| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqrt2irrlem | Structured version Visualization version GIF version | ||
| Description: Lemma for sqrt2irr 16267. This is the core of the proof: if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). This is Metamath 100 proof #1. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) (Proof shortened by JV, 4-Jan-2022.) |
| Ref | Expression |
|---|---|
| sqrt2irrlem.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| sqrt2irrlem.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| sqrt2irrlem.3 | ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) |
| Ref | Expression |
|---|---|
| sqrt2irrlem | ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cnd 12318 | . . . . . . . . . . . 12 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 2 | 1 | sqsqrtd 15458 | . . . . . . . . . . 11 ⊢ (𝜑 → ((√‘2)↑2) = 2) |
| 3 | sqrt2irrlem.3 | . . . . . . . . . . . 12 ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) | |
| 4 | 3 | oveq1d 7420 | . . . . . . . . . . 11 ⊢ (𝜑 → ((√‘2)↑2) = ((𝐴 / 𝐵)↑2)) |
| 5 | 2, 4 | eqtr3d 2772 | . . . . . . . . . 10 ⊢ (𝜑 → 2 = ((𝐴 / 𝐵)↑2)) |
| 6 | sqrt2irrlem.1 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 7 | 6 | zcnd 12698 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 8 | sqrt2irrlem.2 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 9 | 8 | nncnd 12256 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 10 | 8 | nnne0d 12290 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ≠ 0) |
| 11 | 7, 9, 10 | sqdivd 14177 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) |
| 12 | 5, 11 | eqtrd 2770 | . . . . . . . . 9 ⊢ (𝜑 → 2 = ((𝐴↑2) / (𝐵↑2))) |
| 13 | 12 | oveq1d 7420 | . . . . . . . 8 ⊢ (𝜑 → (2 · (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2))) |
| 14 | 7 | sqcld 14162 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
| 15 | 8 | nnsqcld 14262 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
| 16 | 15 | nncnd 12256 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵↑2) ∈ ℂ) |
| 17 | 15 | nnne0d 12290 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵↑2) ≠ 0) |
| 18 | 14, 16, 17 | divcan1d 12018 | . . . . . . . 8 ⊢ (𝜑 → (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)) = (𝐴↑2)) |
| 19 | 13, 18 | eqtrd 2770 | . . . . . . 7 ⊢ (𝜑 → (2 · (𝐵↑2)) = (𝐴↑2)) |
| 20 | 19 | oveq1d 7420 | . . . . . 6 ⊢ (𝜑 → ((2 · (𝐵↑2)) / 2) = ((𝐴↑2) / 2)) |
| 21 | 2ne0 12344 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
| 22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 ≠ 0) |
| 23 | 16, 1, 22 | divcan3d 12022 | . . . . . 6 ⊢ (𝜑 → ((2 · (𝐵↑2)) / 2) = (𝐵↑2)) |
| 24 | 20, 23 | eqtr3d 2772 | . . . . 5 ⊢ (𝜑 → ((𝐴↑2) / 2) = (𝐵↑2)) |
| 25 | 24, 15 | eqeltrd 2834 | . . . 4 ⊢ (𝜑 → ((𝐴↑2) / 2) ∈ ℕ) |
| 26 | 25 | nnzd 12615 | . . 3 ⊢ (𝜑 → ((𝐴↑2) / 2) ∈ ℤ) |
| 27 | zesq 14244 | . . . 4 ⊢ (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ)) | |
| 28 | 6, 27 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ)) |
| 29 | 26, 28 | mpbird 257 | . 2 ⊢ (𝜑 → (𝐴 / 2) ∈ ℤ) |
| 30 | 1 | sqvald 14161 | . . . . . . . 8 ⊢ (𝜑 → (2↑2) = (2 · 2)) |
| 31 | 30 | oveq2d 7421 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑2) / (2↑2)) = ((𝐴↑2) / (2 · 2))) |
| 32 | 7, 1, 22 | sqdivd 14177 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 / 2)↑2) = ((𝐴↑2) / (2↑2))) |
| 33 | 14, 1, 1, 22, 22 | divdiv1d 12048 | . . . . . . 7 ⊢ (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐴↑2) / (2 · 2))) |
| 34 | 31, 32, 33 | 3eqtr4d 2780 | . . . . . 6 ⊢ (𝜑 → ((𝐴 / 2)↑2) = (((𝐴↑2) / 2) / 2)) |
| 35 | 24 | oveq1d 7420 | . . . . . 6 ⊢ (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐵↑2) / 2)) |
| 36 | 34, 35 | eqtrd 2770 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 2)↑2) = ((𝐵↑2) / 2)) |
| 37 | zsqcl 14147 | . . . . . 6 ⊢ ((𝐴 / 2) ∈ ℤ → ((𝐴 / 2)↑2) ∈ ℤ) | |
| 38 | 29, 37 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 2)↑2) ∈ ℤ) |
| 39 | 36, 38 | eqeltrrd 2835 | . . . 4 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℤ) |
| 40 | 15 | nnrpd 13049 | . . . . . 6 ⊢ (𝜑 → (𝐵↑2) ∈ ℝ+) |
| 41 | 40 | rphalfcld 13063 | . . . . 5 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℝ+) |
| 42 | 41 | rpgt0d 13054 | . . . 4 ⊢ (𝜑 → 0 < ((𝐵↑2) / 2)) |
| 43 | elnnz 12598 | . . . 4 ⊢ (((𝐵↑2) / 2) ∈ ℕ ↔ (((𝐵↑2) / 2) ∈ ℤ ∧ 0 < ((𝐵↑2) / 2))) | |
| 44 | 39, 42, 43 | sylanbrc 583 | . . 3 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℕ) |
| 45 | nnesq 14245 | . . . 4 ⊢ (𝐵 ∈ ℕ → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ)) | |
| 46 | 8, 45 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ)) |
| 47 | 44, 46 | mpbird 257 | . 2 ⊢ (𝜑 → (𝐵 / 2) ∈ ℕ) |
| 48 | 29, 47 | jca 511 | 1 ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 0cc0 11129 · cmul 11134 < clt 11269 / cdiv 11894 ℕcn 12240 2c2 12295 ℤcz 12588 ↑cexp 14079 √csqrt 15252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 |
| This theorem is referenced by: sqrt2irr 16267 |
| Copyright terms: Public domain | W3C validator |