MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bccl2 Structured version   Visualization version   GIF version

Theorem bccl2 13965
Description: A binomial coefficient, in its standard domain, is a positive integer. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bccl2 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℕ)

Proof of Theorem bccl2
StepHypRef Expression
1 elfz3nn0 13279 . . 3 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
2 elfzelz 13185 . . 3 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
3 bccl 13964 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0)
41, 2, 3syl2anc 583 . 2 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℕ0)
5 bcrpcl 13950 . . 3 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+)
65rpgt0d 12704 . 2 (𝐾 ∈ (0...𝑁) → 0 < (𝑁C𝐾))
7 elnnnn0b 12207 . 2 ((𝑁C𝐾) ∈ ℕ ↔ ((𝑁C𝐾) ∈ ℕ0 ∧ 0 < (𝑁C𝐾)))
84, 6, 7sylanbrc 582 1 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5070  (class class class)co 7255  0cc0 10802   < clt 10940  cn 11903  0cn0 12163  cz 12249  ...cfz 13168  Ccbc 13944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-fac 13916  df-bc 13945
This theorem is referenced by:  permnn  13968  binom11  15472  binom1dif  15473  bpolydiflem  15692  efaddlem  15730  sylow1lem1  19118  srgbinomlem3  19693  basellem2  26136  basellem3  26137  basellem5  26139  chtublem  26264  bposlem1  26337  bposlem3  26339  bposlem5  26341  bposlem6  26342  chebbnd1lem1  26522  bcm1n  31018  ballotth  32404  bccl2d  39928  lcmineqlem6  39970  mccllem  43028
  Copyright terms: Public domain W3C validator