MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrt2irrlem Structured version   Visualization version   GIF version

Theorem sqrt2irrlem 16280
Description: Lemma for sqrt2irr 16281. This is the core of the proof: if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). This is Metamath 100 proof #1. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) (Proof shortened by JV, 4-Jan-2022.)
Hypotheses
Ref Expression
sqrt2irrlem.1 (𝜑𝐴 ∈ ℤ)
sqrt2irrlem.2 (𝜑𝐵 ∈ ℕ)
sqrt2irrlem.3 (𝜑 → (√‘2) = (𝐴 / 𝐵))
Assertion
Ref Expression
sqrt2irrlem (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))

Proof of Theorem sqrt2irrlem
StepHypRef Expression
1 2cnd 12341 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
21sqsqrtd 15474 . . . . . . . . . . 11 (𝜑 → ((√‘2)↑2) = 2)
3 sqrt2irrlem.3 . . . . . . . . . . . 12 (𝜑 → (√‘2) = (𝐴 / 𝐵))
43oveq1d 7445 . . . . . . . . . . 11 (𝜑 → ((√‘2)↑2) = ((𝐴 / 𝐵)↑2))
52, 4eqtr3d 2776 . . . . . . . . . 10 (𝜑 → 2 = ((𝐴 / 𝐵)↑2))
6 sqrt2irrlem.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
76zcnd 12720 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
8 sqrt2irrlem.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℕ)
98nncnd 12279 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
108nnne0d 12313 . . . . . . . . . . 11 (𝜑𝐵 ≠ 0)
117, 9, 10sqdivd 14195 . . . . . . . . . 10 (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
125, 11eqtrd 2774 . . . . . . . . 9 (𝜑 → 2 = ((𝐴↑2) / (𝐵↑2)))
1312oveq1d 7445 . . . . . . . 8 (𝜑 → (2 · (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)))
147sqcld 14180 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℂ)
158nnsqcld 14279 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℕ)
1615nncnd 12279 . . . . . . . . 9 (𝜑 → (𝐵↑2) ∈ ℂ)
1715nnne0d 12313 . . . . . . . . 9 (𝜑 → (𝐵↑2) ≠ 0)
1814, 16, 17divcan1d 12041 . . . . . . . 8 (𝜑 → (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)) = (𝐴↑2))
1913, 18eqtrd 2774 . . . . . . 7 (𝜑 → (2 · (𝐵↑2)) = (𝐴↑2))
2019oveq1d 7445 . . . . . 6 (𝜑 → ((2 · (𝐵↑2)) / 2) = ((𝐴↑2) / 2))
21 2ne0 12367 . . . . . . . 8 2 ≠ 0
2221a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
2316, 1, 22divcan3d 12045 . . . . . 6 (𝜑 → ((2 · (𝐵↑2)) / 2) = (𝐵↑2))
2420, 23eqtr3d 2776 . . . . 5 (𝜑 → ((𝐴↑2) / 2) = (𝐵↑2))
2524, 15eqeltrd 2838 . . . 4 (𝜑 → ((𝐴↑2) / 2) ∈ ℕ)
2625nnzd 12637 . . 3 (𝜑 → ((𝐴↑2) / 2) ∈ ℤ)
27 zesq 14261 . . . 4 (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ))
286, 27syl 17 . . 3 (𝜑 → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ))
2926, 28mpbird 257 . 2 (𝜑 → (𝐴 / 2) ∈ ℤ)
301sqvald 14179 . . . . . . . 8 (𝜑 → (2↑2) = (2 · 2))
3130oveq2d 7446 . . . . . . 7 (𝜑 → ((𝐴↑2) / (2↑2)) = ((𝐴↑2) / (2 · 2)))
327, 1, 22sqdivd 14195 . . . . . . 7 (𝜑 → ((𝐴 / 2)↑2) = ((𝐴↑2) / (2↑2)))
3314, 1, 1, 22, 22divdiv1d 12071 . . . . . . 7 (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐴↑2) / (2 · 2)))
3431, 32, 333eqtr4d 2784 . . . . . 6 (𝜑 → ((𝐴 / 2)↑2) = (((𝐴↑2) / 2) / 2))
3524oveq1d 7445 . . . . . 6 (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐵↑2) / 2))
3634, 35eqtrd 2774 . . . . 5 (𝜑 → ((𝐴 / 2)↑2) = ((𝐵↑2) / 2))
37 zsqcl 14165 . . . . . 6 ((𝐴 / 2) ∈ ℤ → ((𝐴 / 2)↑2) ∈ ℤ)
3829, 37syl 17 . . . . 5 (𝜑 → ((𝐴 / 2)↑2) ∈ ℤ)
3936, 38eqeltrrd 2839 . . . 4 (𝜑 → ((𝐵↑2) / 2) ∈ ℤ)
4015nnrpd 13072 . . . . . 6 (𝜑 → (𝐵↑2) ∈ ℝ+)
4140rphalfcld 13086 . . . . 5 (𝜑 → ((𝐵↑2) / 2) ∈ ℝ+)
4241rpgt0d 13077 . . . 4 (𝜑 → 0 < ((𝐵↑2) / 2))
43 elnnz 12620 . . . 4 (((𝐵↑2) / 2) ∈ ℕ ↔ (((𝐵↑2) / 2) ∈ ℤ ∧ 0 < ((𝐵↑2) / 2)))
4439, 42, 43sylanbrc 583 . . 3 (𝜑 → ((𝐵↑2) / 2) ∈ ℕ)
45 nnesq 14262 . . . 4 (𝐵 ∈ ℕ → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ))
468, 45syl 17 . . 3 (𝜑 → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ))
4744, 46mpbird 257 . 2 (𝜑 → (𝐵 / 2) ∈ ℕ)
4829, 47jca 511 1 (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147  cfv 6562  (class class class)co 7430  0cc0 11152   · cmul 11157   < clt 11292   / cdiv 11917  cn 12263  2c2 12318  cz 12610  cexp 14098  csqrt 15268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271
This theorem is referenced by:  sqrt2irr  16281
  Copyright terms: Public domain W3C validator