MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpdifbndlem2 Structured version   Visualization version   GIF version

Theorem chpdifbndlem2 26713
Description: Lemma for chpdifbnd 26714. (Contributed by Mario Carneiro, 25-May-2016.)
Hypotheses
Ref Expression
chpdifbnd.a (𝜑𝐴 ∈ ℝ+)
chpdifbnd.1 (𝜑 → 1 ≤ 𝐴)
chpdifbnd.b (𝜑𝐵 ∈ ℝ+)
chpdifbnd.2 (𝜑 → ∀𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵)
chpdifbnd.c 𝐶 = ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴)))
Assertion
Ref Expression
chpdifbndlem2 (𝜑 → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑐 · (𝑥 / (log‘𝑥)))))
Distinct variable groups:   𝑚,𝑐,𝑥,𝑦,𝑧,𝐶   𝜑,𝑥,𝑦   𝐴,𝑐   𝑧,𝐵
Allowed substitution hints:   𝜑(𝑧,𝑚,𝑐)   𝐴(𝑥,𝑦,𝑧,𝑚)   𝐵(𝑥,𝑦,𝑚,𝑐)

Proof of Theorem chpdifbndlem2
StepHypRef Expression
1 chpdifbnd.c . . 3 𝐶 = ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴)))
2 chpdifbnd.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
3 chpdifbnd.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
4 1rp 12745 . . . . . . . 8 1 ∈ ℝ+
5 rpaddcl 12763 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝐴 + 1) ∈ ℝ+)
63, 4, 5sylancl 586 . . . . . . 7 (𝜑 → (𝐴 + 1) ∈ ℝ+)
72, 6rpmulcld 12799 . . . . . 6 (𝜑 → (𝐵 · (𝐴 + 1)) ∈ ℝ+)
87rpred 12783 . . . . 5 (𝜑 → (𝐵 · (𝐴 + 1)) ∈ ℝ)
9 2rp 12746 . . . . . . . 8 2 ∈ ℝ+
10 rpmulcl 12764 . . . . . . . 8 ((2 ∈ ℝ+𝐴 ∈ ℝ+) → (2 · 𝐴) ∈ ℝ+)
119, 3, 10sylancr 587 . . . . . . 7 (𝜑 → (2 · 𝐴) ∈ ℝ+)
1211rpred 12783 . . . . . 6 (𝜑 → (2 · 𝐴) ∈ ℝ)
133relogcld 25789 . . . . . 6 (𝜑 → (log‘𝐴) ∈ ℝ)
1412, 13remulcld 11016 . . . . 5 (𝜑 → ((2 · 𝐴) · (log‘𝐴)) ∈ ℝ)
158, 14readdcld 11015 . . . 4 (𝜑 → ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) ∈ ℝ)
167rpgt0d 12786 . . . . 5 (𝜑 → 0 < (𝐵 · (𝐴 + 1)))
1711rprege0d 12790 . . . . . 6 (𝜑 → ((2 · 𝐴) ∈ ℝ ∧ 0 ≤ (2 · 𝐴)))
18 log1 25752 . . . . . . 7 (log‘1) = 0
19 chpdifbnd.1 . . . . . . . 8 (𝜑 → 1 ≤ 𝐴)
20 logleb 25769 . . . . . . . . 9 ((1 ∈ ℝ+𝐴 ∈ ℝ+) → (1 ≤ 𝐴 ↔ (log‘1) ≤ (log‘𝐴)))
214, 3, 20sylancr 587 . . . . . . . 8 (𝜑 → (1 ≤ 𝐴 ↔ (log‘1) ≤ (log‘𝐴)))
2219, 21mpbid 231 . . . . . . 7 (𝜑 → (log‘1) ≤ (log‘𝐴))
2318, 22eqbrtrrid 5115 . . . . . 6 (𝜑 → 0 ≤ (log‘𝐴))
24 mulge0 11504 . . . . . 6 ((((2 · 𝐴) ∈ ℝ ∧ 0 ≤ (2 · 𝐴)) ∧ ((log‘𝐴) ∈ ℝ ∧ 0 ≤ (log‘𝐴))) → 0 ≤ ((2 · 𝐴) · (log‘𝐴)))
2517, 13, 23, 24syl12anc 834 . . . . 5 (𝜑 → 0 ≤ ((2 · 𝐴) · (log‘𝐴)))
268, 14, 16, 25addgtge0d 11560 . . . 4 (𝜑 → 0 < ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))))
2715, 26elrpd 12780 . . 3 (𝜑 → ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) ∈ ℝ+)
281, 27eqeltrid 2845 . 2 (𝜑𝐶 ∈ ℝ+)
293adantr 481 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → 𝐴 ∈ ℝ+)
3019adantr 481 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → 1 ≤ 𝐴)
312adantr 481 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → 𝐵 ∈ ℝ+)
32 chpdifbnd.2 . . . . 5 (𝜑 → ∀𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵)
3332adantr 481 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → ∀𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵)
34 simprl 768 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → 𝑥 ∈ (1(,)+∞))
35 simprr 770 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))
3629, 30, 31, 33, 1, 34, 35chpdifbndlem1 26712 . . 3 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → ((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝐶 · (𝑥 / (log‘𝑥)))))
3736ralrimivva 3117 . 2 (𝜑 → ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝐶 · (𝑥 / (log‘𝑥)))))
38 oveq1 7279 . . . . . 6 (𝑐 = 𝐶 → (𝑐 · (𝑥 / (log‘𝑥))) = (𝐶 · (𝑥 / (log‘𝑥))))
3938oveq2d 7288 . . . . 5 (𝑐 = 𝐶 → ((2 · (𝑦𝑥)) + (𝑐 · (𝑥 / (log‘𝑥)))) = ((2 · (𝑦𝑥)) + (𝐶 · (𝑥 / (log‘𝑥)))))
4039breq2d 5091 . . . 4 (𝑐 = 𝐶 → (((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑐 · (𝑥 / (log‘𝑥)))) ↔ ((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝐶 · (𝑥 / (log‘𝑥))))))
41402ralbidv 3125 . . 3 (𝑐 = 𝐶 → (∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑐 · (𝑥 / (log‘𝑥)))) ↔ ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝐶 · (𝑥 / (log‘𝑥))))))
4241rspcev 3561 . 2 ((𝐶 ∈ ℝ+ ∧ ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝐶 · (𝑥 / (log‘𝑥))))) → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑐 · (𝑥 / (log‘𝑥)))))
4328, 37, 42syl2anc 584 1 (𝜑 → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑐 · (𝑥 / (log‘𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wral 3066  wrex 3067   class class class wbr 5079  cfv 6432  (class class class)co 7272  cr 10881  0cc0 10882  1c1 10883   + caddc 10885   · cmul 10887  +∞cpnf 11017  cle 11021  cmin 11216   / cdiv 11643  2c2 12039  +crp 12741  (,)cioo 13090  [,)cico 13092  [,]cicc 13093  ...cfz 13250  cfl 13521  abscabs 14956  Σcsu 15408  logclog 25721  Λcvma 26252  ψcchp 26253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-inf2 9387  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-pre-sup 10960  ax-addf 10961  ax-mulf 10962
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-of 7528  df-om 7708  df-1st 7825  df-2nd 7826  df-supp 7970  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-2o 8290  df-oadd 8293  df-er 8490  df-map 8609  df-pm 8610  df-ixp 8678  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-fsupp 9117  df-fi 9158  df-sup 9189  df-inf 9190  df-oi 9257  df-dju 9670  df-card 9708  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-7 12052  df-8 12053  df-9 12054  df-n0 12245  df-z 12331  df-dec 12449  df-uz 12594  df-q 12700  df-rp 12742  df-xneg 12859  df-xadd 12860  df-xmul 12861  df-ioo 13094  df-ioc 13095  df-ico 13096  df-icc 13097  df-fz 13251  df-fzo 13394  df-fl 13523  df-mod 13601  df-seq 13733  df-exp 13794  df-fac 13999  df-bc 14028  df-hash 14056  df-shft 14789  df-cj 14821  df-re 14822  df-im 14823  df-sqrt 14957  df-abs 14958  df-limsup 15191  df-clim 15208  df-rlim 15209  df-sum 15409  df-ef 15788  df-sin 15790  df-cos 15791  df-pi 15793  df-dvds 15975  df-gcd 16213  df-prm 16388  df-pc 16549  df-struct 16859  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-ress 16953  df-plusg 16986  df-mulr 16987  df-starv 16988  df-sca 16989  df-vsca 16990  df-ip 16991  df-tset 16992  df-ple 16993  df-ds 16995  df-unif 16996  df-hom 16997  df-cco 16998  df-rest 17144  df-topn 17145  df-0g 17163  df-gsum 17164  df-topgen 17165  df-pt 17166  df-prds 17169  df-xrs 17224  df-qtop 17229  df-imas 17230  df-xps 17232  df-mre 17306  df-mrc 17307  df-acs 17309  df-mgm 18337  df-sgrp 18386  df-mnd 18397  df-submnd 18442  df-mulg 18712  df-cntz 18934  df-cmn 19399  df-psmet 20600  df-xmet 20601  df-met 20602  df-bl 20603  df-mopn 20604  df-fbas 20605  df-fg 20606  df-cnfld 20609  df-top 22054  df-topon 22071  df-topsp 22093  df-bases 22107  df-cld 22181  df-ntr 22182  df-cls 22183  df-nei 22260  df-lp 22298  df-perf 22299  df-cn 22389  df-cnp 22390  df-haus 22477  df-tx 22724  df-hmeo 22917  df-fil 23008  df-fm 23100  df-flim 23101  df-flf 23102  df-xms 23484  df-ms 23485  df-tms 23486  df-cncf 24052  df-limc 25041  df-dv 25042  df-log 25723  df-vma 26258  df-chp 26259
This theorem is referenced by:  chpdifbnd  26714
  Copyright terms: Public domain W3C validator