MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrt2irrlem Structured version   Visualization version   GIF version

Theorem sqrt2irrlem 16216
Description: Lemma for sqrt2irr 16217. This is the core of the proof: if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). This is Metamath 100 proof #1. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) (Proof shortened by JV, 4-Jan-2022.)
Hypotheses
Ref Expression
sqrt2irrlem.1 (𝜑𝐴 ∈ ℤ)
sqrt2irrlem.2 (𝜑𝐵 ∈ ℕ)
sqrt2irrlem.3 (𝜑 → (√‘2) = (𝐴 / 𝐵))
Assertion
Ref Expression
sqrt2irrlem (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))

Proof of Theorem sqrt2irrlem
StepHypRef Expression
1 2cnd 12264 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
21sqsqrtd 15408 . . . . . . . . . . 11 (𝜑 → ((√‘2)↑2) = 2)
3 sqrt2irrlem.3 . . . . . . . . . . . 12 (𝜑 → (√‘2) = (𝐴 / 𝐵))
43oveq1d 7402 . . . . . . . . . . 11 (𝜑 → ((√‘2)↑2) = ((𝐴 / 𝐵)↑2))
52, 4eqtr3d 2766 . . . . . . . . . 10 (𝜑 → 2 = ((𝐴 / 𝐵)↑2))
6 sqrt2irrlem.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
76zcnd 12639 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
8 sqrt2irrlem.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℕ)
98nncnd 12202 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
108nnne0d 12236 . . . . . . . . . . 11 (𝜑𝐵 ≠ 0)
117, 9, 10sqdivd 14124 . . . . . . . . . 10 (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
125, 11eqtrd 2764 . . . . . . . . 9 (𝜑 → 2 = ((𝐴↑2) / (𝐵↑2)))
1312oveq1d 7402 . . . . . . . 8 (𝜑 → (2 · (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)))
147sqcld 14109 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℂ)
158nnsqcld 14209 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℕ)
1615nncnd 12202 . . . . . . . . 9 (𝜑 → (𝐵↑2) ∈ ℂ)
1715nnne0d 12236 . . . . . . . . 9 (𝜑 → (𝐵↑2) ≠ 0)
1814, 16, 17divcan1d 11959 . . . . . . . 8 (𝜑 → (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)) = (𝐴↑2))
1913, 18eqtrd 2764 . . . . . . 7 (𝜑 → (2 · (𝐵↑2)) = (𝐴↑2))
2019oveq1d 7402 . . . . . 6 (𝜑 → ((2 · (𝐵↑2)) / 2) = ((𝐴↑2) / 2))
21 2ne0 12290 . . . . . . . 8 2 ≠ 0
2221a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
2316, 1, 22divcan3d 11963 . . . . . 6 (𝜑 → ((2 · (𝐵↑2)) / 2) = (𝐵↑2))
2420, 23eqtr3d 2766 . . . . 5 (𝜑 → ((𝐴↑2) / 2) = (𝐵↑2))
2524, 15eqeltrd 2828 . . . 4 (𝜑 → ((𝐴↑2) / 2) ∈ ℕ)
2625nnzd 12556 . . 3 (𝜑 → ((𝐴↑2) / 2) ∈ ℤ)
27 zesq 14191 . . . 4 (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ))
286, 27syl 17 . . 3 (𝜑 → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ))
2926, 28mpbird 257 . 2 (𝜑 → (𝐴 / 2) ∈ ℤ)
301sqvald 14108 . . . . . . . 8 (𝜑 → (2↑2) = (2 · 2))
3130oveq2d 7403 . . . . . . 7 (𝜑 → ((𝐴↑2) / (2↑2)) = ((𝐴↑2) / (2 · 2)))
327, 1, 22sqdivd 14124 . . . . . . 7 (𝜑 → ((𝐴 / 2)↑2) = ((𝐴↑2) / (2↑2)))
3314, 1, 1, 22, 22divdiv1d 11989 . . . . . . 7 (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐴↑2) / (2 · 2)))
3431, 32, 333eqtr4d 2774 . . . . . 6 (𝜑 → ((𝐴 / 2)↑2) = (((𝐴↑2) / 2) / 2))
3524oveq1d 7402 . . . . . 6 (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐵↑2) / 2))
3634, 35eqtrd 2764 . . . . 5 (𝜑 → ((𝐴 / 2)↑2) = ((𝐵↑2) / 2))
37 zsqcl 14094 . . . . . 6 ((𝐴 / 2) ∈ ℤ → ((𝐴 / 2)↑2) ∈ ℤ)
3829, 37syl 17 . . . . 5 (𝜑 → ((𝐴 / 2)↑2) ∈ ℤ)
3936, 38eqeltrrd 2829 . . . 4 (𝜑 → ((𝐵↑2) / 2) ∈ ℤ)
4015nnrpd 12993 . . . . . 6 (𝜑 → (𝐵↑2) ∈ ℝ+)
4140rphalfcld 13007 . . . . 5 (𝜑 → ((𝐵↑2) / 2) ∈ ℝ+)
4241rpgt0d 12998 . . . 4 (𝜑 → 0 < ((𝐵↑2) / 2))
43 elnnz 12539 . . . 4 (((𝐵↑2) / 2) ∈ ℕ ↔ (((𝐵↑2) / 2) ∈ ℤ ∧ 0 < ((𝐵↑2) / 2)))
4439, 42, 43sylanbrc 583 . . 3 (𝜑 → ((𝐵↑2) / 2) ∈ ℕ)
45 nnesq 14192 . . . 4 (𝐵 ∈ ℕ → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ))
468, 45syl 17 . . 3 (𝜑 → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ))
4744, 46mpbird 257 . 2 (𝜑 → (𝐵 / 2) ∈ ℕ)
4829, 47jca 511 1 (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  0cc0 11068   · cmul 11073   < clt 11208   / cdiv 11835  cn 12186  2c2 12241  cz 12529  cexp 14026  csqrt 15199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202
This theorem is referenced by:  sqrt2irr  16217
  Copyright terms: Public domain W3C validator