MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrt2irrlem Structured version   Visualization version   GIF version

Theorem sqrt2irrlem 16154
Description: Lemma for sqrt2irr 16155. This is the core of the proof: if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). This is Metamath 100 proof #1. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) (Proof shortened by JV, 4-Jan-2022.)
Hypotheses
Ref Expression
sqrt2irrlem.1 (𝜑𝐴 ∈ ℤ)
sqrt2irrlem.2 (𝜑𝐵 ∈ ℕ)
sqrt2irrlem.3 (𝜑 → (√‘2) = (𝐴 / 𝐵))
Assertion
Ref Expression
sqrt2irrlem (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))

Proof of Theorem sqrt2irrlem
StepHypRef Expression
1 2cnd 12200 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
21sqsqrtd 15346 . . . . . . . . . . 11 (𝜑 → ((√‘2)↑2) = 2)
3 sqrt2irrlem.3 . . . . . . . . . . . 12 (𝜑 → (√‘2) = (𝐴 / 𝐵))
43oveq1d 7361 . . . . . . . . . . 11 (𝜑 → ((√‘2)↑2) = ((𝐴 / 𝐵)↑2))
52, 4eqtr3d 2768 . . . . . . . . . 10 (𝜑 → 2 = ((𝐴 / 𝐵)↑2))
6 sqrt2irrlem.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
76zcnd 12575 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
8 sqrt2irrlem.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℕ)
98nncnd 12138 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
108nnne0d 12172 . . . . . . . . . . 11 (𝜑𝐵 ≠ 0)
117, 9, 10sqdivd 14063 . . . . . . . . . 10 (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
125, 11eqtrd 2766 . . . . . . . . 9 (𝜑 → 2 = ((𝐴↑2) / (𝐵↑2)))
1312oveq1d 7361 . . . . . . . 8 (𝜑 → (2 · (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)))
147sqcld 14048 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℂ)
158nnsqcld 14148 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℕ)
1615nncnd 12138 . . . . . . . . 9 (𝜑 → (𝐵↑2) ∈ ℂ)
1715nnne0d 12172 . . . . . . . . 9 (𝜑 → (𝐵↑2) ≠ 0)
1814, 16, 17divcan1d 11895 . . . . . . . 8 (𝜑 → (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)) = (𝐴↑2))
1913, 18eqtrd 2766 . . . . . . 7 (𝜑 → (2 · (𝐵↑2)) = (𝐴↑2))
2019oveq1d 7361 . . . . . 6 (𝜑 → ((2 · (𝐵↑2)) / 2) = ((𝐴↑2) / 2))
21 2ne0 12226 . . . . . . . 8 2 ≠ 0
2221a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
2316, 1, 22divcan3d 11899 . . . . . 6 (𝜑 → ((2 · (𝐵↑2)) / 2) = (𝐵↑2))
2420, 23eqtr3d 2768 . . . . 5 (𝜑 → ((𝐴↑2) / 2) = (𝐵↑2))
2524, 15eqeltrd 2831 . . . 4 (𝜑 → ((𝐴↑2) / 2) ∈ ℕ)
2625nnzd 12492 . . 3 (𝜑 → ((𝐴↑2) / 2) ∈ ℤ)
27 zesq 14130 . . . 4 (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ))
286, 27syl 17 . . 3 (𝜑 → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ))
2926, 28mpbird 257 . 2 (𝜑 → (𝐴 / 2) ∈ ℤ)
301sqvald 14047 . . . . . . . 8 (𝜑 → (2↑2) = (2 · 2))
3130oveq2d 7362 . . . . . . 7 (𝜑 → ((𝐴↑2) / (2↑2)) = ((𝐴↑2) / (2 · 2)))
327, 1, 22sqdivd 14063 . . . . . . 7 (𝜑 → ((𝐴 / 2)↑2) = ((𝐴↑2) / (2↑2)))
3314, 1, 1, 22, 22divdiv1d 11925 . . . . . . 7 (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐴↑2) / (2 · 2)))
3431, 32, 333eqtr4d 2776 . . . . . 6 (𝜑 → ((𝐴 / 2)↑2) = (((𝐴↑2) / 2) / 2))
3524oveq1d 7361 . . . . . 6 (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐵↑2) / 2))
3634, 35eqtrd 2766 . . . . 5 (𝜑 → ((𝐴 / 2)↑2) = ((𝐵↑2) / 2))
37 zsqcl 14033 . . . . . 6 ((𝐴 / 2) ∈ ℤ → ((𝐴 / 2)↑2) ∈ ℤ)
3829, 37syl 17 . . . . 5 (𝜑 → ((𝐴 / 2)↑2) ∈ ℤ)
3936, 38eqeltrrd 2832 . . . 4 (𝜑 → ((𝐵↑2) / 2) ∈ ℤ)
4015nnrpd 12929 . . . . . 6 (𝜑 → (𝐵↑2) ∈ ℝ+)
4140rphalfcld 12943 . . . . 5 (𝜑 → ((𝐵↑2) / 2) ∈ ℝ+)
4241rpgt0d 12934 . . . 4 (𝜑 → 0 < ((𝐵↑2) / 2))
43 elnnz 12475 . . . 4 (((𝐵↑2) / 2) ∈ ℕ ↔ (((𝐵↑2) / 2) ∈ ℤ ∧ 0 < ((𝐵↑2) / 2)))
4439, 42, 43sylanbrc 583 . . 3 (𝜑 → ((𝐵↑2) / 2) ∈ ℕ)
45 nnesq 14131 . . . 4 (𝐵 ∈ ℕ → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ))
468, 45syl 17 . . 3 (𝜑 → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ))
4744, 46mpbird 257 . 2 (𝜑 → (𝐵 / 2) ∈ ℕ)
4829, 47jca 511 1 (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  (class class class)co 7346  0cc0 11003   · cmul 11008   < clt 11143   / cdiv 11771  cn 12122  2c2 12177  cz 12465  cexp 13965  csqrt 15137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140
This theorem is referenced by:  sqrt2irr  16155
  Copyright terms: Public domain W3C validator