MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem5 Structured version   Visualization version   GIF version

Theorem ftc1lem5 25404
Description: Lemma for ftc1 25406. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
ftc1.f (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
ftc1.j 𝐽 = (𝐿t ℝ)
ftc1.k 𝐾 = (𝐿t 𝐷)
ftc1.l 𝐿 = (TopOpen‘ℂfld)
ftc1.h 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
ftc1.e (𝜑𝐸 ∈ ℝ+)
ftc1.r (𝜑𝑅 ∈ ℝ+)
ftc1.fc ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
ftc1.x1 (𝜑𝑋 ∈ (𝐴[,]𝐵))
ftc1.x2 (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)
Assertion
Ref Expression
ftc1lem5 ((𝜑𝑋𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
Distinct variable groups:   𝑥,𝑡,𝑦,𝑧,𝐶   𝑡,𝐷,𝑥,𝑦,𝑧   𝑦,𝐺,𝑧   𝑡,𝐴,𝑥,𝑦,𝑧   𝑡,𝐵,𝑥,𝑦,𝑧   𝑡,𝑋,𝑥,𝑧   𝑡,𝐸,𝑦   𝑦,𝐻   𝜑,𝑡,𝑥,𝑦,𝑧   𝑡,𝐹,𝑥,𝑦,𝑧   𝑥,𝐿,𝑦,𝑧   𝑦,𝑅
Allowed substitution hints:   𝑅(𝑥,𝑧,𝑡)   𝐸(𝑥,𝑧)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑧,𝑡)   𝐽(𝑥,𝑦,𝑧,𝑡)   𝐾(𝑥,𝑦,𝑧,𝑡)   𝐿(𝑡)   𝑋(𝑦)

Proof of Theorem ftc1lem5
StepHypRef Expression
1 ftc1.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 ftc1.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
3 iccssre 13346 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
41, 2, 3syl2anc 584 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
5 ftc1.x1 . . . . 5 (𝜑𝑋 ∈ (𝐴[,]𝐵))
64, 5sseldd 3945 . . . 4 (𝜑𝑋 ∈ ℝ)
7 ioossicc 13350 . . . . . 6 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
8 ftc1.c . . . . . 6 (𝜑𝐶 ∈ (𝐴(,)𝐵))
97, 8sselid 3942 . . . . 5 (𝜑𝐶 ∈ (𝐴[,]𝐵))
104, 9sseldd 3945 . . . 4 (𝜑𝐶 ∈ ℝ)
116, 10lttri2d 11294 . . 3 (𝜑 → (𝑋𝐶 ↔ (𝑋 < 𝐶𝐶 < 𝑋)))
1211biimpa 477 . 2 ((𝜑𝑋𝐶) → (𝑋 < 𝐶𝐶 < 𝑋))
135adantr 481 . . . . . . . 8 ((𝜑𝑋 < 𝐶) → 𝑋 ∈ (𝐴[,]𝐵))
146adantr 481 . . . . . . . . 9 ((𝜑𝑋 < 𝐶) → 𝑋 ∈ ℝ)
15 simpr 485 . . . . . . . . 9 ((𝜑𝑋 < 𝐶) → 𝑋 < 𝐶)
1614, 15ltned 11291 . . . . . . . 8 ((𝜑𝑋 < 𝐶) → 𝑋𝐶)
17 eldifsn 4747 . . . . . . . 8 (𝑋 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↔ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑋𝐶))
1813, 16, 17sylanbrc 583 . . . . . . 7 ((𝜑𝑋 < 𝐶) → 𝑋 ∈ ((𝐴[,]𝐵) ∖ {𝐶}))
19 fveq2 6842 . . . . . . . . . 10 (𝑧 = 𝑋 → (𝐺𝑧) = (𝐺𝑋))
2019oveq1d 7372 . . . . . . . . 9 (𝑧 = 𝑋 → ((𝐺𝑧) − (𝐺𝐶)) = ((𝐺𝑋) − (𝐺𝐶)))
21 oveq1 7364 . . . . . . . . 9 (𝑧 = 𝑋 → (𝑧𝐶) = (𝑋𝐶))
2220, 21oveq12d 7375 . . . . . . . 8 (𝑧 = 𝑋 → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
23 ftc1.h . . . . . . . 8 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
24 ovex 7390 . . . . . . . 8 (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)) ∈ V
2522, 23, 24fvmpt 6948 . . . . . . 7 (𝑋 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) → (𝐻𝑋) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
2618, 25syl 17 . . . . . 6 ((𝜑𝑋 < 𝐶) → (𝐻𝑋) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
27 ftc1.g . . . . . . . . . . 11 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
28 ftc1.le . . . . . . . . . . 11 (𝜑𝐴𝐵)
29 ftc1.s . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
30 ftc1.d . . . . . . . . . . 11 (𝜑𝐷 ⊆ ℝ)
31 ftc1.i . . . . . . . . . . 11 (𝜑𝐹 ∈ 𝐿1)
32 ftc1.f . . . . . . . . . . . 12 (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
33 ftc1.j . . . . . . . . . . . 12 𝐽 = (𝐿t ℝ)
34 ftc1.k . . . . . . . . . . . 12 𝐾 = (𝐿t 𝐷)
35 ftc1.l . . . . . . . . . . . 12 𝐿 = (TopOpen‘ℂfld)
3627, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35ftc1lem3 25402 . . . . . . . . . . 11 (𝜑𝐹:𝐷⟶ℂ)
3727, 1, 2, 28, 29, 30, 31, 36ftc1lem2 25400 . . . . . . . . . 10 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
3837, 5ffvelcdmd 7036 . . . . . . . . 9 (𝜑 → (𝐺𝑋) ∈ ℂ)
3937, 9ffvelcdmd 7036 . . . . . . . . 9 (𝜑 → (𝐺𝐶) ∈ ℂ)
4038, 39subcld 11512 . . . . . . . 8 (𝜑 → ((𝐺𝑋) − (𝐺𝐶)) ∈ ℂ)
4140adantr 481 . . . . . . 7 ((𝜑𝑋 < 𝐶) → ((𝐺𝑋) − (𝐺𝐶)) ∈ ℂ)
426recnd 11183 . . . . . . . . 9 (𝜑𝑋 ∈ ℂ)
4310recnd 11183 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
4442, 43subcld 11512 . . . . . . . 8 (𝜑 → (𝑋𝐶) ∈ ℂ)
4544adantr 481 . . . . . . 7 ((𝜑𝑋 < 𝐶) → (𝑋𝐶) ∈ ℂ)
4642, 43subeq0ad 11522 . . . . . . . . . 10 (𝜑 → ((𝑋𝐶) = 0 ↔ 𝑋 = 𝐶))
4746necon3bid 2988 . . . . . . . . 9 (𝜑 → ((𝑋𝐶) ≠ 0 ↔ 𝑋𝐶))
4847biimpar 478 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑋𝐶) ≠ 0)
4916, 48syldan 591 . . . . . . 7 ((𝜑𝑋 < 𝐶) → (𝑋𝐶) ≠ 0)
5041, 45, 49div2negd 11946 . . . . . 6 ((𝜑𝑋 < 𝐶) → (-((𝐺𝑋) − (𝐺𝐶)) / -(𝑋𝐶)) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
5138, 39negsubdi2d 11528 . . . . . . . 8 (𝜑 → -((𝐺𝑋) − (𝐺𝐶)) = ((𝐺𝐶) − (𝐺𝑋)))
5242, 43negsubdi2d 11528 . . . . . . . 8 (𝜑 → -(𝑋𝐶) = (𝐶𝑋))
5351, 52oveq12d 7375 . . . . . . 7 (𝜑 → (-((𝐺𝑋) − (𝐺𝐶)) / -(𝑋𝐶)) = (((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)))
5453adantr 481 . . . . . 6 ((𝜑𝑋 < 𝐶) → (-((𝐺𝑋) − (𝐺𝐶)) / -(𝑋𝐶)) = (((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)))
5526, 50, 543eqtr2d 2782 . . . . 5 ((𝜑𝑋 < 𝐶) → (𝐻𝑋) = (((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)))
5655fvoveq1d 7379 . . . 4 ((𝜑𝑋 < 𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) = (abs‘((((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)) − (𝐹𝐶))))
57 ftc1.e . . . . 5 (𝜑𝐸 ∈ ℝ+)
58 ftc1.r . . . . 5 (𝜑𝑅 ∈ ℝ+)
59 ftc1.fc . . . . 5 ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
60 ftc1.x2 . . . . 5 (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)
6143subidd 11500 . . . . . . 7 (𝜑 → (𝐶𝐶) = 0)
6261abs00bd 15176 . . . . . 6 (𝜑 → (abs‘(𝐶𝐶)) = 0)
6358rpgt0d 12960 . . . . . 6 (𝜑 → 0 < 𝑅)
6462, 63eqbrtrd 5127 . . . . 5 (𝜑 → (abs‘(𝐶𝐶)) < 𝑅)
6527, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35, 23, 57, 58, 59, 5, 60, 9, 64ftc1lem4 25403 . . . 4 ((𝜑𝑋 < 𝐶) → (abs‘((((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)) − (𝐹𝐶))) < 𝐸)
6656, 65eqbrtrd 5127 . . 3 ((𝜑𝑋 < 𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
675adantr 481 . . . . . . 7 ((𝜑𝐶 < 𝑋) → 𝑋 ∈ (𝐴[,]𝐵))
6810adantr 481 . . . . . . . 8 ((𝜑𝐶 < 𝑋) → 𝐶 ∈ ℝ)
69 simpr 485 . . . . . . . 8 ((𝜑𝐶 < 𝑋) → 𝐶 < 𝑋)
7068, 69gtned 11290 . . . . . . 7 ((𝜑𝐶 < 𝑋) → 𝑋𝐶)
7167, 70, 17sylanbrc 583 . . . . . 6 ((𝜑𝐶 < 𝑋) → 𝑋 ∈ ((𝐴[,]𝐵) ∖ {𝐶}))
7271, 25syl 17 . . . . 5 ((𝜑𝐶 < 𝑋) → (𝐻𝑋) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
7372fvoveq1d 7379 . . . 4 ((𝜑𝐶 < 𝑋) → (abs‘((𝐻𝑋) − (𝐹𝐶))) = (abs‘((((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)) − (𝐹𝐶))))
7427, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35, 23, 57, 58, 59, 9, 64, 5, 60ftc1lem4 25403 . . . 4 ((𝜑𝐶 < 𝑋) → (abs‘((((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)) − (𝐹𝐶))) < 𝐸)
7573, 74eqbrtrd 5127 . . 3 ((𝜑𝐶 < 𝑋) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
7666, 75jaodan 956 . 2 ((𝜑 ∧ (𝑋 < 𝐶𝐶 < 𝑋)) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
7712, 76syldan 591 1 ((𝜑𝑋𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  cdif 3907  wss 3910  {csn 4586   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  +crp 12915  (,)cioo 13264  [,]cicc 13267  abscabs 15119  t crest 17302  TopOpenctopn 17303  fldccnfld 20796   CnP ccnp 22576  𝐿1cibl 24981  citg 24982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-symdif 4202  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cn 22578  df-cnp 22579  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-itg2 24985  df-ibl 24986  df-itg 24987  df-0p 25034
This theorem is referenced by:  ftc1lem6  25405
  Copyright terms: Public domain W3C validator