MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem5 Structured version   Visualization version   GIF version

Theorem ftc1lem5 25954
Description: Lemma for ftc1 25956. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
ftc1.f (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
ftc1.j 𝐽 = (𝐿t ℝ)
ftc1.k 𝐾 = (𝐿t 𝐷)
ftc1.l 𝐿 = (TopOpen‘ℂfld)
ftc1.h 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
ftc1.e (𝜑𝐸 ∈ ℝ+)
ftc1.r (𝜑𝑅 ∈ ℝ+)
ftc1.fc ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
ftc1.x1 (𝜑𝑋 ∈ (𝐴[,]𝐵))
ftc1.x2 (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)
Assertion
Ref Expression
ftc1lem5 ((𝜑𝑋𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
Distinct variable groups:   𝑥,𝑡,𝑦,𝑧,𝐶   𝑡,𝐷,𝑥,𝑦,𝑧   𝑦,𝐺,𝑧   𝑡,𝐴,𝑥,𝑦,𝑧   𝑡,𝐵,𝑥,𝑦,𝑧   𝑡,𝑋,𝑥,𝑧   𝑡,𝐸,𝑦   𝑦,𝐻   𝜑,𝑡,𝑥,𝑦,𝑧   𝑡,𝐹,𝑥,𝑦,𝑧   𝑥,𝐿,𝑦,𝑧   𝑦,𝑅
Allowed substitution hints:   𝑅(𝑥,𝑧,𝑡)   𝐸(𝑥,𝑧)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑧,𝑡)   𝐽(𝑥,𝑦,𝑧,𝑡)   𝐾(𝑥,𝑦,𝑧,𝑡)   𝐿(𝑡)   𝑋(𝑦)

Proof of Theorem ftc1lem5
StepHypRef Expression
1 ftc1.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 ftc1.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
3 iccssre 13397 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
41, 2, 3syl2anc 584 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
5 ftc1.x1 . . . . 5 (𝜑𝑋 ∈ (𝐴[,]𝐵))
64, 5sseldd 3950 . . . 4 (𝜑𝑋 ∈ ℝ)
7 ioossicc 13401 . . . . . 6 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
8 ftc1.c . . . . . 6 (𝜑𝐶 ∈ (𝐴(,)𝐵))
97, 8sselid 3947 . . . . 5 (𝜑𝐶 ∈ (𝐴[,]𝐵))
104, 9sseldd 3950 . . . 4 (𝜑𝐶 ∈ ℝ)
116, 10lttri2d 11320 . . 3 (𝜑 → (𝑋𝐶 ↔ (𝑋 < 𝐶𝐶 < 𝑋)))
1211biimpa 476 . 2 ((𝜑𝑋𝐶) → (𝑋 < 𝐶𝐶 < 𝑋))
135adantr 480 . . . . . . . 8 ((𝜑𝑋 < 𝐶) → 𝑋 ∈ (𝐴[,]𝐵))
146adantr 480 . . . . . . . . 9 ((𝜑𝑋 < 𝐶) → 𝑋 ∈ ℝ)
15 simpr 484 . . . . . . . . 9 ((𝜑𝑋 < 𝐶) → 𝑋 < 𝐶)
1614, 15ltned 11317 . . . . . . . 8 ((𝜑𝑋 < 𝐶) → 𝑋𝐶)
17 eldifsn 4753 . . . . . . . 8 (𝑋 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↔ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑋𝐶))
1813, 16, 17sylanbrc 583 . . . . . . 7 ((𝜑𝑋 < 𝐶) → 𝑋 ∈ ((𝐴[,]𝐵) ∖ {𝐶}))
19 fveq2 6861 . . . . . . . . . 10 (𝑧 = 𝑋 → (𝐺𝑧) = (𝐺𝑋))
2019oveq1d 7405 . . . . . . . . 9 (𝑧 = 𝑋 → ((𝐺𝑧) − (𝐺𝐶)) = ((𝐺𝑋) − (𝐺𝐶)))
21 oveq1 7397 . . . . . . . . 9 (𝑧 = 𝑋 → (𝑧𝐶) = (𝑋𝐶))
2220, 21oveq12d 7408 . . . . . . . 8 (𝑧 = 𝑋 → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
23 ftc1.h . . . . . . . 8 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
24 ovex 7423 . . . . . . . 8 (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)) ∈ V
2522, 23, 24fvmpt 6971 . . . . . . 7 (𝑋 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) → (𝐻𝑋) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
2618, 25syl 17 . . . . . 6 ((𝜑𝑋 < 𝐶) → (𝐻𝑋) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
27 ftc1.g . . . . . . . . . . 11 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
28 ftc1.le . . . . . . . . . . 11 (𝜑𝐴𝐵)
29 ftc1.s . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
30 ftc1.d . . . . . . . . . . 11 (𝜑𝐷 ⊆ ℝ)
31 ftc1.i . . . . . . . . . . 11 (𝜑𝐹 ∈ 𝐿1)
32 ftc1.f . . . . . . . . . . . 12 (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
33 ftc1.j . . . . . . . . . . . 12 𝐽 = (𝐿t ℝ)
34 ftc1.k . . . . . . . . . . . 12 𝐾 = (𝐿t 𝐷)
35 ftc1.l . . . . . . . . . . . 12 𝐿 = (TopOpen‘ℂfld)
3627, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35ftc1lem3 25952 . . . . . . . . . . 11 (𝜑𝐹:𝐷⟶ℂ)
3727, 1, 2, 28, 29, 30, 31, 36ftc1lem2 25950 . . . . . . . . . 10 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
3837, 5ffvelcdmd 7060 . . . . . . . . 9 (𝜑 → (𝐺𝑋) ∈ ℂ)
3937, 9ffvelcdmd 7060 . . . . . . . . 9 (𝜑 → (𝐺𝐶) ∈ ℂ)
4038, 39subcld 11540 . . . . . . . 8 (𝜑 → ((𝐺𝑋) − (𝐺𝐶)) ∈ ℂ)
4140adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝐶) → ((𝐺𝑋) − (𝐺𝐶)) ∈ ℂ)
426recnd 11209 . . . . . . . . 9 (𝜑𝑋 ∈ ℂ)
4310recnd 11209 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
4442, 43subcld 11540 . . . . . . . 8 (𝜑 → (𝑋𝐶) ∈ ℂ)
4544adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝐶) → (𝑋𝐶) ∈ ℂ)
4642, 43subeq0ad 11550 . . . . . . . . . 10 (𝜑 → ((𝑋𝐶) = 0 ↔ 𝑋 = 𝐶))
4746necon3bid 2970 . . . . . . . . 9 (𝜑 → ((𝑋𝐶) ≠ 0 ↔ 𝑋𝐶))
4847biimpar 477 . . . . . . . 8 ((𝜑𝑋𝐶) → (𝑋𝐶) ≠ 0)
4916, 48syldan 591 . . . . . . 7 ((𝜑𝑋 < 𝐶) → (𝑋𝐶) ≠ 0)
5041, 45, 49div2negd 11980 . . . . . 6 ((𝜑𝑋 < 𝐶) → (-((𝐺𝑋) − (𝐺𝐶)) / -(𝑋𝐶)) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
5138, 39negsubdi2d 11556 . . . . . . . 8 (𝜑 → -((𝐺𝑋) − (𝐺𝐶)) = ((𝐺𝐶) − (𝐺𝑋)))
5242, 43negsubdi2d 11556 . . . . . . . 8 (𝜑 → -(𝑋𝐶) = (𝐶𝑋))
5351, 52oveq12d 7408 . . . . . . 7 (𝜑 → (-((𝐺𝑋) − (𝐺𝐶)) / -(𝑋𝐶)) = (((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)))
5453adantr 480 . . . . . 6 ((𝜑𝑋 < 𝐶) → (-((𝐺𝑋) − (𝐺𝐶)) / -(𝑋𝐶)) = (((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)))
5526, 50, 543eqtr2d 2771 . . . . 5 ((𝜑𝑋 < 𝐶) → (𝐻𝑋) = (((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)))
5655fvoveq1d 7412 . . . 4 ((𝜑𝑋 < 𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) = (abs‘((((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)) − (𝐹𝐶))))
57 ftc1.e . . . . 5 (𝜑𝐸 ∈ ℝ+)
58 ftc1.r . . . . 5 (𝜑𝑅 ∈ ℝ+)
59 ftc1.fc . . . . 5 ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
60 ftc1.x2 . . . . 5 (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)
6143subidd 11528 . . . . . . 7 (𝜑 → (𝐶𝐶) = 0)
6261abs00bd 15264 . . . . . 6 (𝜑 → (abs‘(𝐶𝐶)) = 0)
6358rpgt0d 13005 . . . . . 6 (𝜑 → 0 < 𝑅)
6462, 63eqbrtrd 5132 . . . . 5 (𝜑 → (abs‘(𝐶𝐶)) < 𝑅)
6527, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35, 23, 57, 58, 59, 5, 60, 9, 64ftc1lem4 25953 . . . 4 ((𝜑𝑋 < 𝐶) → (abs‘((((𝐺𝐶) − (𝐺𝑋)) / (𝐶𝑋)) − (𝐹𝐶))) < 𝐸)
6656, 65eqbrtrd 5132 . . 3 ((𝜑𝑋 < 𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
675adantr 480 . . . . . . 7 ((𝜑𝐶 < 𝑋) → 𝑋 ∈ (𝐴[,]𝐵))
6810adantr 480 . . . . . . . 8 ((𝜑𝐶 < 𝑋) → 𝐶 ∈ ℝ)
69 simpr 484 . . . . . . . 8 ((𝜑𝐶 < 𝑋) → 𝐶 < 𝑋)
7068, 69gtned 11316 . . . . . . 7 ((𝜑𝐶 < 𝑋) → 𝑋𝐶)
7167, 70, 17sylanbrc 583 . . . . . 6 ((𝜑𝐶 < 𝑋) → 𝑋 ∈ ((𝐴[,]𝐵) ∖ {𝐶}))
7271, 25syl 17 . . . . 5 ((𝜑𝐶 < 𝑋) → (𝐻𝑋) = (((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)))
7372fvoveq1d 7412 . . . 4 ((𝜑𝐶 < 𝑋) → (abs‘((𝐻𝑋) − (𝐹𝐶))) = (abs‘((((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)) − (𝐹𝐶))))
7427, 1, 2, 28, 29, 30, 31, 8, 32, 33, 34, 35, 23, 57, 58, 59, 9, 64, 5, 60ftc1lem4 25953 . . . 4 ((𝜑𝐶 < 𝑋) → (abs‘((((𝐺𝑋) − (𝐺𝐶)) / (𝑋𝐶)) − (𝐹𝐶))) < 𝐸)
7573, 74eqbrtrd 5132 . . 3 ((𝜑𝐶 < 𝑋) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
7666, 75jaodan 959 . 2 ((𝜑 ∧ (𝑋 < 𝐶𝐶 < 𝑋)) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
7712, 76syldan 591 1 ((𝜑𝑋𝐶) → (abs‘((𝐻𝑋) − (𝐹𝐶))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  cdif 3914  wss 3917  {csn 4592   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  +crp 12958  (,)cioo 13313  [,]cicc 13316  abscabs 15207  t crest 17390  TopOpenctopn 17391  fldccnfld 21271   CnP ccnp 23119  𝐿1cibl 25525  citg 25526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-symdif 4219  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cn 23121  df-cnp 23122  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-itg 25531  df-0p 25578
This theorem is referenced by:  ftc1lem6  25955
  Copyright terms: Public domain W3C validator