MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem5 Structured version   Visualization version   GIF version

Theorem ftc1lem5 26017
Description: Lemma for ftc1 26019. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
ftc1.f (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
ftc1.j 𝐽 = (𝐿t ℝ)
ftc1.k 𝐾 = (𝐿t 𝐷)
ftc1.l 𝐿 = (TopOpen‘ℂfld)
ftc1.h 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
ftc1.e (𝜑𝐸 ∈ ℝ+)
ftc1.r (𝜑𝑅 ∈ ℝ+)
ftc1.fc ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
ftc1.x1 (𝜑𝑋 ∈ (𝐴[,]𝐵))
ftc1.x2 (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)
Assertion
Ref Expression
ftc1lem5 ((𝜑𝑋𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
Distinct variable groups:   𝑥,𝑡,𝑦,𝑧,𝐶   𝑡,𝐷,𝑥,𝑦,𝑧   𝑦,𝐺,𝑧   𝑡,𝐴,𝑥,𝑦,𝑧   𝑡,𝐵,𝑥,𝑦,𝑧   𝑡,𝑋,𝑥,𝑧   𝑡,𝐸,𝑦   𝑦,𝐻   𝜑,𝑡,𝑥,𝑦,𝑧   𝑡,𝐹,𝑥,𝑦,𝑧   𝑥,𝐿,𝑦,𝑧   𝑦,𝑅
Allowed substitution hints:   𝑅(𝑥,𝑧,𝑡)   𝐸(𝑥,𝑧)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑧,𝑡)   𝐽(𝑥,𝑦,𝑧,𝑡)   𝐾(𝑥,𝑦,𝑧,𝑡)   𝐿(𝑡)   𝑋(𝑦)

Proof of Theorem ftc1lem5
StepHypRef Expression
1 ftc1.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 ftc1.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
3 iccssre 13451 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
41, 2, 3syl2anc 584 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
5 ftc1.x1 . . . . 5 (𝜑𝑋 ∈ (𝐴[,]𝐵))
64, 5sseldd 3964 . . . 4 (𝜑𝑋 ∈ ℝ)
7 ioossicc 13455 . . . . . 6 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
8 ftc1.c . . . . . 6 (𝜑𝐶 ∈ (𝐴(,)𝐵))
97, 8sselid 3961 . . . . 5 (𝜑𝐶 ∈ (𝐴[,]𝐵))
104, 9sseldd 3964 . . . 4 (𝜑𝐶 ∈ ℝ)
116, 10lttri2d 11382 . . 3 (𝜑 → (𝑋𝐶 ↔ (𝑋 < 𝐶𝐶 < 𝑋)))
1211biimpa 476 . 2 ((𝜑𝑋𝐶) → (𝑋 < 𝐶𝐶 < 𝑋))
135adantr 480 . . . . . . . 8 ((𝜑𝑋 < 𝐶) → 𝑋 ∈ (𝐴[,]𝐵))
146adantr 480 . . . . . . . . 9 ((𝜑𝑋 < 𝐶) → 𝑋 ∈ ℝ)
15 simpr 484 . . . . . . . . 9 ((𝜑𝑋 < 𝐶) → 𝑋 < 𝐶)
1614, 15ltned 11379 . . . . . . . 8 ((𝜑𝑋 < 𝐶) → 𝑋𝐶)
17 eldifsn 4766 . . . . . . . 8 (𝑋 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↔ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑋𝐶))
1813, 16, 17sylanbrc 583 . . . . . . 7 ((𝜑𝑋 < 𝐶) → 𝑋 ∈ ((𝐴[,]𝐵) ∖ {𝐶}))
19 fveq2 6886 . . . . . . . . . 10 (𝑧 = 𝑋 → (𝐺𝑧) = (𝐺𝑋))
2019oveq1d 7428 . . . . . . . . 9 (𝑧 = 𝑋 → ((𝐺𝑧) − (𝐺𝐶)) = ((𝐺𝑋) − (𝐺𝐶)))
21 oveq1 7420 . . . . . . . . 9 (𝑧 = 𝑋 → (𝑧𝐶) = (𝑋𝐶))
2220, 21oveq12d 7431 . . . . . . . 8 (𝑧 = 𝑋 → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
23 ftc1.h . . . . . . . 8 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
24 ovex 7446 . . . . . . . 8 (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)) ∈ V
2522, 23, 24fvmpt 6996 . . . . . . 7 (𝑋 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) → (𝐻𝑋) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
2618, 25syl 17 . . . . . 6 ((𝜑𝑋 < 𝐶) → (𝐻𝑋) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
27 ftc1.g . . . . . . . . . . 11 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
28 ftc1.le . . . . . . . . . . 11 (𝜑𝐴𝐵)
29 ftc1.s . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
30 ftc1.d . . . . . . . . . . 11 (𝜑𝐷 ⊆ ℝ)
31 ftc1.i . . . . . . . . . . 11 (𝜑𝐹 ∈ 𝐿1)
32 ftc1.f . . . . . . . . . . . 12 (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
33 ftc1.j . . . . . . . . . . . 12 𝐽 = (𝐿t ℝ)
34 ftc1.k . . . . . . . . . . . 12 𝐾 = (𝐿t 𝐷)
35 ftc1.l . . . . . . . . . . . 12 𝐿 = (TopOpen‘ℂfld)
3627, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35ftc1lem3 26015 . . . . . . . . . . 11 (𝜑𝐹:𝐷⟶ℂ)
3727, 1, 2, 28, 29, 30, 31, 36ftc1lem2 26013 . . . . . . . . . 10 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
3837, 5ffvelcdmd 7085 . . . . . . . . 9 (𝜑 → (𝐺𝑋) ∈ ℂ)
3937, 9ffvelcdmd 7085 . . . . . . . . 9 (𝜑 → (𝐺𝐶) ∈ ℂ)
4038, 39subcld 11602 . . . . . . . 8 (𝜑 → ((𝐺𝑋) − (𝐺𝐶)) ∈ ℂ)
4140adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝐶) → ((𝐺𝑋) − (𝐺𝐶)) ∈ ℂ)
426recnd 11271 . . . . . . . . 9 (𝜑𝑋 ∈ ℂ)
4310recnd 11271 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
4442, 43subcld 11602 . . . . . . . 8 (𝜑 → (𝑋𝐶) ∈ ℂ)
4544adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝐶) → (𝑋𝐶) ∈ ℂ)
4642, 43subeq0ad 11612 . . . . . . . . . 10 (𝜑 → ((𝑋𝐶) = 0 ↔ 𝑋 = 𝐶))
4746necon3bid 2975 . . . . . . . . 9 (𝜑 → ((𝑋𝐶) ≠ 0 ↔ 𝑋𝐶))
4847biimpar 477 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑋𝐶) ≠ 0)
4916, 48syldan 591 . . . . . . 7 ((𝜑𝑋 < 𝐶) → (𝑋𝐶) ≠ 0)
5041, 45, 49div2negd 12040 . . . . . 6 ((𝜑𝑋 < 𝐶) → (-((𝐺𝑋) − (𝐺𝐶)) / -(𝑋𝐶)) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
5138, 39negsubdi2d 11618 . . . . . . . 8 (𝜑 → -((𝐺𝑋) − (𝐺𝐶)) = ((𝐺𝐶) − (𝐺𝑋)))
5242, 43negsubdi2d 11618 . . . . . . . 8 (𝜑 → -(𝑋𝐶) = (𝐶𝑋))
5351, 52oveq12d 7431 . . . . . . 7 (𝜑 → (-((𝐺𝑋) − (𝐺𝐶)) / -(𝑋𝐶)) = (((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)))
5453adantr 480 . . . . . 6 ((𝜑𝑋 < 𝐶) → (-((𝐺𝑋) − (𝐺𝐶)) / -(𝑋𝐶)) = (((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)))
5526, 50, 543eqtr2d 2775 . . . . 5 ((𝜑𝑋 < 𝐶) → (𝐻𝑋) = (((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)))
5655fvoveq1d 7435 . . . 4 ((𝜑𝑋 < 𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) = (abs‘((((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)) − (𝐹𝐶))))
57 ftc1.e . . . . 5 (𝜑𝐸 ∈ ℝ+)
58 ftc1.r . . . . 5 (𝜑𝑅 ∈ ℝ+)
59 ftc1.fc . . . . 5 ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
60 ftc1.x2 . . . . 5 (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)
6143subidd 11590 . . . . . . 7 (𝜑 → (𝐶𝐶) = 0)
6261abs00bd 15312 . . . . . 6 (𝜑 → (abs‘(𝐶𝐶)) = 0)
6358rpgt0d 13062 . . . . . 6 (𝜑 → 0 < 𝑅)
6462, 63eqbrtrd 5145 . . . . 5 (𝜑 → (abs‘(𝐶𝐶)) < 𝑅)
6527, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35, 23, 57, 58, 59, 5, 60, 9, 64ftc1lem4 26016 . . . 4 ((𝜑𝑋 < 𝐶) → (abs‘((((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)) − (𝐹𝐶))) < 𝐸)
6656, 65eqbrtrd 5145 . . 3 ((𝜑𝑋 < 𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
675adantr 480 . . . . . . 7 ((𝜑𝐶 < 𝑋) → 𝑋 ∈ (𝐴[,]𝐵))
6810adantr 480 . . . . . . . 8 ((𝜑𝐶 < 𝑋) → 𝐶 ∈ ℝ)
69 simpr 484 . . . . . . . 8 ((𝜑𝐶 < 𝑋) → 𝐶 < 𝑋)
7068, 69gtned 11378 . . . . . . 7 ((𝜑𝐶 < 𝑋) → 𝑋𝐶)
7167, 70, 17sylanbrc 583 . . . . . 6 ((𝜑𝐶 < 𝑋) → 𝑋 ∈ ((𝐴[,]𝐵) ∖ {𝐶}))
7271, 25syl 17 . . . . 5 ((𝜑𝐶 < 𝑋) → (𝐻𝑋) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
7372fvoveq1d 7435 . . . 4 ((𝜑𝐶 < 𝑋) → (abs‘((𝐻𝑋) − (𝐹𝐶))) = (abs‘((((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)) − (𝐹𝐶))))
7427, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35, 23, 57, 58, 59, 9, 64, 5, 60ftc1lem4 26016 . . . 4 ((𝜑𝐶 < 𝑋) → (abs‘((((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)) − (𝐹𝐶))) < 𝐸)
7573, 74eqbrtrd 5145 . . 3 ((𝜑𝐶 < 𝑋) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
7666, 75jaodan 959 . 2 ((𝜑 ∧ (𝑋 < 𝐶𝐶 < 𝑋)) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
7712, 76syldan 591 1 ((𝜑𝑋𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1539  wcel 2107  wne 2931  cdif 3928  wss 3931  {csn 4606   class class class wbr 5123  cmpt 5205  cfv 6541  (class class class)co 7413  cc 11135  cr 11136  0cc0 11137   < clt 11277  cle 11278  cmin 11474  -cneg 11475   / cdiv 11902  +crp 13016  (,)cioo 13369  [,]cicc 13372  abscabs 15255  t crest 17436  TopOpenctopn 17437  fldccnfld 21326   CnP ccnp 23179  𝐿1cibl 25588  citg 25589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cc 10457  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-symdif 4233  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-disj 5091  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-ofr 7680  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-omul 8493  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-dju 9923  df-card 9961  df-acn 9964  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-ioc 13374  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14352  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-clim 15506  df-rlim 15507  df-sum 15705  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-hom 17297  df-cco 17298  df-rest 17438  df-topn 17439  df-0g 17457  df-gsum 17458  df-topgen 17459  df-pt 17460  df-prds 17463  df-xrs 17518  df-qtop 17523  df-imas 17524  df-xps 17526  df-mre 17600  df-mrc 17601  df-acs 17603  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-mulg 19055  df-cntz 19304  df-cmn 19768  df-psmet 21318  df-xmet 21319  df-met 21320  df-bl 21321  df-mopn 21322  df-cnfld 21327  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-cn 23181  df-cnp 23182  df-cmp 23341  df-tx 23516  df-hmeo 23709  df-xms 24275  df-ms 24276  df-tms 24277  df-cncf 24840  df-ovol 25435  df-vol 25436  df-mbf 25590  df-itg1 25591  df-itg2 25592  df-ibl 25593  df-itg 25594  df-0p 25641
This theorem is referenced by:  ftc1lem6  26018
  Copyright terms: Public domain W3C validator