| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqrt2irrlem | Structured version Visualization version GIF version | ||
| Description: Lemma for sqrt2irr 16223. This is the core of the proof: if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). This is Metamath 100 proof #1. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) (Proof shortened by JV, 4-Jan-2022.) |
| Ref | Expression |
|---|---|
| sqrt2irrlem.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| sqrt2irrlem.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| sqrt2irrlem.3 | ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) |
| Ref | Expression |
|---|---|
| sqrt2irrlem | ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cnd 12265 | . . . . . . . . . . . 12 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 2 | 1 | sqsqrtd 15414 | . . . . . . . . . . 11 ⊢ (𝜑 → ((√‘2)↑2) = 2) |
| 3 | sqrt2irrlem.3 | . . . . . . . . . . . 12 ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) | |
| 4 | 3 | oveq1d 7404 | . . . . . . . . . . 11 ⊢ (𝜑 → ((√‘2)↑2) = ((𝐴 / 𝐵)↑2)) |
| 5 | 2, 4 | eqtr3d 2767 | . . . . . . . . . 10 ⊢ (𝜑 → 2 = ((𝐴 / 𝐵)↑2)) |
| 6 | sqrt2irrlem.1 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 7 | 6 | zcnd 12645 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 8 | sqrt2irrlem.2 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 9 | 8 | nncnd 12203 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 10 | 8 | nnne0d 12237 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ≠ 0) |
| 11 | 7, 9, 10 | sqdivd 14130 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) |
| 12 | 5, 11 | eqtrd 2765 | . . . . . . . . 9 ⊢ (𝜑 → 2 = ((𝐴↑2) / (𝐵↑2))) |
| 13 | 12 | oveq1d 7404 | . . . . . . . 8 ⊢ (𝜑 → (2 · (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2))) |
| 14 | 7 | sqcld 14115 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
| 15 | 8 | nnsqcld 14215 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
| 16 | 15 | nncnd 12203 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵↑2) ∈ ℂ) |
| 17 | 15 | nnne0d 12237 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵↑2) ≠ 0) |
| 18 | 14, 16, 17 | divcan1d 11965 | . . . . . . . 8 ⊢ (𝜑 → (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)) = (𝐴↑2)) |
| 19 | 13, 18 | eqtrd 2765 | . . . . . . 7 ⊢ (𝜑 → (2 · (𝐵↑2)) = (𝐴↑2)) |
| 20 | 19 | oveq1d 7404 | . . . . . 6 ⊢ (𝜑 → ((2 · (𝐵↑2)) / 2) = ((𝐴↑2) / 2)) |
| 21 | 2ne0 12291 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
| 22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 ≠ 0) |
| 23 | 16, 1, 22 | divcan3d 11969 | . . . . . 6 ⊢ (𝜑 → ((2 · (𝐵↑2)) / 2) = (𝐵↑2)) |
| 24 | 20, 23 | eqtr3d 2767 | . . . . 5 ⊢ (𝜑 → ((𝐴↑2) / 2) = (𝐵↑2)) |
| 25 | 24, 15 | eqeltrd 2829 | . . . 4 ⊢ (𝜑 → ((𝐴↑2) / 2) ∈ ℕ) |
| 26 | 25 | nnzd 12562 | . . 3 ⊢ (𝜑 → ((𝐴↑2) / 2) ∈ ℤ) |
| 27 | zesq 14197 | . . . 4 ⊢ (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ)) | |
| 28 | 6, 27 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ)) |
| 29 | 26, 28 | mpbird 257 | . 2 ⊢ (𝜑 → (𝐴 / 2) ∈ ℤ) |
| 30 | 1 | sqvald 14114 | . . . . . . . 8 ⊢ (𝜑 → (2↑2) = (2 · 2)) |
| 31 | 30 | oveq2d 7405 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑2) / (2↑2)) = ((𝐴↑2) / (2 · 2))) |
| 32 | 7, 1, 22 | sqdivd 14130 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 / 2)↑2) = ((𝐴↑2) / (2↑2))) |
| 33 | 14, 1, 1, 22, 22 | divdiv1d 11995 | . . . . . . 7 ⊢ (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐴↑2) / (2 · 2))) |
| 34 | 31, 32, 33 | 3eqtr4d 2775 | . . . . . 6 ⊢ (𝜑 → ((𝐴 / 2)↑2) = (((𝐴↑2) / 2) / 2)) |
| 35 | 24 | oveq1d 7404 | . . . . . 6 ⊢ (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐵↑2) / 2)) |
| 36 | 34, 35 | eqtrd 2765 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 2)↑2) = ((𝐵↑2) / 2)) |
| 37 | zsqcl 14100 | . . . . . 6 ⊢ ((𝐴 / 2) ∈ ℤ → ((𝐴 / 2)↑2) ∈ ℤ) | |
| 38 | 29, 37 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 2)↑2) ∈ ℤ) |
| 39 | 36, 38 | eqeltrrd 2830 | . . . 4 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℤ) |
| 40 | 15 | nnrpd 12999 | . . . . . 6 ⊢ (𝜑 → (𝐵↑2) ∈ ℝ+) |
| 41 | 40 | rphalfcld 13013 | . . . . 5 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℝ+) |
| 42 | 41 | rpgt0d 13004 | . . . 4 ⊢ (𝜑 → 0 < ((𝐵↑2) / 2)) |
| 43 | elnnz 12545 | . . . 4 ⊢ (((𝐵↑2) / 2) ∈ ℕ ↔ (((𝐵↑2) / 2) ∈ ℤ ∧ 0 < ((𝐵↑2) / 2))) | |
| 44 | 39, 42, 43 | sylanbrc 583 | . . 3 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℕ) |
| 45 | nnesq 14198 | . . . 4 ⊢ (𝐵 ∈ ℕ → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ)) | |
| 46 | 8, 45 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ)) |
| 47 | 44, 46 | mpbird 257 | . 2 ⊢ (𝜑 → (𝐵 / 2) ∈ ℕ) |
| 48 | 29, 47 | jca 511 | 1 ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 0cc0 11074 · cmul 11079 < clt 11214 / cdiv 11841 ℕcn 12187 2c2 12242 ℤcz 12535 ↑cexp 14032 √csqrt 15205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-seq 13973 df-exp 14033 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 |
| This theorem is referenced by: sqrt2irr 16223 |
| Copyright terms: Public domain | W3C validator |