| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sgmnncl | Structured version Visualization version GIF version | ||
| Description: Closure of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| Ref | Expression |
|---|---|
| sgmnncl | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z 12611 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
| 2 | sgmval2 27103 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) = Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴)) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) = Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴)) |
| 4 | fzfid 13989 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (1...𝐵) ∈ Fin) | |
| 5 | dvdsssfz1 16335 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} ⊆ (1...𝐵)) | |
| 6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} ⊆ (1...𝐵)) |
| 7 | 4, 6 | ssfid 9271 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} ∈ Fin) |
| 8 | elrabi 3666 | . . . . . 6 ⊢ (𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} → 𝑘 ∈ ℕ) | |
| 9 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℕ0) | |
| 10 | nnexpcl 14090 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (𝑘↑𝐴) ∈ ℕ) | |
| 11 | 8, 9, 10 | syl2anr 597 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) ∧ 𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵}) → (𝑘↑𝐴) ∈ ℕ) |
| 12 | 11 | nnzd 12613 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) ∧ 𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵}) → (𝑘↑𝐴) ∈ ℤ) |
| 13 | 7, 12 | fsumzcl 15749 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴) ∈ ℤ) |
| 14 | nnz 12607 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
| 15 | iddvds 16287 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℤ → 𝐵 ∥ 𝐵) | |
| 16 | 14, 15 | syl 17 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ → 𝐵 ∥ 𝐵) |
| 17 | breq1 5122 | . . . . . . . . 9 ⊢ (𝑝 = 𝐵 → (𝑝 ∥ 𝐵 ↔ 𝐵 ∥ 𝐵)) | |
| 18 | 17 | rspcev 3601 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐵) → ∃𝑝 ∈ ℕ 𝑝 ∥ 𝐵) |
| 19 | 16, 18 | mpdan 687 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → ∃𝑝 ∈ ℕ 𝑝 ∥ 𝐵) |
| 20 | rabn0 4364 | . . . . . . 7 ⊢ ({𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} ≠ ∅ ↔ ∃𝑝 ∈ ℕ 𝑝 ∥ 𝐵) | |
| 21 | 19, 20 | sylibr 234 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} ≠ ∅) |
| 22 | 21 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} ≠ ∅) |
| 23 | 11 | nnrpd 13047 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) ∧ 𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵}) → (𝑘↑𝐴) ∈ ℝ+) |
| 24 | 7, 22, 23 | fsumrpcl 15751 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴) ∈ ℝ+) |
| 25 | 24 | rpgt0d 13052 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → 0 < Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴)) |
| 26 | elnnz 12596 | . . 3 ⊢ (Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴) ∈ ℕ ↔ (Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴) ∈ ℤ ∧ 0 < Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴))) | |
| 27 | 13, 25, 26 | sylanbrc 583 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴) ∈ ℕ) |
| 28 | 3, 27 | eqeltrd 2834 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 {crab 3415 ⊆ wss 3926 ∅c0 4308 class class class wbr 5119 (class class class)co 7403 0cc0 11127 1c1 11128 < clt 11267 ℕcn 12238 ℕ0cn0 12499 ℤcz 12586 ...cfz 13522 ↑cexp 14077 Σcsu 15700 ∥ cdvds 16270 σ csgm 27056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-fi 9421 df-sup 9452 df-inf 9453 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ioo 13364 df-ioc 13365 df-ico 13366 df-icc 13367 df-fz 13523 df-fzo 13670 df-fl 13807 df-mod 13885 df-seq 14018 df-exp 14078 df-fac 14290 df-bc 14319 df-hash 14347 df-shft 15084 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-limsup 15485 df-clim 15502 df-rlim 15503 df-sum 15701 df-ef 16081 df-sin 16083 df-cos 16084 df-pi 16086 df-dvds 16271 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-rest 17434 df-topn 17435 df-0g 17453 df-gsum 17454 df-topgen 17455 df-pt 17456 df-prds 17459 df-xrs 17514 df-qtop 17519 df-imas 17520 df-xps 17522 df-mre 17596 df-mrc 17597 df-acs 17599 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-mulg 19049 df-cntz 19298 df-cmn 19761 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-fbas 21310 df-fg 21311 df-cnfld 21314 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cld 22955 df-ntr 22956 df-cls 22957 df-nei 23034 df-lp 23072 df-perf 23073 df-cn 23163 df-cnp 23164 df-haus 23251 df-tx 23498 df-hmeo 23691 df-fil 23782 df-fm 23874 df-flim 23875 df-flf 23876 df-xms 24257 df-ms 24258 df-tms 24259 df-cncf 24820 df-limc 25817 df-dv 25818 df-log 26515 df-cxp 26516 df-sgm 27062 |
| This theorem is referenced by: perfectlem1 27190 perfectlem2 27191 perfectALTVlem1 47683 perfectALTVlem2 47684 |
| Copyright terms: Public domain | W3C validator |