqeltrid 2842 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
29 | 3 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → 𝐴 ∈ ℝ+) |
30 | 19 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → 1 ≤ 𝐴) |
31 | 2 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → 𝐵 ∈ ℝ+) |
32 | chpdifbnd.2 | . . . . 5 ⊢ (𝜑 → ∀𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵) | |
33 | 32 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → ∀𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵) |
34 | simprl 769 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → 𝑥 ∈ (1(,)+∞)) | |
35 | simprr 771 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → 𝑦 ∈ (𝑥[,](𝐴 · 𝑥))) | |
36 | 29, 30, 31, 33, 1, 34, 35 | chpdifbndlem1 26901 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → ((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦 − 𝑥)) + (𝐶 · (𝑥 / (log‘𝑥))))) |
37 | 36 | ralrimivva 3197 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦 − 𝑥)) + (𝐶 · (𝑥 / (log‘𝑥))))) |
38 | oveq1 7364 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (𝑐 · (𝑥 / (log‘𝑥))) = (𝐶 · (𝑥 / (log‘𝑥)))) | |
39 | 38 | oveq2d 7373 | . . . . 5 ⊢ (𝑐 = 𝐶 → ((2 · (𝑦 − 𝑥)) + (𝑐 · (𝑥 / (log‘𝑥)))) = ((2 · (𝑦 − 𝑥)) + (𝐶 · (𝑥 / (log‘𝑥))))) |
40 | 39 | breq2d 5117 | . . . 4 ⊢ (𝑐 = 𝐶 → (((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦 − 𝑥)) + (𝑐 · (𝑥 / (log‘𝑥)))) ↔ ((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦 − 𝑥)) + (𝐶 · (𝑥 / (log‘𝑥)))))) |
41 | 40 | 2ralbidv 3212 | . . 3 ⊢ (𝑐 = 𝐶 → (∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦 − 𝑥)) + (𝑐 · (𝑥 / (log‘𝑥)))) ↔ ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦 − 𝑥)) + (𝐶 · (𝑥 / (log‘𝑥)))))) |
42 | 41 | rspcev 3581 | . 2 ⊢ ((𝐶 ∈ ℝ+ ∧ ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦 − 𝑥)) + (𝐶 · (𝑥 / (log‘𝑥))))) → ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦 − 𝑥)) + (𝑐 · (𝑥 / (log‘𝑥))))) |
43 | 28, 37, 42 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦 − 𝑥)) + (𝑐 · (𝑥 / (log‘𝑥))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 ∃wrex 3073 class class class wbr 5105 ‘cfv 6496 (class class class)co 7357 ℝcr 11050 0cc0 11051 1c1 11052 + caddc 11054 · cmul 11056 +∞cpnf 11186 ≤ cle 11190 − cmin 11385 / cdiv 11812 2c2 12208 ℝ+crp 12915 (,)cioo 13264 [,)cico 13266 [,]cicc 13267 ...cfz 13424 ⌊cfl 13695 abscabs 15119 Σcsu 15570 logclog 25910 Λcvma 26441 ψcchp 26442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-oadd 8416 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-dju 9837 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ioc 13269 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-fac 14174 df-bc 14203 df-hash 14231 df-shft 14952 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-limsup 15353 df-clim 15370 df-rlim 15371 df-sum 15571 df-ef 15950 df-sin 15952 df-cos 15953 df-pi 15955 df-dvds 16137 df-gcd 16375 df-prm 16548 df-pc 16709 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-fbas 20793 df-fg 20794 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-nei 22449 df-lp 22487 df-perf 22488 df-cn 22578 df-cnp 22579 df-haus 22666 df-tx 22913 df-hmeo 23106 df-fil 23197 df-fm 23289 df-flim 23290 df-flf 23291 df-xms 23673 df-ms 23674 df-tms 23675 df-cncf 24241 df-limc 25230 df-dv 25231 df-log 25912 df-vma 26447 df-chp 26448 |
This theorem is referenced by: chpdifbnd 26903 |
Copyright terms: Public domain | W3C validator |