Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sgmnncl | Structured version Visualization version GIF version |
Description: Closure of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015.) |
Ref | Expression |
---|---|
sgmnncl | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 12423 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
2 | sgmval2 26375 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) = Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴)) | |
3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) = Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴)) |
4 | fzfid 13773 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (1...𝐵) ∈ Fin) | |
5 | dvdsssfz1 16106 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} ⊆ (1...𝐵)) | |
6 | 5 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} ⊆ (1...𝐵)) |
7 | 4, 6 | ssfid 9111 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} ∈ Fin) |
8 | elrabi 3628 | . . . . . 6 ⊢ (𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} → 𝑘 ∈ ℕ) | |
9 | simpl 483 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℕ0) | |
10 | nnexpcl 13875 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (𝑘↑𝐴) ∈ ℕ) | |
11 | 8, 9, 10 | syl2anr 597 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) ∧ 𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵}) → (𝑘↑𝐴) ∈ ℕ) |
12 | 11 | nnzd 12505 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) ∧ 𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵}) → (𝑘↑𝐴) ∈ ℤ) |
13 | 7, 12 | fsumzcl 15526 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴) ∈ ℤ) |
14 | nnz 12422 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
15 | iddvds 16058 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℤ → 𝐵 ∥ 𝐵) | |
16 | 14, 15 | syl 17 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ → 𝐵 ∥ 𝐵) |
17 | breq1 5090 | . . . . . . . . 9 ⊢ (𝑝 = 𝐵 → (𝑝 ∥ 𝐵 ↔ 𝐵 ∥ 𝐵)) | |
18 | 17 | rspcev 3570 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐵) → ∃𝑝 ∈ ℕ 𝑝 ∥ 𝐵) |
19 | 16, 18 | mpdan 684 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → ∃𝑝 ∈ ℕ 𝑝 ∥ 𝐵) |
20 | rabn0 4330 | . . . . . . 7 ⊢ ({𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} ≠ ∅ ↔ ∃𝑝 ∈ ℕ 𝑝 ∥ 𝐵) | |
21 | 19, 20 | sylibr 233 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} ≠ ∅) |
22 | 21 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} ≠ ∅) |
23 | 11 | nnrpd 12850 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) ∧ 𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵}) → (𝑘↑𝐴) ∈ ℝ+) |
24 | 7, 22, 23 | fsumrpcl 15528 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴) ∈ ℝ+) |
25 | 24 | rpgt0d 12855 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → 0 < Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴)) |
26 | elnnz 12409 | . . 3 ⊢ (Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴) ∈ ℕ ↔ (Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴) ∈ ℤ ∧ 0 < Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴))) | |
27 | 13, 25, 26 | sylanbrc 583 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} (𝑘↑𝐴) ∈ ℕ) |
28 | 3, 27 | eqeltrd 2838 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 σ 𝐵) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ∃wrex 3071 {crab 3404 ⊆ wss 3897 ∅c0 4267 class class class wbr 5087 (class class class)co 7317 0cc0 10951 1c1 10952 < clt 11089 ℕcn 12053 ℕ0cn0 12313 ℤcz 12399 ...cfz 13319 ↑cexp 13862 Σcsu 15476 ∥ cdvds 16042 σ csgm 26328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-inf2 9477 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 ax-pre-sup 11029 ax-addf 11030 ax-mulf 11031 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-se 5564 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-isom 6475 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-of 7575 df-om 7760 df-1st 7878 df-2nd 7879 df-supp 8027 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-2o 8347 df-er 8548 df-map 8667 df-pm 8668 df-ixp 8736 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-fsupp 9206 df-fi 9247 df-sup 9278 df-inf 9279 df-oi 9346 df-card 9775 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-div 11713 df-nn 12054 df-2 12116 df-3 12117 df-4 12118 df-5 12119 df-6 12120 df-7 12121 df-8 12122 df-9 12123 df-n0 12314 df-z 12400 df-dec 12518 df-uz 12663 df-q 12769 df-rp 12811 df-xneg 12928 df-xadd 12929 df-xmul 12930 df-ioo 13163 df-ioc 13164 df-ico 13165 df-icc 13166 df-fz 13320 df-fzo 13463 df-fl 13592 df-mod 13670 df-seq 13802 df-exp 13863 df-fac 14068 df-bc 14097 df-hash 14125 df-shft 14857 df-cj 14889 df-re 14890 df-im 14891 df-sqrt 15025 df-abs 15026 df-limsup 15259 df-clim 15276 df-rlim 15277 df-sum 15477 df-ef 15856 df-sin 15858 df-cos 15859 df-pi 15861 df-dvds 16043 df-struct 16925 df-sets 16942 df-slot 16960 df-ndx 16972 df-base 16990 df-ress 17019 df-plusg 17052 df-mulr 17053 df-starv 17054 df-sca 17055 df-vsca 17056 df-ip 17057 df-tset 17058 df-ple 17059 df-ds 17061 df-unif 17062 df-hom 17063 df-cco 17064 df-rest 17210 df-topn 17211 df-0g 17229 df-gsum 17230 df-topgen 17231 df-pt 17232 df-prds 17235 df-xrs 17290 df-qtop 17295 df-imas 17296 df-xps 17298 df-mre 17372 df-mrc 17373 df-acs 17375 df-mgm 18403 df-sgrp 18452 df-mnd 18463 df-submnd 18508 df-mulg 18777 df-cntz 18999 df-cmn 19463 df-psmet 20672 df-xmet 20673 df-met 20674 df-bl 20675 df-mopn 20676 df-fbas 20677 df-fg 20678 df-cnfld 20681 df-top 22126 df-topon 22143 df-topsp 22165 df-bases 22179 df-cld 22253 df-ntr 22254 df-cls 22255 df-nei 22332 df-lp 22370 df-perf 22371 df-cn 22461 df-cnp 22462 df-haus 22549 df-tx 22796 df-hmeo 22989 df-fil 23080 df-fm 23172 df-flim 23173 df-flf 23174 df-xms 23556 df-ms 23557 df-tms 23558 df-cncf 24124 df-limc 25113 df-dv 25114 df-log 25795 df-cxp 25796 df-sgm 26334 |
This theorem is referenced by: perfectlem1 26460 perfectlem2 26461 perfectALTVlem1 45438 perfectALTVlem2 45439 |
Copyright terms: Public domain | W3C validator |