MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1 Structured version   Visualization version   GIF version

Theorem rpnnen1 12967
Description: One half of rpnnen 16170, where we show an injection from the real numbers to sequences of rational numbers. Specifically, we map a real number π‘₯ to the sequence (πΉβ€˜π‘₯):β„•βŸΆβ„š (see rpnnen1lem6 12966) such that ((πΉβ€˜π‘₯)β€˜π‘˜) is the largest rational number with denominator π‘˜ that is strictly less than π‘₯. In this manner, we get a monotonically increasing sequence that converges to π‘₯, and since each sequence converges to a unique real number, this mapping from reals to sequences of rational numbers is injective. Note: The β„• and β„š existence hypotheses provide for use with either nnex 12218 and qex 12945, or nnexALT 12214 and qexALT 12948. The proof should not be modified to use any of those 4 theorems. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 16-Jun-2013.) (Revised by NM, 15-Aug-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rpnnen1.n β„• ∈ V
rpnnen1.q β„š ∈ V
Assertion
Ref Expression
rpnnen1 ℝ β‰Ό (β„š ↑m β„•)

Proof of Theorem rpnnen1
Dummy variables 𝑗 π‘˜ π‘š 𝑛 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7416 . . . 4 (π‘š = 𝑛 β†’ (π‘š / π‘˜) = (𝑛 / π‘˜))
21breq1d 5159 . . 3 (π‘š = 𝑛 β†’ ((π‘š / π‘˜) < π‘₯ ↔ (𝑛 / π‘˜) < π‘₯))
32cbvrabv 3443 . 2 {π‘š ∈ β„€ ∣ (π‘š / π‘˜) < π‘₯} = {𝑛 ∈ β„€ ∣ (𝑛 / π‘˜) < π‘₯}
4 oveq2 7417 . . . . . . . . 9 (𝑗 = π‘˜ β†’ (π‘š / 𝑗) = (π‘š / π‘˜))
54breq1d 5159 . . . . . . . 8 (𝑗 = π‘˜ β†’ ((π‘š / 𝑗) < 𝑦 ↔ (π‘š / π‘˜) < 𝑦))
65rabbidv 3441 . . . . . . 7 (𝑗 = π‘˜ β†’ {π‘š ∈ β„€ ∣ (π‘š / 𝑗) < 𝑦} = {π‘š ∈ β„€ ∣ (π‘š / π‘˜) < 𝑦})
76supeq1d 9441 . . . . . 6 (𝑗 = π‘˜ β†’ sup({π‘š ∈ β„€ ∣ (π‘š / 𝑗) < 𝑦}, ℝ, < ) = sup({π‘š ∈ β„€ ∣ (π‘š / π‘˜) < 𝑦}, ℝ, < ))
8 id 22 . . . . . 6 (𝑗 = π‘˜ β†’ 𝑗 = π‘˜)
97, 8oveq12d 7427 . . . . 5 (𝑗 = π‘˜ β†’ (sup({π‘š ∈ β„€ ∣ (π‘š / 𝑗) < 𝑦}, ℝ, < ) / 𝑗) = (sup({π‘š ∈ β„€ ∣ (π‘š / π‘˜) < 𝑦}, ℝ, < ) / π‘˜))
109cbvmptv 5262 . . . 4 (𝑗 ∈ β„• ↦ (sup({π‘š ∈ β„€ ∣ (π‘š / 𝑗) < 𝑦}, ℝ, < ) / 𝑗)) = (π‘˜ ∈ β„• ↦ (sup({π‘š ∈ β„€ ∣ (π‘š / π‘˜) < 𝑦}, ℝ, < ) / π‘˜))
11 breq2 5153 . . . . . . . 8 (𝑦 = π‘₯ β†’ ((π‘š / π‘˜) < 𝑦 ↔ (π‘š / π‘˜) < π‘₯))
1211rabbidv 3441 . . . . . . 7 (𝑦 = π‘₯ β†’ {π‘š ∈ β„€ ∣ (π‘š / π‘˜) < 𝑦} = {π‘š ∈ β„€ ∣ (π‘š / π‘˜) < π‘₯})
1312supeq1d 9441 . . . . . 6 (𝑦 = π‘₯ β†’ sup({π‘š ∈ β„€ ∣ (π‘š / π‘˜) < 𝑦}, ℝ, < ) = sup({π‘š ∈ β„€ ∣ (π‘š / π‘˜) < π‘₯}, ℝ, < ))
1413oveq1d 7424 . . . . 5 (𝑦 = π‘₯ β†’ (sup({π‘š ∈ β„€ ∣ (π‘š / π‘˜) < 𝑦}, ℝ, < ) / π‘˜) = (sup({π‘š ∈ β„€ ∣ (π‘š / π‘˜) < π‘₯}, ℝ, < ) / π‘˜))
1514mpteq2dv 5251 . . . 4 (𝑦 = π‘₯ β†’ (π‘˜ ∈ β„• ↦ (sup({π‘š ∈ β„€ ∣ (π‘š / π‘˜) < 𝑦}, ℝ, < ) / π‘˜)) = (π‘˜ ∈ β„• ↦ (sup({π‘š ∈ β„€ ∣ (π‘š / π‘˜) < π‘₯}, ℝ, < ) / π‘˜)))
1610, 15eqtrid 2785 . . 3 (𝑦 = π‘₯ β†’ (𝑗 ∈ β„• ↦ (sup({π‘š ∈ β„€ ∣ (π‘š / 𝑗) < 𝑦}, ℝ, < ) / 𝑗)) = (π‘˜ ∈ β„• ↦ (sup({π‘š ∈ β„€ ∣ (π‘š / π‘˜) < π‘₯}, ℝ, < ) / π‘˜)))
1716cbvmptv 5262 . 2 (𝑦 ∈ ℝ ↦ (𝑗 ∈ β„• ↦ (sup({π‘š ∈ β„€ ∣ (π‘š / 𝑗) < 𝑦}, ℝ, < ) / 𝑗))) = (π‘₯ ∈ ℝ ↦ (π‘˜ ∈ β„• ↦ (sup({π‘š ∈ β„€ ∣ (π‘š / π‘˜) < π‘₯}, ℝ, < ) / π‘˜)))
18 rpnnen1.n . 2 β„• ∈ V
19 rpnnen1.q . 2 β„š ∈ V
203, 17, 18, 19rpnnen1lem6 12966 1 ℝ β‰Ό (β„š ↑m β„•)
Colors of variables: wff setvar class
Syntax hints:   ∈ wcel 2107  {crab 3433  Vcvv 3475   class class class wbr 5149   ↦ cmpt 5232  (class class class)co 7409   ↑m cmap 8820   β‰Ό cdom 8937  supcsup 9435  β„cr 11109   < clt 11248   / cdiv 11871  β„•cn 12212  β„€cz 12558  β„šcq 12932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-n0 12473  df-z 12559  df-q 12933
This theorem is referenced by:  reexALT  12968  rpnnen  16170
  Copyright terms: Public domain W3C validator