MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrt2irrlem Structured version   Visualization version   GIF version

Theorem sqrt2irrlem 16159
Description: Lemma for sqrt2irr 16160. This is the core of the proof: if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). This is Metamath 100 proof #1. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) (Proof shortened by JV, 4-Jan-2022.)
Hypotheses
Ref Expression
sqrt2irrlem.1 (𝜑𝐴 ∈ ℤ)
sqrt2irrlem.2 (𝜑𝐵 ∈ ℕ)
sqrt2irrlem.3 (𝜑 → (√‘2) = (𝐴 / 𝐵))
Assertion
Ref Expression
sqrt2irrlem (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))

Proof of Theorem sqrt2irrlem
StepHypRef Expression
1 2cnd 12210 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
21sqsqrtd 15351 . . . . . . . . . . 11 (𝜑 → ((√‘2)↑2) = 2)
3 sqrt2irrlem.3 . . . . . . . . . . . 12 (𝜑 → (√‘2) = (𝐴 / 𝐵))
43oveq1d 7367 . . . . . . . . . . 11 (𝜑 → ((√‘2)↑2) = ((𝐴 / 𝐵)↑2))
52, 4eqtr3d 2770 . . . . . . . . . 10 (𝜑 → 2 = ((𝐴 / 𝐵)↑2))
6 sqrt2irrlem.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
76zcnd 12584 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
8 sqrt2irrlem.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℕ)
98nncnd 12148 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
108nnne0d 12182 . . . . . . . . . . 11 (𝜑𝐵 ≠ 0)
117, 9, 10sqdivd 14068 . . . . . . . . . 10 (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
125, 11eqtrd 2768 . . . . . . . . 9 (𝜑 → 2 = ((𝐴↑2) / (𝐵↑2)))
1312oveq1d 7367 . . . . . . . 8 (𝜑 → (2 · (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)))
147sqcld 14053 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℂ)
158nnsqcld 14153 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℕ)
1615nncnd 12148 . . . . . . . . 9 (𝜑 → (𝐵↑2) ∈ ℂ)
1715nnne0d 12182 . . . . . . . . 9 (𝜑 → (𝐵↑2) ≠ 0)
1814, 16, 17divcan1d 11905 . . . . . . . 8 (𝜑 → (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)) = (𝐴↑2))
1913, 18eqtrd 2768 . . . . . . 7 (𝜑 → (2 · (𝐵↑2)) = (𝐴↑2))
2019oveq1d 7367 . . . . . 6 (𝜑 → ((2 · (𝐵↑2)) / 2) = ((𝐴↑2) / 2))
21 2ne0 12236 . . . . . . . 8 2 ≠ 0
2221a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
2316, 1, 22divcan3d 11909 . . . . . 6 (𝜑 → ((2 · (𝐵↑2)) / 2) = (𝐵↑2))
2420, 23eqtr3d 2770 . . . . 5 (𝜑 → ((𝐴↑2) / 2) = (𝐵↑2))
2524, 15eqeltrd 2833 . . . 4 (𝜑 → ((𝐴↑2) / 2) ∈ ℕ)
2625nnzd 12501 . . 3 (𝜑 → ((𝐴↑2) / 2) ∈ ℤ)
27 zesq 14135 . . . 4 (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ))
286, 27syl 17 . . 3 (𝜑 → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ))
2926, 28mpbird 257 . 2 (𝜑 → (𝐴 / 2) ∈ ℤ)
301sqvald 14052 . . . . . . . 8 (𝜑 → (2↑2) = (2 · 2))
3130oveq2d 7368 . . . . . . 7 (𝜑 → ((𝐴↑2) / (2↑2)) = ((𝐴↑2) / (2 · 2)))
327, 1, 22sqdivd 14068 . . . . . . 7 (𝜑 → ((𝐴 / 2)↑2) = ((𝐴↑2) / (2↑2)))
3314, 1, 1, 22, 22divdiv1d 11935 . . . . . . 7 (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐴↑2) / (2 · 2)))
3431, 32, 333eqtr4d 2778 . . . . . 6 (𝜑 → ((𝐴 / 2)↑2) = (((𝐴↑2) / 2) / 2))
3524oveq1d 7367 . . . . . 6 (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐵↑2) / 2))
3634, 35eqtrd 2768 . . . . 5 (𝜑 → ((𝐴 / 2)↑2) = ((𝐵↑2) / 2))
37 zsqcl 14038 . . . . . 6 ((𝐴 / 2) ∈ ℤ → ((𝐴 / 2)↑2) ∈ ℤ)
3829, 37syl 17 . . . . 5 (𝜑 → ((𝐴 / 2)↑2) ∈ ℤ)
3936, 38eqeltrrd 2834 . . . 4 (𝜑 → ((𝐵↑2) / 2) ∈ ℤ)
4015nnrpd 12934 . . . . . 6 (𝜑 → (𝐵↑2) ∈ ℝ+)
4140rphalfcld 12948 . . . . 5 (𝜑 → ((𝐵↑2) / 2) ∈ ℝ+)
4241rpgt0d 12939 . . . 4 (𝜑 → 0 < ((𝐵↑2) / 2))
43 elnnz 12485 . . . 4 (((𝐵↑2) / 2) ∈ ℕ ↔ (((𝐵↑2) / 2) ∈ ℤ ∧ 0 < ((𝐵↑2) / 2)))
4439, 42, 43sylanbrc 583 . . 3 (𝜑 → ((𝐵↑2) / 2) ∈ ℕ)
45 nnesq 14136 . . . 4 (𝐵 ∈ ℕ → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ))
468, 45syl 17 . . 3 (𝜑 → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ))
4744, 46mpbird 257 . 2 (𝜑 → (𝐵 / 2) ∈ ℕ)
4829, 47jca 511 1 (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5093  cfv 6486  (class class class)co 7352  0cc0 11013   · cmul 11018   < clt 11153   / cdiv 11781  cn 12132  2c2 12187  cz 12475  cexp 13970  csqrt 15142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145
This theorem is referenced by:  sqrt2irr  16160
  Copyright terms: Public domain W3C validator