![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpnnen1 | Structured version Visualization version GIF version |
Description: One half of rpnnen 16170, where we show an injection from the real numbers to sequences of rational numbers. Specifically, we map a real number π₯ to the sequence (πΉβπ₯):ββΆβ (see rpnnen1lem6 12966) such that ((πΉβπ₯)βπ) is the largest rational number with denominator π that is strictly less than π₯. In this manner, we get a monotonically increasing sequence that converges to π₯, and since each sequence converges to a unique real number, this mapping from reals to sequences of rational numbers is injective. Note: The β and β existence hypotheses provide for use with either nnex 12218 and qex 12945, or nnexALT 12214 and qexALT 12948. The proof should not be modified to use any of those 4 theorems. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 16-Jun-2013.) (Revised by NM, 15-Aug-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
rpnnen1.n | β’ β β V |
rpnnen1.q | β’ β β V |
Ref | Expression |
---|---|
rpnnen1 | β’ β βΌ (β βm β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7416 | . . . 4 β’ (π = π β (π / π) = (π / π)) | |
2 | 1 | breq1d 5159 | . . 3 β’ (π = π β ((π / π) < π₯ β (π / π) < π₯)) |
3 | 2 | cbvrabv 3443 | . 2 β’ {π β β€ β£ (π / π) < π₯} = {π β β€ β£ (π / π) < π₯} |
4 | oveq2 7417 | . . . . . . . . 9 β’ (π = π β (π / π) = (π / π)) | |
5 | 4 | breq1d 5159 | . . . . . . . 8 β’ (π = π β ((π / π) < π¦ β (π / π) < π¦)) |
6 | 5 | rabbidv 3441 | . . . . . . 7 β’ (π = π β {π β β€ β£ (π / π) < π¦} = {π β β€ β£ (π / π) < π¦}) |
7 | 6 | supeq1d 9441 | . . . . . 6 β’ (π = π β sup({π β β€ β£ (π / π) < π¦}, β, < ) = sup({π β β€ β£ (π / π) < π¦}, β, < )) |
8 | id 22 | . . . . . 6 β’ (π = π β π = π) | |
9 | 7, 8 | oveq12d 7427 | . . . . 5 β’ (π = π β (sup({π β β€ β£ (π / π) < π¦}, β, < ) / π) = (sup({π β β€ β£ (π / π) < π¦}, β, < ) / π)) |
10 | 9 | cbvmptv 5262 | . . . 4 β’ (π β β β¦ (sup({π β β€ β£ (π / π) < π¦}, β, < ) / π)) = (π β β β¦ (sup({π β β€ β£ (π / π) < π¦}, β, < ) / π)) |
11 | breq2 5153 | . . . . . . . 8 β’ (π¦ = π₯ β ((π / π) < π¦ β (π / π) < π₯)) | |
12 | 11 | rabbidv 3441 | . . . . . . 7 β’ (π¦ = π₯ β {π β β€ β£ (π / π) < π¦} = {π β β€ β£ (π / π) < π₯}) |
13 | 12 | supeq1d 9441 | . . . . . 6 β’ (π¦ = π₯ β sup({π β β€ β£ (π / π) < π¦}, β, < ) = sup({π β β€ β£ (π / π) < π₯}, β, < )) |
14 | 13 | oveq1d 7424 | . . . . 5 β’ (π¦ = π₯ β (sup({π β β€ β£ (π / π) < π¦}, β, < ) / π) = (sup({π β β€ β£ (π / π) < π₯}, β, < ) / π)) |
15 | 14 | mpteq2dv 5251 | . . . 4 β’ (π¦ = π₯ β (π β β β¦ (sup({π β β€ β£ (π / π) < π¦}, β, < ) / π)) = (π β β β¦ (sup({π β β€ β£ (π / π) < π₯}, β, < ) / π))) |
16 | 10, 15 | eqtrid 2785 | . . 3 β’ (π¦ = π₯ β (π β β β¦ (sup({π β β€ β£ (π / π) < π¦}, β, < ) / π)) = (π β β β¦ (sup({π β β€ β£ (π / π) < π₯}, β, < ) / π))) |
17 | 16 | cbvmptv 5262 | . 2 β’ (π¦ β β β¦ (π β β β¦ (sup({π β β€ β£ (π / π) < π¦}, β, < ) / π))) = (π₯ β β β¦ (π β β β¦ (sup({π β β€ β£ (π / π) < π₯}, β, < ) / π))) |
18 | rpnnen1.n | . 2 β’ β β V | |
19 | rpnnen1.q | . 2 β’ β β V | |
20 | 3, 17, 18, 19 | rpnnen1lem6 12966 | 1 β’ β βΌ (β βm β) |
Colors of variables: wff setvar class |
Syntax hints: β wcel 2107 {crab 3433 Vcvv 3475 class class class wbr 5149 β¦ cmpt 5232 (class class class)co 7409 βm cmap 8820 βΌ cdom 8937 supcsup 9435 βcr 11109 < clt 11248 / cdiv 11871 βcn 12212 β€cz 12558 βcq 12932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-n0 12473 df-z 12559 df-q 12933 |
This theorem is referenced by: reexALT 12968 rpnnen 16170 |
Copyright terms: Public domain | W3C validator |