| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bccl2 | Structured version Visualization version GIF version | ||
| Description: A binomial coefficient, in its standard domain, is a positive integer. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 10-Mar-2014.) |
| Ref | Expression |
|---|---|
| bccl2 | ⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz3nn0 13518 | . . 3 ⊢ (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | |
| 2 | elfzelz 13421 | . . 3 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ) | |
| 3 | bccl 14226 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℕ0) |
| 5 | bcrpcl 14212 | . . 3 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+) | |
| 6 | 5 | rpgt0d 12934 | . 2 ⊢ (𝐾 ∈ (0...𝑁) → 0 < (𝑁C𝐾)) |
| 7 | elnnnn0b 12422 | . 2 ⊢ ((𝑁C𝐾) ∈ ℕ ↔ ((𝑁C𝐾) ∈ ℕ0 ∧ 0 < (𝑁C𝐾))) | |
| 8 | 4, 6, 7 | sylanbrc 583 | 1 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 0cc0 11003 < clt 11143 ℕcn 12122 ℕ0cn0 12378 ℤcz 12465 ...cfz 13404 Ccbc 14206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-rp 12888 df-fz 13405 df-seq 13906 df-fac 14178 df-bc 14207 |
| This theorem is referenced by: permnn 14230 binom11 15736 binom1dif 15737 bpolydiflem 15958 efaddlem 15997 sylow1lem1 19508 srgbinomlem3 20144 basellem2 27017 basellem3 27018 basellem5 27020 chtublem 27147 bposlem1 27220 bposlem3 27222 bposlem5 27224 bposlem6 27225 chebbnd1lem1 27405 bcm1n 32772 ballotth 34546 bccl2d 42023 lcmineqlem6 42066 bcled 42210 bcle2d 42211 mccllem 45636 |
| Copyright terms: Public domain | W3C validator |