Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem5 Structured version   Visualization version   GIF version

Theorem irrapxlem5 40140
 Description: Lemma for irrapx1 40142. Switching to real intervals and fraction syntax. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem irrapxlem5
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
21rpreccld 12482 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (1 / 𝐵) ∈ ℝ+)
32rprege0d 12479 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ((1 / 𝐵) ∈ ℝ ∧ 0 ≤ (1 / 𝐵)))
4 flge0nn0 13239 . . . 4 (((1 / 𝐵) ∈ ℝ ∧ 0 ≤ (1 / 𝐵)) → (⌊‘(1 / 𝐵)) ∈ ℕ0)
5 nn0p1nn 11973 . . . 4 ((⌊‘(1 / 𝐵)) ∈ ℕ0 → ((⌊‘(1 / 𝐵)) + 1) ∈ ℕ)
63, 4, 53syl 18 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ((⌊‘(1 / 𝐵)) + 1) ∈ ℕ)
7 irrapxlem4 40139 . . 3 ((𝐴 ∈ ℝ+ ∧ ((⌊‘(1 / 𝐵)) + 1) ∈ ℕ) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)))
86, 7syldan 594 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)))
9 simplrr 777 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℕ)
10 nnq 12402 . . . . . . 7 (𝑏 ∈ ℕ → 𝑏 ∈ ℚ)
119, 10syl 17 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℚ)
12 simplrl 776 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℕ)
13 nnq 12402 . . . . . . 7 (𝑎 ∈ ℕ → 𝑎 ∈ ℚ)
1412, 13syl 17 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℚ)
1512nnne0d 11724 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ≠ 0)
16 qdivcl 12410 . . . . . 6 ((𝑏 ∈ ℚ ∧ 𝑎 ∈ ℚ ∧ 𝑎 ≠ 0) → (𝑏 / 𝑎) ∈ ℚ)
1711, 14, 15, 16syl3anc 1368 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑏 / 𝑎) ∈ ℚ)
189nnrpd 12470 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℝ+)
1912nnrpd 12470 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℝ+)
2018, 19rpdivcld 12489 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑏 / 𝑎) ∈ ℝ+)
2120rpgt0d 12475 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 < (𝑏 / 𝑎))
2212nnred 11689 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℝ)
2312nnnn0d 11994 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℕ0)
2423nn0ge0d 11997 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 ≤ 𝑎)
2522, 24absidd 14830 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘𝑎) = 𝑎)
2625eqcomd 2764 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 = (abs‘𝑎))
2726oveq1d 7165 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) = ((abs‘𝑎) · (abs‘((𝑏 / 𝑎) − 𝐴))))
2812nncnd 11690 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ∈ ℂ)
29 qre 12393 . . . . . . . . . . . . 13 ((𝑏 / 𝑎) ∈ ℚ → (𝑏 / 𝑎) ∈ ℝ)
3017, 29syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑏 / 𝑎) ∈ ℝ)
31 rpre 12438 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
3231ad3antrrr 729 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐴 ∈ ℝ)
3330, 32resubcld 11106 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝑏 / 𝑎) − 𝐴) ∈ ℝ)
3433recnd 10707 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝑏 / 𝑎) − 𝐴) ∈ ℂ)
3528, 34absmuld 14862 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘(𝑎 · ((𝑏 / 𝑎) − 𝐴))) = ((abs‘𝑎) · (abs‘((𝑏 / 𝑎) − 𝐴))))
3627, 35eqtr4d 2796 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) = (abs‘(𝑎 · ((𝑏 / 𝑎) − 𝐴))))
37 qcn 12403 . . . . . . . . . . . 12 ((𝑏 / 𝑎) ∈ ℚ → (𝑏 / 𝑎) ∈ ℂ)
3817, 37syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑏 / 𝑎) ∈ ℂ)
39 rpcn 12440 . . . . . . . . . . . 12 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
4039ad3antrrr 729 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐴 ∈ ℂ)
4128, 38, 40subdid 11134 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · ((𝑏 / 𝑎) − 𝐴)) = ((𝑎 · (𝑏 / 𝑎)) − (𝑎 · 𝐴)))
429nncnd 11690 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℂ)
4342, 28, 15divcan2d 11456 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (𝑏 / 𝑎)) = 𝑏)
4428, 40mulcomd 10700 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · 𝐴) = (𝐴 · 𝑎))
4543, 44oveq12d 7168 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝑎 · (𝑏 / 𝑎)) − (𝑎 · 𝐴)) = (𝑏 − (𝐴 · 𝑎)))
4641, 45eqtrd 2793 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · ((𝑏 / 𝑎) − 𝐴)) = (𝑏 − (𝐴 · 𝑎)))
4746fveq2d 6662 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘(𝑎 · ((𝑏 / 𝑎) − 𝐴))) = (abs‘(𝑏 − (𝐴 · 𝑎))))
4832, 22remulcld 10709 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝐴 · 𝑎) ∈ ℝ)
4948recnd 10707 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝐴 · 𝑎) ∈ ℂ)
5042, 49abssubd 14861 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘(𝑏 − (𝐴 · 𝑎))) = (abs‘((𝐴 · 𝑎) − 𝑏)))
5136, 47, 503eqtrd 2797 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) = (abs‘((𝐴 · 𝑎) − 𝑏)))
529nnred 11689 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℝ)
5348, 52resubcld 11106 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝐴 · 𝑎) − 𝑏) ∈ ℝ)
5453recnd 10707 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝐴 · 𝑎) − 𝑏) ∈ ℂ)
5554abscld 14844 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝐴 · 𝑎) − 𝑏)) ∈ ℝ)
56 simpllr 775 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐵 ∈ ℝ+)
5756rprecred 12483 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / 𝐵) ∈ ℝ)
5856rpreccld 12482 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / 𝐵) ∈ ℝ+)
5958rpge0d 12476 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 ≤ (1 / 𝐵))
6057, 59, 4syl2anc 587 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (⌊‘(1 / 𝐵)) ∈ ℕ0)
6160, 5syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((⌊‘(1 / 𝐵)) + 1) ∈ ℕ)
6261nnrpd 12470 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((⌊‘(1 / 𝐵)) + 1) ∈ ℝ+)
6362, 19ifcld 4466 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎) ∈ ℝ+)
6463rprecred 12483 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ∈ ℝ)
6556rpred 12472 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐵 ∈ ℝ)
6622, 65remulcld 10709 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · 𝐵) ∈ ℝ)
67 simpr 488 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)))
6858rprecred 12483 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (1 / 𝐵)) ∈ ℝ)
6961nnred 11689 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((⌊‘(1 / 𝐵)) + 1) ∈ ℝ)
7069, 22ifcld 4466 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎) ∈ ℝ)
71 fllep1 13220 . . . . . . . . . . . 12 ((1 / 𝐵) ∈ ℝ → (1 / 𝐵) ≤ ((⌊‘(1 / 𝐵)) + 1))
7257, 71syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / 𝐵) ≤ ((⌊‘(1 / 𝐵)) + 1))
73 max2 12621 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ ((⌊‘(1 / 𝐵)) + 1) ∈ ℝ) → ((⌊‘(1 / 𝐵)) + 1) ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))
7422, 69, 73syl2anc 587 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((⌊‘(1 / 𝐵)) + 1) ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))
7557, 69, 70, 72, 74letrd 10835 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / 𝐵) ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))
7658, 63lerecd 12491 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((1 / 𝐵) ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎) ↔ (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ≤ (1 / (1 / 𝐵))))
7775, 76mpbid 235 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ≤ (1 / (1 / 𝐵)))
7865recnd 10707 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐵 ∈ ℂ)
7956rpne0d 12477 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝐵 ≠ 0)
8078, 79recrecd 11451 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (1 / 𝐵)) = 𝐵)
8178mulid2d 10697 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 · 𝐵) = 𝐵)
8280, 81eqtr4d 2796 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (1 / 𝐵)) = (1 · 𝐵))
8312nnge1d 11722 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 1 ≤ 𝑎)
84 1red 10680 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 1 ∈ ℝ)
8584, 22, 56lemul1d 12515 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 ≤ 𝑎 ↔ (1 · 𝐵) ≤ (𝑎 · 𝐵)))
8683, 85mpbid 235 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 · 𝐵) ≤ (𝑎 · 𝐵))
8782, 86eqbrtrd 5054 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (1 / 𝐵)) ≤ (𝑎 · 𝐵))
8864, 68, 66, 77, 87letrd 10835 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ≤ (𝑎 · 𝐵))
8955, 64, 66, 67, 88ltletrd 10838 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (𝑎 · 𝐵))
9051, 89eqbrtrd 5054 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · 𝐵))
9134abscld 14844 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝑏 / 𝑎) − 𝐴)) ∈ ℝ)
9212nngt0d 11723 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 < 𝑎)
93 ltmul2 11529 . . . . . . 7 (((abs‘((𝑏 / 𝑎) − 𝐴)) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑎 ∈ ℝ ∧ 0 < 𝑎)) → ((abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵 ↔ (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · 𝐵)))
9491, 65, 22, 92, 93syl112anc 1371 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵 ↔ (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · 𝐵)))
9590, 94mpbird 260 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵)
9622, 22remulcld 10709 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · 𝑎) ∈ ℝ)
9722, 15msqgt0d 11245 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 < (𝑎 · 𝑎))
9897gt0ne0d 11242 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · 𝑎) ≠ 0)
9996, 98rereccld 11505 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (𝑎 · 𝑎)) ∈ ℝ)
100 qdencl 16136 . . . . . . . . . . 11 ((𝑏 / 𝑎) ∈ ℚ → (denom‘(𝑏 / 𝑎)) ∈ ℕ)
10117, 100syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ∈ ℕ)
102101nnred 11689 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ∈ ℝ)
103102, 102remulcld 10709 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ∈ ℝ)
104101nnne0d 11724 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ≠ 0)
105102, 104msqgt0d 11245 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 < ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))))
106105gt0ne0d 11242 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≠ 0)
107103, 106rereccld 11505 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))) ∈ ℝ)
10822, 15rereccld 11505 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / 𝑎) ∈ ℝ)
109 max1 12619 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ ((⌊‘(1 / 𝐵)) + 1) ∈ ℝ) → 𝑎 ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))
11022, 69, 109syl2anc 587 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑎 ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))
11119, 63lerecd 12491 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 ≤ if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎) ↔ (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ≤ (1 / 𝑎)))
112110, 111mpbid 235 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) ≤ (1 / 𝑎))
11355, 64, 108, 67, 112ltletrd 10838 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / 𝑎))
11428, 28, 28, 15, 15divdiv1d 11485 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝑎 / 𝑎) / 𝑎) = (𝑎 / (𝑎 · 𝑎)))
11528, 15dividd 11452 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 / 𝑎) = 1)
116115oveq1d 7165 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((𝑎 / 𝑎) / 𝑎) = (1 / 𝑎))
11796recnd 10707 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · 𝑎) ∈ ℂ)
11828, 117, 98divrecd 11457 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 / (𝑎 · 𝑎)) = (𝑎 · (1 / (𝑎 · 𝑎))))
119114, 116, 1183eqtr3rd 2802 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (1 / (𝑎 · 𝑎))) = (1 / 𝑎))
120113, 51, 1193brtr4d 5064 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · (1 / (𝑎 · 𝑎))))
121 ltmul2 11529 . . . . . . . . 9 (((abs‘((𝑏 / 𝑎) − 𝐴)) ∈ ℝ ∧ (1 / (𝑎 · 𝑎)) ∈ ℝ ∧ (𝑎 ∈ ℝ ∧ 0 < 𝑎)) → ((abs‘((𝑏 / 𝑎) − 𝐴)) < (1 / (𝑎 · 𝑎)) ↔ (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · (1 / (𝑎 · 𝑎)))))
12291, 99, 22, 92, 121syl112anc 1371 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((abs‘((𝑏 / 𝑎) − 𝐴)) < (1 / (𝑎 · 𝑎)) ↔ (𝑎 · (abs‘((𝑏 / 𝑎) − 𝐴))) < (𝑎 · (1 / (𝑎 · 𝑎)))))
123120, 122mpbird 260 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝑏 / 𝑎) − 𝐴)) < (1 / (𝑎 · 𝑎)))
1249nnzd 12125 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 𝑏 ∈ ℤ)
125 divdenle 16144 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℕ) → (denom‘(𝑏 / 𝑎)) ≤ 𝑎)
126124, 12, 125syl2anc 587 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ≤ 𝑎)
127101nnnn0d 11994 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ∈ ℕ0)
128127nn0ge0d 11997 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → 0 ≤ (denom‘(𝑏 / 𝑎)))
129 le2msq 11578 . . . . . . . . . 10 ((((denom‘(𝑏 / 𝑎)) ∈ ℝ ∧ 0 ≤ (denom‘(𝑏 / 𝑎))) ∧ (𝑎 ∈ ℝ ∧ 0 ≤ 𝑎)) → ((denom‘(𝑏 / 𝑎)) ≤ 𝑎 ↔ ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≤ (𝑎 · 𝑎)))
130102, 128, 22, 24, 129syl22anc 837 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎)) ≤ 𝑎 ↔ ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≤ (𝑎 · 𝑎)))
131126, 130mpbid 235 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≤ (𝑎 · 𝑎))
132 lerec 11561 . . . . . . . . 9 (((((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ∈ ℝ ∧ 0 < ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))) ∧ ((𝑎 · 𝑎) ∈ ℝ ∧ 0 < (𝑎 · 𝑎))) → (((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≤ (𝑎 · 𝑎) ↔ (1 / (𝑎 · 𝑎)) ≤ (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))))))
133103, 105, 96, 97, 132syl22anc 837 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))) ≤ (𝑎 · 𝑎) ↔ (1 / (𝑎 · 𝑎)) ≤ (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))))))
134131, 133mpbid 235 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / (𝑎 · 𝑎)) ≤ (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))))
13591, 99, 107, 123, 134ltletrd 10838 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝑏 / 𝑎) − 𝐴)) < (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))))
136101nncnd 11690 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (denom‘(𝑏 / 𝑎)) ∈ ℂ)
137 2nn0 11951 . . . . . . . 8 2 ∈ ℕ0
138 expneg 13487 . . . . . . . 8 (((denom‘(𝑏 / 𝑎)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((denom‘(𝑏 / 𝑎))↑-2) = (1 / ((denom‘(𝑏 / 𝑎))↑2)))
139136, 137, 138sylancl 589 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎))↑-2) = (1 / ((denom‘(𝑏 / 𝑎))↑2)))
140136sqvald 13557 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎))↑2) = ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎))))
141140oveq2d 7166 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (1 / ((denom‘(𝑏 / 𝑎))↑2)) = (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))))
142139, 141eqtrd 2793 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ((denom‘(𝑏 / 𝑎))↑-2) = (1 / ((denom‘(𝑏 / 𝑎)) · (denom‘(𝑏 / 𝑎)))))
143135, 142breqtrrd 5060 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → (abs‘((𝑏 / 𝑎) − 𝐴)) < ((denom‘(𝑏 / 𝑎))↑-2))
144 breq2 5036 . . . . . . 7 (𝑥 = (𝑏 / 𝑎) → (0 < 𝑥 ↔ 0 < (𝑏 / 𝑎)))
145 fvoveq1 7173 . . . . . . . 8 (𝑥 = (𝑏 / 𝑎) → (abs‘(𝑥𝐴)) = (abs‘((𝑏 / 𝑎) − 𝐴)))
146145breq1d 5042 . . . . . . 7 (𝑥 = (𝑏 / 𝑎) → ((abs‘(𝑥𝐴)) < 𝐵 ↔ (abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵))
147 fveq2 6658 . . . . . . . . 9 (𝑥 = (𝑏 / 𝑎) → (denom‘𝑥) = (denom‘(𝑏 / 𝑎)))
148147oveq1d 7165 . . . . . . . 8 (𝑥 = (𝑏 / 𝑎) → ((denom‘𝑥)↑-2) = ((denom‘(𝑏 / 𝑎))↑-2))
149145, 148breq12d 5045 . . . . . . 7 (𝑥 = (𝑏 / 𝑎) → ((abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2) ↔ (abs‘((𝑏 / 𝑎) − 𝐴)) < ((denom‘(𝑏 / 𝑎))↑-2)))
150144, 146, 1493anbi123d 1433 . . . . . 6 (𝑥 = (𝑏 / 𝑎) → ((0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2)) ↔ (0 < (𝑏 / 𝑎) ∧ (abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵 ∧ (abs‘((𝑏 / 𝑎) − 𝐴)) < ((denom‘(𝑏 / 𝑎))↑-2))))
151150rspcev 3541 . . . . 5 (((𝑏 / 𝑎) ∈ ℚ ∧ (0 < (𝑏 / 𝑎) ∧ (abs‘((𝑏 / 𝑎) − 𝐴)) < 𝐵 ∧ (abs‘((𝑏 / 𝑎) − 𝐴)) < ((denom‘(𝑏 / 𝑎))↑-2))) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2)))
15217, 21, 95, 143, 151syl13anc 1369 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) ∧ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎))) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2)))
153152ex 416 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2))))
154153rexlimdvva 3218 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (abs‘((𝐴 · 𝑎) − 𝑏)) < (1 / if(𝑎 ≤ ((⌊‘(1 / 𝐵)) + 1), ((⌊‘(1 / 𝐵)) + 1), 𝑎)) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2))))
1558, 154mpd 15 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥𝐴)) < 𝐵 ∧ (abs‘(𝑥𝐴)) < ((denom‘𝑥)↑-2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∃wrex 3071  ifcif 4420   class class class wbr 5032  ‘cfv 6335  (class class class)co 7150  ℂcc 10573  ℝcr 10574  0cc0 10575  1c1 10576   + caddc 10578   · cmul 10580   < clt 10713   ≤ cle 10714   − cmin 10908  -cneg 10909   / cdiv 11335  ℕcn 11674  2c2 11729  ℕ0cn0 11934  ℤcz 12020  ℚcq 12388  ℝ+crp 12430  ⌊cfl 13209  ↑cexp 13479  abscabs 14641  denomcdenom 16129 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-oadd 8116  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-inf 8940  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-n0 11935  df-xnn0 12007  df-z 12021  df-uz 12283  df-q 12389  df-rp 12431  df-ico 12785  df-fz 12940  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-dvds 15656  df-gcd 15894  df-numer 16130  df-denom 16131 This theorem is referenced by:  irrapxlem6  40141
 Copyright terms: Public domain W3C validator