MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrt2irrlem Structured version   Visualization version   GIF version

Theorem sqrt2irrlem 15955
Description: Lemma for sqrt2irr 15956. This is the core of the proof: if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). This is Metamath 100 proof #1. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) (Proof shortened by JV, 4-Jan-2022.)
Hypotheses
Ref Expression
sqrt2irrlem.1 (𝜑𝐴 ∈ ℤ)
sqrt2irrlem.2 (𝜑𝐵 ∈ ℕ)
sqrt2irrlem.3 (𝜑 → (√‘2) = (𝐴 / 𝐵))
Assertion
Ref Expression
sqrt2irrlem (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))

Proof of Theorem sqrt2irrlem
StepHypRef Expression
1 2cnd 12051 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
21sqsqrtd 15149 . . . . . . . . . . 11 (𝜑 → ((√‘2)↑2) = 2)
3 sqrt2irrlem.3 . . . . . . . . . . . 12 (𝜑 → (√‘2) = (𝐴 / 𝐵))
43oveq1d 7286 . . . . . . . . . . 11 (𝜑 → ((√‘2)↑2) = ((𝐴 / 𝐵)↑2))
52, 4eqtr3d 2782 . . . . . . . . . 10 (𝜑 → 2 = ((𝐴 / 𝐵)↑2))
6 sqrt2irrlem.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
76zcnd 12426 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
8 sqrt2irrlem.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℕ)
98nncnd 11989 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
108nnne0d 12023 . . . . . . . . . . 11 (𝜑𝐵 ≠ 0)
117, 9, 10sqdivd 13875 . . . . . . . . . 10 (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
125, 11eqtrd 2780 . . . . . . . . 9 (𝜑 → 2 = ((𝐴↑2) / (𝐵↑2)))
1312oveq1d 7286 . . . . . . . 8 (𝜑 → (2 · (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)))
147sqcld 13860 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℂ)
158nnsqcld 13957 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℕ)
1615nncnd 11989 . . . . . . . . 9 (𝜑 → (𝐵↑2) ∈ ℂ)
1715nnne0d 12023 . . . . . . . . 9 (𝜑 → (𝐵↑2) ≠ 0)
1814, 16, 17divcan1d 11752 . . . . . . . 8 (𝜑 → (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)) = (𝐴↑2))
1913, 18eqtrd 2780 . . . . . . 7 (𝜑 → (2 · (𝐵↑2)) = (𝐴↑2))
2019oveq1d 7286 . . . . . 6 (𝜑 → ((2 · (𝐵↑2)) / 2) = ((𝐴↑2) / 2))
21 2ne0 12077 . . . . . . . 8 2 ≠ 0
2221a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
2316, 1, 22divcan3d 11756 . . . . . 6 (𝜑 → ((2 · (𝐵↑2)) / 2) = (𝐵↑2))
2420, 23eqtr3d 2782 . . . . 5 (𝜑 → ((𝐴↑2) / 2) = (𝐵↑2))
2524, 15eqeltrd 2841 . . . 4 (𝜑 → ((𝐴↑2) / 2) ∈ ℕ)
2625nnzd 12424 . . 3 (𝜑 → ((𝐴↑2) / 2) ∈ ℤ)
27 zesq 13939 . . . 4 (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ))
286, 27syl 17 . . 3 (𝜑 → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ))
2926, 28mpbird 256 . 2 (𝜑 → (𝐴 / 2) ∈ ℤ)
301sqvald 13859 . . . . . . . 8 (𝜑 → (2↑2) = (2 · 2))
3130oveq2d 7287 . . . . . . 7 (𝜑 → ((𝐴↑2) / (2↑2)) = ((𝐴↑2) / (2 · 2)))
327, 1, 22sqdivd 13875 . . . . . . 7 (𝜑 → ((𝐴 / 2)↑2) = ((𝐴↑2) / (2↑2)))
3314, 1, 1, 22, 22divdiv1d 11782 . . . . . . 7 (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐴↑2) / (2 · 2)))
3431, 32, 333eqtr4d 2790 . . . . . 6 (𝜑 → ((𝐴 / 2)↑2) = (((𝐴↑2) / 2) / 2))
3524oveq1d 7286 . . . . . 6 (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐵↑2) / 2))
3634, 35eqtrd 2780 . . . . 5 (𝜑 → ((𝐴 / 2)↑2) = ((𝐵↑2) / 2))
37 zsqcl 13846 . . . . . 6 ((𝐴 / 2) ∈ ℤ → ((𝐴 / 2)↑2) ∈ ℤ)
3829, 37syl 17 . . . . 5 (𝜑 → ((𝐴 / 2)↑2) ∈ ℤ)
3936, 38eqeltrrd 2842 . . . 4 (𝜑 → ((𝐵↑2) / 2) ∈ ℤ)
4015nnrpd 12769 . . . . . 6 (𝜑 → (𝐵↑2) ∈ ℝ+)
4140rphalfcld 12783 . . . . 5 (𝜑 → ((𝐵↑2) / 2) ∈ ℝ+)
4241rpgt0d 12774 . . . 4 (𝜑 → 0 < ((𝐵↑2) / 2))
43 elnnz 12329 . . . 4 (((𝐵↑2) / 2) ∈ ℕ ↔ (((𝐵↑2) / 2) ∈ ℤ ∧ 0 < ((𝐵↑2) / 2)))
4439, 42, 43sylanbrc 583 . . 3 (𝜑 → ((𝐵↑2) / 2) ∈ ℕ)
45 nnesq 13940 . . . 4 (𝐵 ∈ ℕ → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ))
468, 45syl 17 . . 3 (𝜑 → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ))
4744, 46mpbird 256 . 2 (𝜑 → (𝐵 / 2) ∈ ℕ)
4829, 47jca 512 1 (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  cfv 6432  (class class class)co 7271  0cc0 10872   · cmul 10877   < clt 11010   / cdiv 11632  cn 11973  2c2 12028  cz 12319  cexp 13780  csqrt 14942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-sup 9179  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-seq 13720  df-exp 13781  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945
This theorem is referenced by:  sqrt2irr  15956
  Copyright terms: Public domain W3C validator