![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqrt2irrlem | Structured version Visualization version GIF version |
Description: Lemma for sqrt2irr 15382. This is the core of the proof: if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). This is Metamath 100 proof #1. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) (Proof shortened by JV, 4-Jan-2022.) |
Ref | Expression |
---|---|
sqrt2irrlem.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
sqrt2irrlem.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
sqrt2irrlem.3 | ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) |
Ref | Expression |
---|---|
sqrt2irrlem | ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cnd 11453 | . . . . . . . . . . . 12 ⊢ (𝜑 → 2 ∈ ℂ) | |
2 | 1 | sqsqrtd 14586 | . . . . . . . . . . 11 ⊢ (𝜑 → ((√‘2)↑2) = 2) |
3 | sqrt2irrlem.3 | . . . . . . . . . . . 12 ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) | |
4 | 3 | oveq1d 6937 | . . . . . . . . . . 11 ⊢ (𝜑 → ((√‘2)↑2) = ((𝐴 / 𝐵)↑2)) |
5 | 2, 4 | eqtr3d 2815 | . . . . . . . . . 10 ⊢ (𝜑 → 2 = ((𝐴 / 𝐵)↑2)) |
6 | sqrt2irrlem.1 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
7 | 6 | zcnd 11835 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
8 | sqrt2irrlem.2 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
9 | 8 | nncnd 11392 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
10 | 8 | nnne0d 11425 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ≠ 0) |
11 | 7, 9, 10 | sqdivd 13340 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) |
12 | 5, 11 | eqtrd 2813 | . . . . . . . . 9 ⊢ (𝜑 → 2 = ((𝐴↑2) / (𝐵↑2))) |
13 | 12 | oveq1d 6937 | . . . . . . . 8 ⊢ (𝜑 → (2 · (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2))) |
14 | 7 | sqcld 13325 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
15 | 8 | nnsqcld 13350 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
16 | 15 | nncnd 11392 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵↑2) ∈ ℂ) |
17 | 15 | nnne0d 11425 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵↑2) ≠ 0) |
18 | 14, 16, 17 | divcan1d 11152 | . . . . . . . 8 ⊢ (𝜑 → (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)) = (𝐴↑2)) |
19 | 13, 18 | eqtrd 2813 | . . . . . . 7 ⊢ (𝜑 → (2 · (𝐵↑2)) = (𝐴↑2)) |
20 | 19 | oveq1d 6937 | . . . . . 6 ⊢ (𝜑 → ((2 · (𝐵↑2)) / 2) = ((𝐴↑2) / 2)) |
21 | 2ne0 11486 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 ≠ 0) |
23 | 16, 1, 22 | divcan3d 11156 | . . . . . 6 ⊢ (𝜑 → ((2 · (𝐵↑2)) / 2) = (𝐵↑2)) |
24 | 20, 23 | eqtr3d 2815 | . . . . 5 ⊢ (𝜑 → ((𝐴↑2) / 2) = (𝐵↑2)) |
25 | 24, 15 | eqeltrd 2858 | . . . 4 ⊢ (𝜑 → ((𝐴↑2) / 2) ∈ ℕ) |
26 | 25 | nnzd 11833 | . . 3 ⊢ (𝜑 → ((𝐴↑2) / 2) ∈ ℤ) |
27 | zesq 13306 | . . . 4 ⊢ (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ)) | |
28 | 6, 27 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ)) |
29 | 26, 28 | mpbird 249 | . 2 ⊢ (𝜑 → (𝐴 / 2) ∈ ℤ) |
30 | 1 | sqvald 13324 | . . . . . . . 8 ⊢ (𝜑 → (2↑2) = (2 · 2)) |
31 | 30 | oveq2d 6938 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑2) / (2↑2)) = ((𝐴↑2) / (2 · 2))) |
32 | 7, 1, 22 | sqdivd 13340 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 / 2)↑2) = ((𝐴↑2) / (2↑2))) |
33 | 14, 1, 1, 22, 22 | divdiv1d 11182 | . . . . . . 7 ⊢ (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐴↑2) / (2 · 2))) |
34 | 31, 32, 33 | 3eqtr4d 2823 | . . . . . 6 ⊢ (𝜑 → ((𝐴 / 2)↑2) = (((𝐴↑2) / 2) / 2)) |
35 | 24 | oveq1d 6937 | . . . . . 6 ⊢ (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐵↑2) / 2)) |
36 | 34, 35 | eqtrd 2813 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 2)↑2) = ((𝐵↑2) / 2)) |
37 | zsqcl 13253 | . . . . . 6 ⊢ ((𝐴 / 2) ∈ ℤ → ((𝐴 / 2)↑2) ∈ ℤ) | |
38 | 29, 37 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 2)↑2) ∈ ℤ) |
39 | 36, 38 | eqeltrrd 2859 | . . . 4 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℤ) |
40 | 15 | nnrpd 12179 | . . . . . 6 ⊢ (𝜑 → (𝐵↑2) ∈ ℝ+) |
41 | 40 | rphalfcld 12193 | . . . . 5 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℝ+) |
42 | 41 | rpgt0d 12184 | . . . 4 ⊢ (𝜑 → 0 < ((𝐵↑2) / 2)) |
43 | elnnz 11738 | . . . 4 ⊢ (((𝐵↑2) / 2) ∈ ℕ ↔ (((𝐵↑2) / 2) ∈ ℤ ∧ 0 < ((𝐵↑2) / 2))) | |
44 | 39, 42, 43 | sylanbrc 578 | . . 3 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℕ) |
45 | nnesq 13307 | . . . 4 ⊢ (𝐵 ∈ ℕ → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ)) | |
46 | 8, 45 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ)) |
47 | 44, 46 | mpbird 249 | . 2 ⊢ (𝜑 → (𝐵 / 2) ∈ ℕ) |
48 | 29, 47 | jca 507 | 1 ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ≠ wne 2968 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 0cc0 10272 · cmul 10277 < clt 10411 / cdiv 11032 ℕcn 11374 2c2 11430 ℤcz 11728 ↑cexp 13178 √csqrt 14380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-sup 8636 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-z 11729 df-uz 11993 df-rp 12138 df-seq 13120 df-exp 13179 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 |
This theorem is referenced by: sqrt2irr 15382 |
Copyright terms: Public domain | W3C validator |