Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem5 Structured version   Visualization version   GIF version

Theorem irrapxlem5 42277
Description: Lemma for irrapx1 42279. Switching to real intervals and fraction syntax. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem irrapxlem5
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 483 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
21rpreccld 13066 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (1 / 𝐵) ∈ ℝ+)
32rprege0d 13063 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ((1 / 𝐵) ∈ ℝ ∧ 0 ≤ (1 / 𝐵)))
4 flge0nn0 13825 . . . 4 (((1 / 𝐵) ∈ ℝ ∧ 0 ≤ (1 / 𝐵)) → (⌊‘(1 / 𝐵)) ∈ ℕ0)
5 nn0p1nn 12549 . . . 4 ((⌊‘(1 / 𝐵)) ∈ ℕ0 → ((⌊‘(1 / 𝐵)) + 1) ∈ ℕ)
63, 4, 53syl 18 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ((⌊‘(1 / 𝐵)) + 1) ∈ ℕ)
7 irrapxlem4 42276 . . 3 ((𝐴 ∈ ℝ+ ∧ ((⌊‘(1 / 𝐵)) + 1) ∈ ℕ) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)))
86, 7syldan 589 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)))
9 simplrr 776 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℕ)
10 nnq 12984 . . . . . . 7 (𝑏 ∈ ℕ → 𝑏 ∈ ℚ)
119, 10syl 17 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℚ)
12 simplrl 775 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℕ)
13 nnq 12984 . . . . . . 7 (𝑎 ∈ ℕ → 𝑎 ∈ ℚ)
1412, 13syl 17 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℚ)
1512nnne0d 12300 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ≠ 0)
16 qdivcl 12992 . . . . . 6 ((𝑏 ∈ ℚ ∧ 𝑎 ∈ ℚ ∧ 𝑎 ≠ 0) → (𝑏 / 𝑎) ∈ ℚ)
1711, 14, 15, 16syl3anc 1368 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑏 / 𝑎) ∈ ℚ)
189nnrpd 13054 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℝ+)
1912nnrpd 13054 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℝ+)
2018, 19rpdivcld 13073 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑏 / 𝑎) ∈ ℝ+)
2120rpgt0d 13059 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 < (𝑏 / 𝑎))
2212nnred 12265 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℝ)
2312nnnn0d 12570 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℕ0)
2423nn0ge0d 12573 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 ≤ 𝑎)
2522, 24absidd 15409 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘𝑎) = 𝑎)
2625eqcomd 2734 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 = (abs‘𝑎))
2726oveq1d 7441 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) = ((abs‘𝑎) · (abs‘((𝑏 / 𝑎) − 𝐴))))
2812nncnd 12266 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℂ)
29 qre 12975 . . . . . . . . . . . . 13 ((𝑏 / 𝑎) ∈ ℚ → (𝑏 / 𝑎) ∈ ℝ)
3017, 29syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑏 / 𝑎) ∈ ℝ)
31 rpre 13022 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
3231ad3antrrr 728 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐴 ∈ ℝ)
3330, 32resubcld 11680 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝑏 / 𝑎) − 𝐴) ∈ ℝ)
3433recnd 11280 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝑏 / 𝑎) − 𝐴) ∈ ℂ)
3528, 34absmuld 15441 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘(𝑎 · ((𝑏 / 𝑎) − 𝐴))) = ((abs‘𝑎) · (abs‘((𝑏 / 𝑎) − 𝐴))))
3627, 35eqtr4d 2771 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) = (abs‘(𝑎 · ((𝑏 / 𝑎) − 𝐴))))
37 qcn 12985 . . . . . . . . . . . 12 ((𝑏 / 𝑎) ∈ ℚ → (𝑏 / 𝑎) ∈ ℂ)
3817, 37syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑏 / 𝑎) ∈ ℂ)
39 rpcn 13024 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
4039ad3antrrr 728 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐴 ∈ ℂ)
4128, 38, 40subdid 11708 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · ((𝑏 / 𝑎) − 𝐴)) = ((𝑎 · (𝑏 / 𝑎)) − (𝑎 · 𝐴)))
429nncnd 12266 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℂ)
4342, 28, 15divcan2d 12030 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (𝑏 / 𝑎)) = 𝑏)
4428, 40mulcomd 11273 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · 𝐴) = (𝐴 · 𝑎))
4543, 44oveq12d 7444 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝑎 · (𝑏 / 𝑎)) − (𝑎 · 𝐴)) = (𝑏 − (𝐴 · 𝑎)))
4641, 45eqtrd 2768 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · ((𝑏 / 𝑎) − 𝐴)) = (𝑏 − (𝐴 · 𝑎)))
4746fveq2d 6906 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘(𝑎 · ((𝑏 / 𝑎) − 𝐴))) = (abs‘(𝑏 − (𝐴 · 𝑎))))
4832, 22remulcld 11282 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝐴 · 𝑎) ∈ ℝ)
4948recnd 11280 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝐴 · 𝑎) ∈ ℂ)
5042, 49abssubd 15440 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘(𝑏 − (𝐴 · 𝑎))) = (abs‘((𝐴 · 𝑎) − 𝑏)))
5136, 47, 503eqtrd 2772 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) = (abs‘((𝐴 · 𝑎) − 𝑏)))
529nnred 12265 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℝ)
5348, 52resubcld 11680 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝐴 · 𝑎) − 𝑏) ∈ ℝ)
5453recnd 11280 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝐴 · 𝑎) − 𝑏) ∈ ℂ)
5554abscld 15423 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝐴 · 𝑎) − 𝑏)) ∈ ℝ)
56 simpllr 774 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐵 ∈ ℝ+)
5756rprecred 13067 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / 𝐵) ∈ ℝ)
5856rpreccld 13066 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / 𝐵) ∈ ℝ+)
5958rpge0d 13060 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 ≤ (1 / 𝐵))
6057, 59, 4syl2anc 582 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (⌊‘(1 / 𝐵)) ∈ ℕ0)
6160, 5syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((⌊‘(1 / 𝐵)) + 1) ∈ ℕ)
6261nnrpd 13054 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((⌊‘(1 / 𝐵)) + 1) ∈ ℝ+)
6362, 19ifcld 4578 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎) ∈ ℝ+)
6463rprecred 13067 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ∈ ℝ)
6556rpred 13056 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐵 ∈ ℝ)
6622, 65remulcld 11282 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · 𝐵) ∈ ℝ)
67 simpr 483 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)))
6858rprecred 13067 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (1 / 𝐵)) ∈ ℝ)
6961nnred 12265 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((⌊‘(1 / 𝐵)) + 1) ∈ ℝ)
7069, 22ifcld 4578 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎) ∈ ℝ)
71 fllep1 13806 . . . . . . . . . . . 12 ((1 / 𝐵) ∈ ℝ → (1 / 𝐵) ≤ ((⌊‘(1 / 𝐵)) + 1))
7257, 71syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / 𝐵) ≤ ((⌊‘(1 / 𝐵)) + 1))
73 max2 13206 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ ((⌊‘(1 / 𝐵)) + 1) ∈ ℝ) → ((⌊‘(1 / 𝐵)) + 1) ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))
7422, 69, 73syl2anc 582 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((⌊‘(1 / 𝐵)) + 1) ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))
7557, 69, 70, 72, 74letrd 11409 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / 𝐵) ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))
7658, 63lerecd 13075 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((1 / 𝐵) ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎) ↔ (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ≤ (1 / (1 / 𝐵))))
7775, 76mpbid 231 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ≤ (1 / (1 / 𝐵)))
7865recnd 11280 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐵 ∈ ℂ)
7956rpne0d 13061 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐵 ≠ 0)
8078, 79recrecd 12025 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (1 / 𝐵)) = 𝐵)
8178mullidd 11270 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 · 𝐵) = 𝐵)
8280, 81eqtr4d 2771 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (1 / 𝐵)) = (1 · 𝐵))
8312nnge1d 12298 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 1 ≤ 𝑎)
84 1red 11253 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 1 ∈ ℝ)
8584, 22, 56lemul1d 13099 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 ≤ 𝑎 ↔ (1 · 𝐵) ≤ (𝑎 · 𝐵)))
8683, 85mpbid 231 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 · 𝐵) ≤ (𝑎 · 𝐵))
8782, 86eqbrtrd 5174 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (1 / 𝐵)) ≤ (𝑎 · 𝐵))
8864, 68, 66, 77, 87letrd 11409 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ≤ (𝑎 · 𝐵))
8955, 64, 66, 67, 88ltletrd 11412 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (𝑎 · 𝐵))
9051, 89eqbrtrd 5174 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · 𝐵))
9134abscld 15423 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝑏 / 𝑎) − 𝐴)) ∈ ℝ)
9212nngt0d 12299 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 < 𝑎)
93 ltmul2 12103 . . . . . . 7 (((abs‘((𝑏 / 𝑎) − 𝐴)) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑎 ∈ ℝ ∧ 0 < 𝑎)) → ((abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵 ↔ (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · 𝐵)))
9491, 65, 22, 92, 93syl112anc 1371 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵 ↔ (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · 𝐵)))
9590, 94mpbird 256 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵)
9622, 22remulcld 11282 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · 𝑎) ∈ ℝ)
9722, 15msqgt0d 11819 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 < (𝑎 · 𝑎))
9897gt0ne0d 11816 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · 𝑎) ≠ 0)
9996, 98rereccld 12079 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (𝑎 · 𝑎)) ∈ ℝ)
100 qdencl 16720 . . . . . . . . . . 11 ((𝑏 / 𝑎) ∈ ℚ → (denom‘(𝑏 / 𝑎)) ∈ ℕ)
10117, 100syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ∈ ℕ)
102101nnred 12265 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ∈ ℝ)
103102, 102remulcld 11282 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ∈ ℝ)
104101nnne0d 12300 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ≠ 0)
105102, 104msqgt0d 11819 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 < ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))))
106105gt0ne0d 11816 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≠ 0)
107103, 106rereccld 12079 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))) ∈ ℝ)
10822, 15rereccld 12079 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / 𝑎) ∈ ℝ)
109 max1 13204 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ ((⌊‘(1 / 𝐵)) + 1) ∈ ℝ) → 𝑎 ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))
11022, 69, 109syl2anc 582 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))
11119, 63lerecd 13075 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎) ↔ (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ≤ (1 / 𝑎)))
112110, 111mpbid 231 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ≤ (1 / 𝑎))
11355, 64, 108, 67, 112ltletrd 11412 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / 𝑎))
11428, 28, 28, 15, 15divdiv1d 12059 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝑎 / 𝑎) / 𝑎) = (𝑎 / (𝑎 · 𝑎)))
11528, 15dividd 12026 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 / 𝑎) = 1)
116115oveq1d 7441 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝑎 / 𝑎) / 𝑎) = (1 / 𝑎))
11796recnd 11280 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · 𝑎) ∈ ℂ)
11828, 117, 98divrecd 12031 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 / (𝑎 · 𝑎)) = (𝑎 · (1 / (𝑎 · 𝑎))))
119114, 116, 1183eqtr3rd 2777 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (1 / (𝑎 · 𝑎))) = (1 / 𝑎))
120113, 51, 1193brtr4d 5184 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · (1 / (𝑎 · 𝑎))))
121 ltmul2 12103 . . . . . . . . 9 (((abs‘((𝑏 / 𝑎) − 𝐴)) ∈ ℝ ∧ (1 / (𝑎 · 𝑎)) ∈ ℝ ∧ (𝑎 ∈ ℝ ∧ 0 < 𝑎)) → ((abs‘((𝑏 / 𝑎) − 𝐴)) < (1 / (𝑎 · 𝑎)) ↔ (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · (1 / (𝑎 · 𝑎)))))
12291, 99, 22, 92, 121syl112anc 1371 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((abs‘((𝑏 / 𝑎) − 𝐴)) < (1 / (𝑎 · 𝑎)) ↔ (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · (1 / (𝑎 · 𝑎)))))
123120, 122mpbird 256 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝑏 / 𝑎) − 𝐴)) < (1 / (𝑎 · 𝑎)))
1249nnzd 12623 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℤ)
125 divdenle 16728 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℕ) → (denom‘(𝑏 / 𝑎)) ≤ 𝑎)
126124, 12, 125syl2anc 582 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ≤ 𝑎)
127101nnnn0d 12570 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ∈ ℕ0)
128127nn0ge0d 12573 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 ≤ (denom‘(𝑏 / 𝑎)))
129 le2msq 12152 . . . . . . . . . 10 ((((denom‘(𝑏 / 𝑎)) ∈ ℝ ∧ 0 ≤ (denom‘(𝑏 / 𝑎))) ∧ (𝑎 ∈ ℝ ∧ 0 ≤ 𝑎)) → ((denom‘(𝑏 / 𝑎)) ≤ 𝑎 ↔ ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≤ (𝑎 · 𝑎)))
130102, 128, 22, 24, 129syl22anc 837 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎)) ≤ 𝑎 ↔ ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≤ (𝑎 · 𝑎)))
131126, 130mpbid 231 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≤ (𝑎 · 𝑎))
132 lerec 12135 . . . . . . . . 9 (((((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ∈ ℝ ∧ 0 < ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))) ∧ ((𝑎 · 𝑎) ∈ ℝ ∧ 0 < (𝑎 · 𝑎))) → (((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≤ (𝑎 · 𝑎) ↔ (1 / (𝑎 · 𝑎)) ≤ (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))))))
133103, 105, 96, 97, 132syl22anc 837 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≤ (𝑎 · 𝑎) ↔ (1 / (𝑎 · 𝑎)) ≤ (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))))))
134131, 133mpbid 231 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (𝑎 · 𝑎)) ≤ (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))))
13591, 99, 107, 123, 134ltletrd 11412 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝑏 / 𝑎) − 𝐴)) < (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))))
136101nncnd 12266 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ∈ ℂ)
137 2nn0 12527 . . . . . . . 8 2 ∈ ℕ0
138 expneg 14074 . . . . . . . 8 (((denom‘(𝑏 / 𝑎)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((denom‘(𝑏 / 𝑎))↑-2) = (1 / ((denom‘(𝑏 / 𝑎))↑2)))
139136, 137, 138sylancl 584 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎))↑-2) = (1 / ((denom‘(𝑏 / 𝑎))↑2)))
140136sqvald 14147 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎))↑2) = ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))))
141140oveq2d 7442 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / ((denom‘(𝑏 / 𝑎))↑2)) = (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))))
142139, 141eqtrd 2768 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎))↑-2) = (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))))
143135, 142breqtrrd 5180 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝑏 / 𝑎) − 𝐴)) < ((denom‘(𝑏 / 𝑎))↑-2))
144 breq2 5156 . . . . . . 7 (𝑥 = (𝑏 / 𝑎) → (0 < 𝑥 ↔ 0 < (𝑏 / 𝑎)))
145 fvoveq1 7449 . . . . . . . 8 (𝑥 = (𝑏 / 𝑎) → (abs‘(𝑥𝐴)) = (abs‘((𝑏 / 𝑎) − 𝐴)))
146145breq1d 5162 . . . . . . 7 (𝑥 = (𝑏 / 𝑎) → ((abs‘(𝑥𝐴)) < 𝐵 ↔ (abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵))
147 fveq2 6902 . . . . . . . . 9 (𝑥 = (𝑏 / 𝑎) → (denom‘𝑥) = (denom‘(𝑏 / 𝑎)))
148147oveq1d 7441 . . . . . . . 8 (𝑥 = (𝑏 / 𝑎) → ((denom‘𝑥)↑-2) = ((denom‘(𝑏 / 𝑎))↑-2))
149145, 148breq12d 5165 . . . . . . 7 (𝑥 = (𝑏 / 𝑎) → ((abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2) ↔ (abs‘((𝑏 / 𝑎) − 𝐴)) < ((denom‘(𝑏 / 𝑎))↑-2)))
150144, 146, 1493anbi123d 1432 . . . . . 6 (𝑥 = (𝑏 / 𝑎) → ((0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2)) ↔ (0 < (𝑏 / 𝑎) ∧ (abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵 ∧ (abs‘((𝑏 / 𝑎) − 𝐴)) < ((denom‘(𝑏 / 𝑎))↑-2))))
151150rspcev 3611 . . . . 5 (((𝑏 / 𝑎) ∈ ℚ ∧ (0 < (𝑏 / 𝑎) ∧ (abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵 ∧ (abs‘((𝑏 / 𝑎) − 𝐴)) < ((denom‘(𝑏 / 𝑎))↑-2))) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2)))
15217, 21, 95, 143, 151syl13anc 1369 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2)))
153152ex 411 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2))))
154153rexlimdvva 3209 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2))))
1558, 154mpd 15 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2937  wrex 3067  ifcif 4532   class class class wbr 5152  cfv 6553  (class class class)co 7426  cc 11144  cr 11145  0cc0 11146  1c1 11147   + caddc 11149   · cmul 11151   < clt 11286  cle 11287  cmin 11482  -cneg 11483   / cdiv 11909  cn 12250  2c2 12305  0cn0 12510  cz 12596  cq 12970  +crp 13014  cfl 13795  cexp 14066  abscabs 15221  denomcdenom 16713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-oadd 8497  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-inf 9474  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-q 12971  df-rp 13015  df-ico 13370  df-fz 13525  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-hash 14330  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-dvds 16239  df-gcd 16477  df-numer 16714  df-denom 16715
This theorem is referenced by:  irrapxlem6  42278
  Copyright terms: Public domain W3C validator