MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem5 Structured version   Visualization version   GIF version

Theorem ftc1lem5 25969
Description: Lemma for ftc1 25971. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
ftc1.f (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
ftc1.j 𝐽 = (𝐿t ℝ)
ftc1.k 𝐾 = (𝐿t 𝐷)
ftc1.l 𝐿 = (TopOpen‘ℂfld)
ftc1.h 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
ftc1.e (𝜑𝐸 ∈ ℝ+)
ftc1.r (𝜑𝑅 ∈ ℝ+)
ftc1.fc ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
ftc1.x1 (𝜑𝑋 ∈ (𝐴[,]𝐵))
ftc1.x2 (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)
Assertion
Ref Expression
ftc1lem5 ((𝜑𝑋𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
Distinct variable groups:   𝑥,𝑡,𝑦,𝑧,𝐶   𝑡,𝐷,𝑥,𝑦,𝑧   𝑦,𝐺,𝑧   𝑡,𝐴,𝑥,𝑦,𝑧   𝑡,𝐵,𝑥,𝑦,𝑧   𝑡,𝑋,𝑥,𝑧   𝑡,𝐸,𝑦   𝑦,𝐻   𝜑,𝑡,𝑥,𝑦,𝑧   𝑡,𝐹,𝑥,𝑦,𝑧   𝑥,𝐿,𝑦,𝑧   𝑦,𝑅
Allowed substitution hints:   𝑅(𝑥,𝑧,𝑡)   𝐸(𝑥,𝑧)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑧,𝑡)   𝐽(𝑥,𝑦,𝑧,𝑡)   𝐾(𝑥,𝑦,𝑧,𝑡)   𝐿(𝑡)   𝑋(𝑦)

Proof of Theorem ftc1lem5
StepHypRef Expression
1 ftc1.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 ftc1.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
3 iccssre 13324 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
41, 2, 3syl2anc 584 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
5 ftc1.x1 . . . . 5 (𝜑𝑋 ∈ (𝐴[,]𝐵))
64, 5sseldd 3930 . . . 4 (𝜑𝑋 ∈ ℝ)
7 ioossicc 13328 . . . . . 6 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
8 ftc1.c . . . . . 6 (𝜑𝐶 ∈ (𝐴(,)𝐵))
97, 8sselid 3927 . . . . 5 (𝜑𝐶 ∈ (𝐴[,]𝐵))
104, 9sseldd 3930 . . . 4 (𝜑𝐶 ∈ ℝ)
116, 10lttri2d 11247 . . 3 (𝜑 → (𝑋𝐶 ↔ (𝑋 < 𝐶𝐶 < 𝑋)))
1211biimpa 476 . 2 ((𝜑𝑋𝐶) → (𝑋 < 𝐶𝐶 < 𝑋))
135adantr 480 . . . . . . . 8 ((𝜑𝑋 < 𝐶) → 𝑋 ∈ (𝐴[,]𝐵))
146adantr 480 . . . . . . . . 9 ((𝜑𝑋 < 𝐶) → 𝑋 ∈ ℝ)
15 simpr 484 . . . . . . . . 9 ((𝜑𝑋 < 𝐶) → 𝑋 < 𝐶)
1614, 15ltned 11244 . . . . . . . 8 ((𝜑𝑋 < 𝐶) → 𝑋𝐶)
17 eldifsn 4733 . . . . . . . 8 (𝑋 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↔ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑋𝐶))
1813, 16, 17sylanbrc 583 . . . . . . 7 ((𝜑𝑋 < 𝐶) → 𝑋 ∈ ((𝐴[,]𝐵) ∖ {𝐶}))
19 fveq2 6817 . . . . . . . . . 10 (𝑧 = 𝑋 → (𝐺𝑧) = (𝐺𝑋))
2019oveq1d 7356 . . . . . . . . 9 (𝑧 = 𝑋 → ((𝐺𝑧) − (𝐺𝐶)) = ((𝐺𝑋) − (𝐺𝐶)))
21 oveq1 7348 . . . . . . . . 9 (𝑧 = 𝑋 → (𝑧𝐶) = (𝑋𝐶))
2220, 21oveq12d 7359 . . . . . . . 8 (𝑧 = 𝑋 → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
23 ftc1.h . . . . . . . 8 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
24 ovex 7374 . . . . . . . 8 (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)) ∈ V
2522, 23, 24fvmpt 6924 . . . . . . 7 (𝑋 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) → (𝐻𝑋) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
2618, 25syl 17 . . . . . 6 ((𝜑𝑋 < 𝐶) → (𝐻𝑋) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
27 ftc1.g . . . . . . . . . . 11 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
28 ftc1.le . . . . . . . . . . 11 (𝜑𝐴𝐵)
29 ftc1.s . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
30 ftc1.d . . . . . . . . . . 11 (𝜑𝐷 ⊆ ℝ)
31 ftc1.i . . . . . . . . . . 11 (𝜑𝐹 ∈ 𝐿1)
32 ftc1.f . . . . . . . . . . . 12 (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
33 ftc1.j . . . . . . . . . . . 12 𝐽 = (𝐿t ℝ)
34 ftc1.k . . . . . . . . . . . 12 𝐾 = (𝐿t 𝐷)
35 ftc1.l . . . . . . . . . . . 12 𝐿 = (TopOpen‘ℂfld)
3627, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35ftc1lem3 25967 . . . . . . . . . . 11 (𝜑𝐹:𝐷⟶ℂ)
3727, 1, 2, 28, 29, 30, 31, 36ftc1lem2 25965 . . . . . . . . . 10 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
3837, 5ffvelcdmd 7013 . . . . . . . . 9 (𝜑 → (𝐺𝑋) ∈ ℂ)
3937, 9ffvelcdmd 7013 . . . . . . . . 9 (𝜑 → (𝐺𝐶) ∈ ℂ)
4038, 39subcld 11467 . . . . . . . 8 (𝜑 → ((𝐺𝑋) − (𝐺𝐶)) ∈ ℂ)
4140adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝐶) → ((𝐺𝑋) − (𝐺𝐶)) ∈ ℂ)
426recnd 11135 . . . . . . . . 9 (𝜑𝑋 ∈ ℂ)
4310recnd 11135 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
4442, 43subcld 11467 . . . . . . . 8 (𝜑 → (𝑋𝐶) ∈ ℂ)
4544adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝐶) → (𝑋𝐶) ∈ ℂ)
4642, 43subeq0ad 11477 . . . . . . . . . 10 (𝜑 → ((𝑋𝐶) = 0 ↔ 𝑋 = 𝐶))
4746necon3bid 2972 . . . . . . . . 9 (𝜑 → ((𝑋𝐶) ≠ 0 ↔ 𝑋𝐶))
4847biimpar 477 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑋𝐶) ≠ 0)
4916, 48syldan 591 . . . . . . 7 ((𝜑𝑋 < 𝐶) → (𝑋𝐶) ≠ 0)
5041, 45, 49div2negd 11907 . . . . . 6 ((𝜑𝑋 < 𝐶) → (-((𝐺𝑋) − (𝐺𝐶)) / -(𝑋𝐶)) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
5138, 39negsubdi2d 11483 . . . . . . . 8 (𝜑 → -((𝐺𝑋) − (𝐺𝐶)) = ((𝐺𝐶) − (𝐺𝑋)))
5242, 43negsubdi2d 11483 . . . . . . . 8 (𝜑 → -(𝑋𝐶) = (𝐶𝑋))
5351, 52oveq12d 7359 . . . . . . 7 (𝜑 → (-((𝐺𝑋) − (𝐺𝐶)) / -(𝑋𝐶)) = (((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)))
5453adantr 480 . . . . . 6 ((𝜑𝑋 < 𝐶) → (-((𝐺𝑋) − (𝐺𝐶)) / -(𝑋𝐶)) = (((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)))
5526, 50, 543eqtr2d 2772 . . . . 5 ((𝜑𝑋 < 𝐶) → (𝐻𝑋) = (((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)))
5655fvoveq1d 7363 . . . 4 ((𝜑𝑋 < 𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) = (abs‘((((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)) − (𝐹𝐶))))
57 ftc1.e . . . . 5 (𝜑𝐸 ∈ ℝ+)
58 ftc1.r . . . . 5 (𝜑𝑅 ∈ ℝ+)
59 ftc1.fc . . . . 5 ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
60 ftc1.x2 . . . . 5 (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)
6143subidd 11455 . . . . . . 7 (𝜑 → (𝐶𝐶) = 0)
6261abs00bd 15193 . . . . . 6 (𝜑 → (abs‘(𝐶𝐶)) = 0)
6358rpgt0d 12932 . . . . . 6 (𝜑 → 0 < 𝑅)
6462, 63eqbrtrd 5108 . . . . 5 (𝜑 → (abs‘(𝐶𝐶)) < 𝑅)
6527, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35, 23, 57, 58, 59, 5, 60, 9, 64ftc1lem4 25968 . . . 4 ((𝜑𝑋 < 𝐶) → (abs‘((((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)) − (𝐹𝐶))) < 𝐸)
6656, 65eqbrtrd 5108 . . 3 ((𝜑𝑋 < 𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
675adantr 480 . . . . . . 7 ((𝜑𝐶 < 𝑋) → 𝑋 ∈ (𝐴[,]𝐵))
6810adantr 480 . . . . . . . 8 ((𝜑𝐶 < 𝑋) → 𝐶 ∈ ℝ)
69 simpr 484 . . . . . . . 8 ((𝜑𝐶 < 𝑋) → 𝐶 < 𝑋)
7068, 69gtned 11243 . . . . . . 7 ((𝜑𝐶 < 𝑋) → 𝑋𝐶)
7167, 70, 17sylanbrc 583 . . . . . 6 ((𝜑𝐶 < 𝑋) → 𝑋 ∈ ((𝐴[,]𝐵) ∖ {𝐶}))
7271, 25syl 17 . . . . 5 ((𝜑𝐶 < 𝑋) → (𝐻𝑋) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
7372fvoveq1d 7363 . . . 4 ((𝜑𝐶 < 𝑋) → (abs‘((𝐻𝑋) − (𝐹𝐶))) = (abs‘((((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)) − (𝐹𝐶))))
7427, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35, 23, 57, 58, 59, 9, 64, 5, 60ftc1lem4 25968 . . . 4 ((𝜑𝐶 < 𝑋) → (abs‘((((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)) − (𝐹𝐶))) < 𝐸)
7573, 74eqbrtrd 5108 . . 3 ((𝜑𝐶 < 𝑋) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
7666, 75jaodan 959 . 2 ((𝜑 ∧ (𝑋 < 𝐶𝐶 < 𝑋)) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
7712, 76syldan 591 1 ((𝜑𝑋𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  cdif 3894  wss 3897  {csn 4571   class class class wbr 5086  cmpt 5167  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001   < clt 11141  cle 11142  cmin 11339  -cneg 11340   / cdiv 11769  +crp 12885  (,)cioo 13240  [,]cicc 13243  abscabs 15136  t crest 17319  TopOpenctopn 17320  fldccnfld 21286   CnP ccnp 23135  𝐿1cibl 25540  citg 25541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cc 10321  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-symdif 4198  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-disj 5054  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9789  df-card 9827  df-acn 9830  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-rlim 15391  df-sum 15589  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cn 23137  df-cnp 23138  df-cmp 23297  df-tx 23472  df-hmeo 23665  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-ovol 25387  df-vol 25388  df-mbf 25542  df-itg1 25543  df-itg2 25544  df-ibl 25545  df-itg 25546  df-0p 25593
This theorem is referenced by:  ftc1lem6  25970
  Copyright terms: Public domain W3C validator