![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqrt2irrlem | Structured version Visualization version GIF version |
Description: Lemma for sqrt2irr 16297. This is the core of the proof: if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). This is Metamath 100 proof #1. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) (Proof shortened by JV, 4-Jan-2022.) |
Ref | Expression |
---|---|
sqrt2irrlem.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
sqrt2irrlem.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
sqrt2irrlem.3 | ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) |
Ref | Expression |
---|---|
sqrt2irrlem | ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cnd 12371 | . . . . . . . . . . . 12 ⊢ (𝜑 → 2 ∈ ℂ) | |
2 | 1 | sqsqrtd 15488 | . . . . . . . . . . 11 ⊢ (𝜑 → ((√‘2)↑2) = 2) |
3 | sqrt2irrlem.3 | . . . . . . . . . . . 12 ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) | |
4 | 3 | oveq1d 7463 | . . . . . . . . . . 11 ⊢ (𝜑 → ((√‘2)↑2) = ((𝐴 / 𝐵)↑2)) |
5 | 2, 4 | eqtr3d 2782 | . . . . . . . . . 10 ⊢ (𝜑 → 2 = ((𝐴 / 𝐵)↑2)) |
6 | sqrt2irrlem.1 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
7 | 6 | zcnd 12748 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
8 | sqrt2irrlem.2 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
9 | 8 | nncnd 12309 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
10 | 8 | nnne0d 12343 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ≠ 0) |
11 | 7, 9, 10 | sqdivd 14209 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) |
12 | 5, 11 | eqtrd 2780 | . . . . . . . . 9 ⊢ (𝜑 → 2 = ((𝐴↑2) / (𝐵↑2))) |
13 | 12 | oveq1d 7463 | . . . . . . . 8 ⊢ (𝜑 → (2 · (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2))) |
14 | 7 | sqcld 14194 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
15 | 8 | nnsqcld 14293 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
16 | 15 | nncnd 12309 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵↑2) ∈ ℂ) |
17 | 15 | nnne0d 12343 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵↑2) ≠ 0) |
18 | 14, 16, 17 | divcan1d 12071 | . . . . . . . 8 ⊢ (𝜑 → (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)) = (𝐴↑2)) |
19 | 13, 18 | eqtrd 2780 | . . . . . . 7 ⊢ (𝜑 → (2 · (𝐵↑2)) = (𝐴↑2)) |
20 | 19 | oveq1d 7463 | . . . . . 6 ⊢ (𝜑 → ((2 · (𝐵↑2)) / 2) = ((𝐴↑2) / 2)) |
21 | 2ne0 12397 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 ≠ 0) |
23 | 16, 1, 22 | divcan3d 12075 | . . . . . 6 ⊢ (𝜑 → ((2 · (𝐵↑2)) / 2) = (𝐵↑2)) |
24 | 20, 23 | eqtr3d 2782 | . . . . 5 ⊢ (𝜑 → ((𝐴↑2) / 2) = (𝐵↑2)) |
25 | 24, 15 | eqeltrd 2844 | . . . 4 ⊢ (𝜑 → ((𝐴↑2) / 2) ∈ ℕ) |
26 | 25 | nnzd 12666 | . . 3 ⊢ (𝜑 → ((𝐴↑2) / 2) ∈ ℤ) |
27 | zesq 14275 | . . . 4 ⊢ (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ)) | |
28 | 6, 27 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ)) |
29 | 26, 28 | mpbird 257 | . 2 ⊢ (𝜑 → (𝐴 / 2) ∈ ℤ) |
30 | 1 | sqvald 14193 | . . . . . . . 8 ⊢ (𝜑 → (2↑2) = (2 · 2)) |
31 | 30 | oveq2d 7464 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑2) / (2↑2)) = ((𝐴↑2) / (2 · 2))) |
32 | 7, 1, 22 | sqdivd 14209 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 / 2)↑2) = ((𝐴↑2) / (2↑2))) |
33 | 14, 1, 1, 22, 22 | divdiv1d 12101 | . . . . . . 7 ⊢ (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐴↑2) / (2 · 2))) |
34 | 31, 32, 33 | 3eqtr4d 2790 | . . . . . 6 ⊢ (𝜑 → ((𝐴 / 2)↑2) = (((𝐴↑2) / 2) / 2)) |
35 | 24 | oveq1d 7463 | . . . . . 6 ⊢ (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐵↑2) / 2)) |
36 | 34, 35 | eqtrd 2780 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 2)↑2) = ((𝐵↑2) / 2)) |
37 | zsqcl 14179 | . . . . . 6 ⊢ ((𝐴 / 2) ∈ ℤ → ((𝐴 / 2)↑2) ∈ ℤ) | |
38 | 29, 37 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 2)↑2) ∈ ℤ) |
39 | 36, 38 | eqeltrrd 2845 | . . . 4 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℤ) |
40 | 15 | nnrpd 13097 | . . . . . 6 ⊢ (𝜑 → (𝐵↑2) ∈ ℝ+) |
41 | 40 | rphalfcld 13111 | . . . . 5 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℝ+) |
42 | 41 | rpgt0d 13102 | . . . 4 ⊢ (𝜑 → 0 < ((𝐵↑2) / 2)) |
43 | elnnz 12649 | . . . 4 ⊢ (((𝐵↑2) / 2) ∈ ℕ ↔ (((𝐵↑2) / 2) ∈ ℤ ∧ 0 < ((𝐵↑2) / 2))) | |
44 | 39, 42, 43 | sylanbrc 582 | . . 3 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℕ) |
45 | nnesq 14276 | . . . 4 ⊢ (𝐵 ∈ ℕ → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ)) | |
46 | 8, 45 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ)) |
47 | 44, 46 | mpbird 257 | . 2 ⊢ (𝜑 → (𝐵 / 2) ∈ ℕ) |
48 | 29, 47 | jca 511 | 1 ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 0cc0 11184 · cmul 11189 < clt 11324 / cdiv 11947 ℕcn 12293 2c2 12348 ℤcz 12639 ↑cexp 14112 √csqrt 15282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 |
This theorem is referenced by: sqrt2irr 16297 |
Copyright terms: Public domain | W3C validator |