MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumlt Structured version   Visualization version   GIF version

Theorem fsumlt 15157
Description: If every term in one finite sum is less than the corresponding term in another, then the first sum is less than the second. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Jun-2014.)
Hypotheses
Ref Expression
fsumlt.1 (𝜑𝐴 ∈ Fin)
fsumlt.2 (𝜑𝐴 ≠ ∅)
fsumlt.3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fsumlt.4 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
fsumlt.5 ((𝜑𝑘𝐴) → 𝐵 < 𝐶)
Assertion
Ref Expression
fsumlt (𝜑 → Σ𝑘𝐴 𝐵 < Σ𝑘𝐴 𝐶)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fsumlt
StepHypRef Expression
1 fsumlt.1 . . . . 5 (𝜑𝐴 ∈ Fin)
2 fsumlt.2 . . . . 5 (𝜑𝐴 ≠ ∅)
3 fsumlt.5 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 < 𝐶)
4 fsumlt.3 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
5 fsumlt.4 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
6 difrp 12430 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ (𝐶𝐵) ∈ ℝ+))
74, 5, 6syl2anc 586 . . . . . 6 ((𝜑𝑘𝐴) → (𝐵 < 𝐶 ↔ (𝐶𝐵) ∈ ℝ+))
83, 7mpbid 234 . . . . 5 ((𝜑𝑘𝐴) → (𝐶𝐵) ∈ ℝ+)
91, 2, 8fsumrpcl 15096 . . . 4 (𝜑 → Σ𝑘𝐴 (𝐶𝐵) ∈ ℝ+)
109rpgt0d 12437 . . 3 (𝜑 → 0 < Σ𝑘𝐴 (𝐶𝐵))
115recnd 10671 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
124recnd 10671 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
131, 11, 12fsumsub 15145 . . 3 (𝜑 → Σ𝑘𝐴 (𝐶𝐵) = (Σ𝑘𝐴 𝐶 − Σ𝑘𝐴 𝐵))
1410, 13breqtrd 5094 . 2 (𝜑 → 0 < (Σ𝑘𝐴 𝐶 − Σ𝑘𝐴 𝐵))
151, 4fsumrecl 15093 . . 3 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℝ)
161, 5fsumrecl 15093 . . 3 (𝜑 → Σ𝑘𝐴 𝐶 ∈ ℝ)
1715, 16posdifd 11229 . 2 (𝜑 → (Σ𝑘𝐴 𝐵 < Σ𝑘𝐴 𝐶 ↔ 0 < (Σ𝑘𝐴 𝐶 − Σ𝑘𝐴 𝐵)))
1814, 17mpbird 259 1 (𝜑 → Σ𝑘𝐴 𝐵 < Σ𝑘𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2114  wne 3018  c0 4293   class class class wbr 5068  (class class class)co 7158  Fincfn 8511  cr 10538  0cc0 10539   < clt 10677  cmin 10872  +crp 12392  Σcsu 15044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045
This theorem is referenced by:  lebnumlem3  23569  rrndstprj2  35111  stoweidlem11  42303  stoweidlem26  42318  fourierdlem73  42471  rrndistlt  42582  hoiqssbllem2  42912
  Copyright terms: Public domain W3C validator