| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpnnen1 | Structured version Visualization version GIF version | ||
| Description: One half of rpnnen 16245, where we show an injection from the real numbers to sequences of rational numbers. Specifically, we map a real number 𝑥 to the sequence (𝐹‘𝑥):ℕ⟶ℚ (see rpnnen1lem6 12998) such that ((𝐹‘𝑥)‘𝑘) is the largest rational number with denominator 𝑘 that is strictly less than 𝑥. In this manner, we get a monotonically increasing sequence that converges to 𝑥, and since each sequence converges to a unique real number, this mapping from reals to sequences of rational numbers is injective. Note: The ℕ and ℚ existence hypotheses provide for use with either nnex 12246 and qex 12977, or nnexALT 12242 and qexALT 12980. The proof should not be modified to use any of those 4 theorems. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 16-Jun-2013.) (Revised by NM, 15-Aug-2021.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| rpnnen1.n | ⊢ ℕ ∈ V |
| rpnnen1.q | ⊢ ℚ ∈ V |
| Ref | Expression |
|---|---|
| rpnnen1 | ⊢ ℝ ≼ (ℚ ↑m ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7412 | . . . 4 ⊢ (𝑚 = 𝑛 → (𝑚 / 𝑘) = (𝑛 / 𝑘)) | |
| 2 | 1 | breq1d 5129 | . . 3 ⊢ (𝑚 = 𝑛 → ((𝑚 / 𝑘) < 𝑥 ↔ (𝑛 / 𝑘) < 𝑥)) |
| 3 | 2 | cbvrabv 3426 | . 2 ⊢ {𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥} = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} |
| 4 | oveq2 7413 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → (𝑚 / 𝑗) = (𝑚 / 𝑘)) | |
| 5 | 4 | breq1d 5129 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → ((𝑚 / 𝑗) < 𝑦 ↔ (𝑚 / 𝑘) < 𝑦)) |
| 6 | 5 | rabbidv 3423 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → {𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦} = {𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}) |
| 7 | 6 | supeq1d 9458 | . . . . . 6 ⊢ (𝑗 = 𝑘 → sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) = sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < )) |
| 8 | id 22 | . . . . . 6 ⊢ (𝑗 = 𝑘 → 𝑗 = 𝑘) | |
| 9 | 7, 8 | oveq12d 7423 | . . . . 5 ⊢ (𝑗 = 𝑘 → (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) / 𝑗) = (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) / 𝑘)) |
| 10 | 9 | cbvmptv 5225 | . . . 4 ⊢ (𝑗 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) / 𝑗)) = (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) / 𝑘)) |
| 11 | breq2 5123 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → ((𝑚 / 𝑘) < 𝑦 ↔ (𝑚 / 𝑘) < 𝑥)) | |
| 12 | 11 | rabbidv 3423 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → {𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦} = {𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}) |
| 13 | 12 | supeq1d 9458 | . . . . . 6 ⊢ (𝑦 = 𝑥 → sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) = sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < )) |
| 14 | 13 | oveq1d 7420 | . . . . 5 ⊢ (𝑦 = 𝑥 → (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) / 𝑘) = (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ) / 𝑘)) |
| 15 | 14 | mpteq2dv 5215 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) / 𝑘)) = (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ) / 𝑘))) |
| 16 | 10, 15 | eqtrid 2782 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑗 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) / 𝑗)) = (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ) / 𝑘))) |
| 17 | 16 | cbvmptv 5225 | . 2 ⊢ (𝑦 ∈ ℝ ↦ (𝑗 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) / 𝑗))) = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ) / 𝑘))) |
| 18 | rpnnen1.n | . 2 ⊢ ℕ ∈ V | |
| 19 | rpnnen1.q | . 2 ⊢ ℚ ∈ V | |
| 20 | 3, 17, 18, 19 | rpnnen1lem6 12998 | 1 ⊢ ℝ ≼ (ℚ ↑m ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 {crab 3415 Vcvv 3459 class class class wbr 5119 ↦ cmpt 5201 (class class class)co 7405 ↑m cmap 8840 ≼ cdom 8957 supcsup 9452 ℝcr 11128 < clt 11269 / cdiv 11894 ℕcn 12240 ℤcz 12588 ℚcq 12964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-n0 12502 df-z 12589 df-q 12965 |
| This theorem is referenced by: reexALT 13000 rpnnen 16245 |
| Copyright terms: Public domain | W3C validator |