MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem5 Structured version   Visualization version   GIF version

Theorem ftc1lem5 26101
Description: Lemma for ftc1 26103. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
ftc1.f (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
ftc1.j 𝐽 = (𝐿t ℝ)
ftc1.k 𝐾 = (𝐿t 𝐷)
ftc1.l 𝐿 = (TopOpen‘ℂfld)
ftc1.h 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
ftc1.e (𝜑𝐸 ∈ ℝ+)
ftc1.r (𝜑𝑅 ∈ ℝ+)
ftc1.fc ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
ftc1.x1 (𝜑𝑋 ∈ (𝐴[,]𝐵))
ftc1.x2 (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)
Assertion
Ref Expression
ftc1lem5 ((𝜑𝑋𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
Distinct variable groups:   𝑥,𝑡,𝑦,𝑧,𝐶   𝑡,𝐷,𝑥,𝑦,𝑧   𝑦,𝐺,𝑧   𝑡,𝐴,𝑥,𝑦,𝑧   𝑡,𝐵,𝑥,𝑦,𝑧   𝑡,𝑋,𝑥,𝑧   𝑡,𝐸,𝑦   𝑦,𝐻   𝜑,𝑡,𝑥,𝑦,𝑧   𝑡,𝐹,𝑥,𝑦,𝑧   𝑥,𝐿,𝑦,𝑧   𝑦,𝑅
Allowed substitution hints:   𝑅(𝑥,𝑧,𝑡)   𝐸(𝑥,𝑧)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑧,𝑡)   𝐽(𝑥,𝑦,𝑧,𝑡)   𝐾(𝑥,𝑦,𝑧,𝑡)   𝐿(𝑡)   𝑋(𝑦)

Proof of Theorem ftc1lem5
StepHypRef Expression
1 ftc1.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 ftc1.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
3 iccssre 13489 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
41, 2, 3syl2anc 583 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
5 ftc1.x1 . . . . 5 (𝜑𝑋 ∈ (𝐴[,]𝐵))
64, 5sseldd 4009 . . . 4 (𝜑𝑋 ∈ ℝ)
7 ioossicc 13493 . . . . . 6 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
8 ftc1.c . . . . . 6 (𝜑𝐶 ∈ (𝐴(,)𝐵))
97, 8sselid 4006 . . . . 5 (𝜑𝐶 ∈ (𝐴[,]𝐵))
104, 9sseldd 4009 . . . 4 (𝜑𝐶 ∈ ℝ)
116, 10lttri2d 11429 . . 3 (𝜑 → (𝑋𝐶 ↔ (𝑋 < 𝐶𝐶 < 𝑋)))
1211biimpa 476 . 2 ((𝜑𝑋𝐶) → (𝑋 < 𝐶𝐶 < 𝑋))
135adantr 480 . . . . . . . 8 ((𝜑𝑋 < 𝐶) → 𝑋 ∈ (𝐴[,]𝐵))
146adantr 480 . . . . . . . . 9 ((𝜑𝑋 < 𝐶) → 𝑋 ∈ ℝ)
15 simpr 484 . . . . . . . . 9 ((𝜑𝑋 < 𝐶) → 𝑋 < 𝐶)
1614, 15ltned 11426 . . . . . . . 8 ((𝜑𝑋 < 𝐶) → 𝑋𝐶)
17 eldifsn 4811 . . . . . . . 8 (𝑋 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↔ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑋𝐶))
1813, 16, 17sylanbrc 582 . . . . . . 7 ((𝜑𝑋 < 𝐶) → 𝑋 ∈ ((𝐴[,]𝐵) ∖ {𝐶}))
19 fveq2 6920 . . . . . . . . . 10 (𝑧 = 𝑋 → (𝐺𝑧) = (𝐺𝑋))
2019oveq1d 7463 . . . . . . . . 9 (𝑧 = 𝑋 → ((𝐺𝑧) − (𝐺𝐶)) = ((𝐺𝑋) − (𝐺𝐶)))
21 oveq1 7455 . . . . . . . . 9 (𝑧 = 𝑋 → (𝑧𝐶) = (𝑋𝐶))
2220, 21oveq12d 7466 . . . . . . . 8 (𝑧 = 𝑋 → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
23 ftc1.h . . . . . . . 8 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
24 ovex 7481 . . . . . . . 8 (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)) ∈ V
2522, 23, 24fvmpt 7029 . . . . . . 7 (𝑋 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) → (𝐻𝑋) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
2618, 25syl 17 . . . . . 6 ((𝜑𝑋 < 𝐶) → (𝐻𝑋) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
27 ftc1.g . . . . . . . . . . 11 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
28 ftc1.le . . . . . . . . . . 11 (𝜑𝐴𝐵)
29 ftc1.s . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
30 ftc1.d . . . . . . . . . . 11 (𝜑𝐷 ⊆ ℝ)
31 ftc1.i . . . . . . . . . . 11 (𝜑𝐹 ∈ 𝐿1)
32 ftc1.f . . . . . . . . . . . 12 (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
33 ftc1.j . . . . . . . . . . . 12 𝐽 = (𝐿t ℝ)
34 ftc1.k . . . . . . . . . . . 12 𝐾 = (𝐿t 𝐷)
35 ftc1.l . . . . . . . . . . . 12 𝐿 = (TopOpen‘ℂfld)
3627, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35ftc1lem3 26099 . . . . . . . . . . 11 (𝜑𝐹:𝐷⟶ℂ)
3727, 1, 2, 28, 29, 30, 31, 36ftc1lem2 26097 . . . . . . . . . 10 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
3837, 5ffvelcdmd 7119 . . . . . . . . 9 (𝜑 → (𝐺𝑋) ∈ ℂ)
3937, 9ffvelcdmd 7119 . . . . . . . . 9 (𝜑 → (𝐺𝐶) ∈ ℂ)
4038, 39subcld 11647 . . . . . . . 8 (𝜑 → ((𝐺𝑋) − (𝐺𝐶)) ∈ ℂ)
4140adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝐶) → ((𝐺𝑋) − (𝐺𝐶)) ∈ ℂ)
426recnd 11318 . . . . . . . . 9 (𝜑𝑋 ∈ ℂ)
4310recnd 11318 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
4442, 43subcld 11647 . . . . . . . 8 (𝜑 → (𝑋𝐶) ∈ ℂ)
4544adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝐶) → (𝑋𝐶) ∈ ℂ)
4642, 43subeq0ad 11657 . . . . . . . . . 10 (𝜑 → ((𝑋𝐶) = 0 ↔ 𝑋 = 𝐶))
4746necon3bid 2991 . . . . . . . . 9 (𝜑 → ((𝑋𝐶) ≠ 0 ↔ 𝑋𝐶))
4847biimpar 477 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑋𝐶) ≠ 0)
4916, 48syldan 590 . . . . . . 7 ((𝜑𝑋 < 𝐶) → (𝑋𝐶) ≠ 0)
5041, 45, 49div2negd 12085 . . . . . 6 ((𝜑𝑋 < 𝐶) → (-((𝐺𝑋) − (𝐺𝐶)) / -(𝑋𝐶)) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
5138, 39negsubdi2d 11663 . . . . . . . 8 (𝜑 → -((𝐺𝑋) − (𝐺𝐶)) = ((𝐺𝐶) − (𝐺𝑋)))
5242, 43negsubdi2d 11663 . . . . . . . 8 (𝜑 → -(𝑋𝐶) = (𝐶𝑋))
5351, 52oveq12d 7466 . . . . . . 7 (𝜑 → (-((𝐺𝑋) − (𝐺𝐶)) / -(𝑋𝐶)) = (((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)))
5453adantr 480 . . . . . 6 ((𝜑𝑋 < 𝐶) → (-((𝐺𝑋) − (𝐺𝐶)) / -(𝑋𝐶)) = (((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)))
5526, 50, 543eqtr2d 2786 . . . . 5 ((𝜑𝑋 < 𝐶) → (𝐻𝑋) = (((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)))
5655fvoveq1d 7470 . . . 4 ((𝜑𝑋 < 𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) = (abs‘((((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)) − (𝐹𝐶))))
57 ftc1.e . . . . 5 (𝜑𝐸 ∈ ℝ+)
58 ftc1.r . . . . 5 (𝜑𝑅 ∈ ℝ+)
59 ftc1.fc . . . . 5 ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
60 ftc1.x2 . . . . 5 (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)
6143subidd 11635 . . . . . . 7 (𝜑 → (𝐶𝐶) = 0)
6261abs00bd 15340 . . . . . 6 (𝜑 → (abs‘(𝐶𝐶)) = 0)
6358rpgt0d 13102 . . . . . 6 (𝜑 → 0 < 𝑅)
6462, 63eqbrtrd 5188 . . . . 5 (𝜑 → (abs‘(𝐶𝐶)) < 𝑅)
6527, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35, 23, 57, 58, 59, 5, 60, 9, 64ftc1lem4 26100 . . . 4 ((𝜑𝑋 < 𝐶) → (abs‘((((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)) − (𝐹𝐶))) < 𝐸)
6656, 65eqbrtrd 5188 . . 3 ((𝜑𝑋 < 𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
675adantr 480 . . . . . . 7 ((𝜑𝐶 < 𝑋) → 𝑋 ∈ (𝐴[,]𝐵))
6810adantr 480 . . . . . . . 8 ((𝜑𝐶 < 𝑋) → 𝐶 ∈ ℝ)
69 simpr 484 . . . . . . . 8 ((𝜑𝐶 < 𝑋) → 𝐶 < 𝑋)
7068, 69gtned 11425 . . . . . . 7 ((𝜑𝐶 < 𝑋) → 𝑋𝐶)
7167, 70, 17sylanbrc 582 . . . . . 6 ((𝜑𝐶 < 𝑋) → 𝑋 ∈ ((𝐴[,]𝐵) ∖ {𝐶}))
7271, 25syl 17 . . . . 5 ((𝜑𝐶 < 𝑋) → (𝐻𝑋) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
7372fvoveq1d 7470 . . . 4 ((𝜑𝐶 < 𝑋) → (abs‘((𝐻𝑋) − (𝐹𝐶))) = (abs‘((((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)) − (𝐹𝐶))))
7427, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35, 23, 57, 58, 59, 9, 64, 5, 60ftc1lem4 26100 . . . 4 ((𝜑𝐶 < 𝑋) → (abs‘((((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)) − (𝐹𝐶))) < 𝐸)
7573, 74eqbrtrd 5188 . . 3 ((𝜑𝐶 < 𝑋) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
7666, 75jaodan 958 . 2 ((𝜑 ∧ (𝑋 < 𝐶𝐶 < 𝑋)) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
7712, 76syldan 590 1 ((𝜑𝑋𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  cdif 3973  wss 3976  {csn 4648   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  +crp 13057  (,)cioo 13407  [,]cicc 13410  abscabs 15283  t crest 17480  TopOpenctopn 17481  fldccnfld 21387   CnP ccnp 23254  𝐿1cibl 25671  citg 25672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-symdif 4272  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cn 23256  df-cnp 23257  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-ibl 25676  df-itg 25677  df-0p 25724
This theorem is referenced by:  ftc1lem6  26102
  Copyright terms: Public domain W3C validator