| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqrt2irrlem | Structured version Visualization version GIF version | ||
| Description: Lemma for sqrt2irr 16155. This is the core of the proof: if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). This is Metamath 100 proof #1. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) (Proof shortened by JV, 4-Jan-2022.) |
| Ref | Expression |
|---|---|
| sqrt2irrlem.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| sqrt2irrlem.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| sqrt2irrlem.3 | ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) |
| Ref | Expression |
|---|---|
| sqrt2irrlem | ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cnd 12200 | . . . . . . . . . . . 12 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 2 | 1 | sqsqrtd 15346 | . . . . . . . . . . 11 ⊢ (𝜑 → ((√‘2)↑2) = 2) |
| 3 | sqrt2irrlem.3 | . . . . . . . . . . . 12 ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) | |
| 4 | 3 | oveq1d 7361 | . . . . . . . . . . 11 ⊢ (𝜑 → ((√‘2)↑2) = ((𝐴 / 𝐵)↑2)) |
| 5 | 2, 4 | eqtr3d 2768 | . . . . . . . . . 10 ⊢ (𝜑 → 2 = ((𝐴 / 𝐵)↑2)) |
| 6 | sqrt2irrlem.1 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 7 | 6 | zcnd 12575 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 8 | sqrt2irrlem.2 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 9 | 8 | nncnd 12138 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 10 | 8 | nnne0d 12172 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ≠ 0) |
| 11 | 7, 9, 10 | sqdivd 14063 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) |
| 12 | 5, 11 | eqtrd 2766 | . . . . . . . . 9 ⊢ (𝜑 → 2 = ((𝐴↑2) / (𝐵↑2))) |
| 13 | 12 | oveq1d 7361 | . . . . . . . 8 ⊢ (𝜑 → (2 · (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2))) |
| 14 | 7 | sqcld 14048 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
| 15 | 8 | nnsqcld 14148 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
| 16 | 15 | nncnd 12138 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵↑2) ∈ ℂ) |
| 17 | 15 | nnne0d 12172 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵↑2) ≠ 0) |
| 18 | 14, 16, 17 | divcan1d 11895 | . . . . . . . 8 ⊢ (𝜑 → (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)) = (𝐴↑2)) |
| 19 | 13, 18 | eqtrd 2766 | . . . . . . 7 ⊢ (𝜑 → (2 · (𝐵↑2)) = (𝐴↑2)) |
| 20 | 19 | oveq1d 7361 | . . . . . 6 ⊢ (𝜑 → ((2 · (𝐵↑2)) / 2) = ((𝐴↑2) / 2)) |
| 21 | 2ne0 12226 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
| 22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 ≠ 0) |
| 23 | 16, 1, 22 | divcan3d 11899 | . . . . . 6 ⊢ (𝜑 → ((2 · (𝐵↑2)) / 2) = (𝐵↑2)) |
| 24 | 20, 23 | eqtr3d 2768 | . . . . 5 ⊢ (𝜑 → ((𝐴↑2) / 2) = (𝐵↑2)) |
| 25 | 24, 15 | eqeltrd 2831 | . . . 4 ⊢ (𝜑 → ((𝐴↑2) / 2) ∈ ℕ) |
| 26 | 25 | nnzd 12492 | . . 3 ⊢ (𝜑 → ((𝐴↑2) / 2) ∈ ℤ) |
| 27 | zesq 14130 | . . . 4 ⊢ (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ)) | |
| 28 | 6, 27 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ)) |
| 29 | 26, 28 | mpbird 257 | . 2 ⊢ (𝜑 → (𝐴 / 2) ∈ ℤ) |
| 30 | 1 | sqvald 14047 | . . . . . . . 8 ⊢ (𝜑 → (2↑2) = (2 · 2)) |
| 31 | 30 | oveq2d 7362 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑2) / (2↑2)) = ((𝐴↑2) / (2 · 2))) |
| 32 | 7, 1, 22 | sqdivd 14063 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 / 2)↑2) = ((𝐴↑2) / (2↑2))) |
| 33 | 14, 1, 1, 22, 22 | divdiv1d 11925 | . . . . . . 7 ⊢ (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐴↑2) / (2 · 2))) |
| 34 | 31, 32, 33 | 3eqtr4d 2776 | . . . . . 6 ⊢ (𝜑 → ((𝐴 / 2)↑2) = (((𝐴↑2) / 2) / 2)) |
| 35 | 24 | oveq1d 7361 | . . . . . 6 ⊢ (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐵↑2) / 2)) |
| 36 | 34, 35 | eqtrd 2766 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 2)↑2) = ((𝐵↑2) / 2)) |
| 37 | zsqcl 14033 | . . . . . 6 ⊢ ((𝐴 / 2) ∈ ℤ → ((𝐴 / 2)↑2) ∈ ℤ) | |
| 38 | 29, 37 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 2)↑2) ∈ ℤ) |
| 39 | 36, 38 | eqeltrrd 2832 | . . . 4 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℤ) |
| 40 | 15 | nnrpd 12929 | . . . . . 6 ⊢ (𝜑 → (𝐵↑2) ∈ ℝ+) |
| 41 | 40 | rphalfcld 12943 | . . . . 5 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℝ+) |
| 42 | 41 | rpgt0d 12934 | . . . 4 ⊢ (𝜑 → 0 < ((𝐵↑2) / 2)) |
| 43 | elnnz 12475 | . . . 4 ⊢ (((𝐵↑2) / 2) ∈ ℕ ↔ (((𝐵↑2) / 2) ∈ ℤ ∧ 0 < ((𝐵↑2) / 2))) | |
| 44 | 39, 42, 43 | sylanbrc 583 | . . 3 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℕ) |
| 45 | nnesq 14131 | . . . 4 ⊢ (𝐵 ∈ ℕ → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ)) | |
| 46 | 8, 45 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ)) |
| 47 | 44, 46 | mpbird 257 | . 2 ⊢ (𝜑 → (𝐵 / 2) ∈ ℕ) |
| 48 | 29, 47 | jca 511 | 1 ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 0cc0 11003 · cmul 11008 < clt 11143 / cdiv 11771 ℕcn 12122 2c2 12177 ℤcz 12465 ↑cexp 13965 √csqrt 15137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-z 12466 df-uz 12730 df-rp 12888 df-seq 13906 df-exp 13966 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 |
| This theorem is referenced by: sqrt2irr 16155 |
| Copyright terms: Public domain | W3C validator |