MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpdifbndlem2 Structured version   Visualization version   GIF version

Theorem chpdifbndlem2 27577
Description: Lemma for chpdifbnd 27578. (Contributed by Mario Carneiro, 25-May-2016.)
Hypotheses
Ref Expression
chpdifbnd.a (𝜑𝐴 ∈ ℝ+)
chpdifbnd.1 (𝜑 → 1 ≤ 𝐴)
chpdifbnd.b (𝜑𝐵 ∈ ℝ+)
chpdifbnd.2 (𝜑 → ∀𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵)
chpdifbnd.c 𝐶 = ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴)))
Assertion
Ref Expression
chpdifbndlem2 (𝜑 → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑐 · (𝑥 / (log‘𝑥)))))
Distinct variable groups:   𝑚,𝑐,𝑥,𝑦,𝑧,𝐶   𝜑,𝑥,𝑦   𝐴,𝑐   𝑧,𝐵
Allowed substitution hints:   𝜑(𝑧,𝑚,𝑐)   𝐴(𝑥,𝑦,𝑧,𝑚)   𝐵(𝑥,𝑦,𝑚,𝑐)

Proof of Theorem chpdifbndlem2
StepHypRef Expression
1 chpdifbnd.c . . 3 𝐶 = ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴)))
2 chpdifbnd.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
3 chpdifbnd.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
4 1rp 13023 . . . . . . . 8 1 ∈ ℝ+
5 rpaddcl 13041 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝐴 + 1) ∈ ℝ+)
63, 4, 5sylancl 584 . . . . . . 7 (𝜑 → (𝐴 + 1) ∈ ℝ+)
72, 6rpmulcld 13077 . . . . . 6 (𝜑 → (𝐵 · (𝐴 + 1)) ∈ ℝ+)
87rpred 13061 . . . . 5 (𝜑 → (𝐵 · (𝐴 + 1)) ∈ ℝ)
9 2rp 13024 . . . . . . . 8 2 ∈ ℝ+
10 rpmulcl 13042 . . . . . . . 8 ((2 ∈ ℝ+𝐴 ∈ ℝ+) → (2 · 𝐴) ∈ ℝ+)
119, 3, 10sylancr 585 . . . . . . 7 (𝜑 → (2 · 𝐴) ∈ ℝ+)
1211rpred 13061 . . . . . 6 (𝜑 → (2 · 𝐴) ∈ ℝ)
133relogcld 26644 . . . . . 6 (𝜑 → (log‘𝐴) ∈ ℝ)
1412, 13remulcld 11282 . . . . 5 (𝜑 → ((2 · 𝐴) · (log‘𝐴)) ∈ ℝ)
158, 14readdcld 11281 . . . 4 (𝜑 → ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) ∈ ℝ)
167rpgt0d 13064 . . . . 5 (𝜑 → 0 < (𝐵 · (𝐴 + 1)))
1711rprege0d 13068 . . . . . 6 (𝜑 → ((2 · 𝐴) ∈ ℝ ∧ 0 ≤ (2 · 𝐴)))
18 log1 26606 . . . . . . 7 (log‘1) = 0
19 chpdifbnd.1 . . . . . . . 8 (𝜑 → 1 ≤ 𝐴)
20 logleb 26624 . . . . . . . . 9 ((1 ∈ ℝ+𝐴 ∈ ℝ+) → (1 ≤ 𝐴 ↔ (log‘1) ≤ (log‘𝐴)))
214, 3, 20sylancr 585 . . . . . . . 8 (𝜑 → (1 ≤ 𝐴 ↔ (log‘1) ≤ (log‘𝐴)))
2219, 21mpbid 231 . . . . . . 7 (𝜑 → (log‘1) ≤ (log‘𝐴))
2318, 22eqbrtrrid 5179 . . . . . 6 (𝜑 → 0 ≤ (log‘𝐴))
24 mulge0 11770 . . . . . 6 ((((2 · 𝐴) ∈ ℝ ∧ 0 ≤ (2 · 𝐴)) ∧ ((log‘𝐴) ∈ ℝ ∧ 0 ≤ (log‘𝐴))) → 0 ≤ ((2 · 𝐴) · (log‘𝐴)))
2517, 13, 23, 24syl12anc 835 . . . . 5 (𝜑 → 0 ≤ ((2 · 𝐴) · (log‘𝐴)))
268, 14, 16, 25addgtge0d 11826 . . . 4 (𝜑 → 0 < ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))))
2715, 26elrpd 13058 . . 3 (𝜑 → ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) ∈ ℝ+)
281, 27eqeltrid 2830 . 2 (𝜑𝐶 ∈ ℝ+)
293adantr 479 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → 𝐴 ∈ ℝ+)
3019adantr 479 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → 1 ≤ 𝐴)
312adantr 479 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → 𝐵 ∈ ℝ+)
32 chpdifbnd.2 . . . . 5 (𝜑 → ∀𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵)
3332adantr 479 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → ∀𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵)
34 simprl 769 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → 𝑥 ∈ (1(,)+∞))
35 simprr 771 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))
3629, 30, 31, 33, 1, 34, 35chpdifbndlem1 27576 . . 3 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 𝑦 ∈ (𝑥[,](𝐴 · 𝑥)))) → ((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝐶 · (𝑥 / (log‘𝑥)))))
3736ralrimivva 3191 . 2 (𝜑 → ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝐶 · (𝑥 / (log‘𝑥)))))
38 oveq1 7420 . . . . . 6 (𝑐 = 𝐶 → (𝑐 · (𝑥 / (log‘𝑥))) = (𝐶 · (𝑥 / (log‘𝑥))))
3938oveq2d 7429 . . . . 5 (𝑐 = 𝐶 → ((2 · (𝑦𝑥)) + (𝑐 · (𝑥 / (log‘𝑥)))) = ((2 · (𝑦𝑥)) + (𝐶 · (𝑥 / (log‘𝑥)))))
4039breq2d 5155 . . . 4 (𝑐 = 𝐶 → (((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑐 · (𝑥 / (log‘𝑥)))) ↔ ((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝐶 · (𝑥 / (log‘𝑥))))))
41402ralbidv 3209 . . 3 (𝑐 = 𝐶 → (∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑐 · (𝑥 / (log‘𝑥)))) ↔ ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝐶 · (𝑥 / (log‘𝑥))))))
4241rspcev 3607 . 2 ((𝐶 ∈ ℝ+ ∧ ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝐶 · (𝑥 / (log‘𝑥))))) → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑐 · (𝑥 / (log‘𝑥)))))
4328, 37, 42syl2anc 582 1 (𝜑 → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦𝑥)) + (𝑐 · (𝑥 / (log‘𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051  wrex 3060   class class class wbr 5143  cfv 6543  (class class class)co 7413  cr 11145  0cc0 11146  1c1 11147   + caddc 11149   · cmul 11151  +∞cpnf 11283  cle 11287  cmin 11482   / cdiv 11909  2c2 12310  +crp 13019  (,)cioo 13369  [,)cico 13371  [,]cicc 13372  ...cfz 13529  cfl 13801  abscabs 15231  Σcsu 15682  logclog 26575  Λcvma 27114  ψcchp 27115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-inf2 9674  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7866  df-1st 7992  df-2nd 7993  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8723  df-map 8846  df-pm 8847  df-ixp 8916  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-fsupp 9396  df-fi 9444  df-sup 9475  df-inf 9476  df-oi 9543  df-dju 9934  df-card 9972  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12256  df-2 12318  df-3 12319  df-4 12320  df-5 12321  df-6 12322  df-7 12323  df-8 12324  df-9 12325  df-n0 12516  df-z 12602  df-dec 12721  df-uz 12866  df-q 12976  df-rp 13020  df-xneg 13137  df-xadd 13138  df-xmul 13139  df-ioo 13373  df-ioc 13374  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13673  df-fl 13803  df-mod 13881  df-seq 14013  df-exp 14073  df-fac 14283  df-bc 14312  df-hash 14340  df-shft 15064  df-cj 15096  df-re 15097  df-im 15098  df-sqrt 15232  df-abs 15233  df-limsup 15465  df-clim 15482  df-rlim 15483  df-sum 15683  df-ef 16061  df-sin 16063  df-cos 16064  df-pi 16066  df-dvds 16249  df-gcd 16487  df-prm 16665  df-pc 16831  df-struct 17141  df-sets 17158  df-slot 17176  df-ndx 17188  df-base 17206  df-ress 17235  df-plusg 17271  df-mulr 17272  df-starv 17273  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ds 17280  df-unif 17281  df-hom 17282  df-cco 17283  df-rest 17429  df-topn 17430  df-0g 17448  df-gsum 17449  df-topgen 17450  df-pt 17451  df-prds 17454  df-xrs 17509  df-qtop 17514  df-imas 17515  df-xps 17517  df-mre 17591  df-mrc 17592  df-acs 17594  df-mgm 18625  df-sgrp 18704  df-mnd 18720  df-submnd 18766  df-mulg 19055  df-cntz 19304  df-cmn 19773  df-psmet 21328  df-xmet 21329  df-met 21330  df-bl 21331  df-mopn 21332  df-fbas 21333  df-fg 21334  df-cnfld 21337  df-top 22881  df-topon 22898  df-topsp 22920  df-bases 22934  df-cld 23008  df-ntr 23009  df-cls 23010  df-nei 23087  df-lp 23125  df-perf 23126  df-cn 23216  df-cnp 23217  df-haus 23304  df-tx 23551  df-hmeo 23744  df-fil 23835  df-fm 23927  df-flim 23928  df-flf 23929  df-xms 24311  df-ms 24312  df-tms 24313  df-cncf 24883  df-limc 25880  df-dv 25881  df-log 26577  df-vma 27120  df-chp 27121
This theorem is referenced by:  chpdifbnd  27578
  Copyright terms: Public domain W3C validator