Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpnnen1 | Structured version Visualization version GIF version |
Description: One half of rpnnen 15946, where we show an injection from the real numbers to sequences of rational numbers. Specifically, we map a real number 𝑥 to the sequence (𝐹‘𝑥):ℕ⟶ℚ (see rpnnen1lem6 12732) such that ((𝐹‘𝑥)‘𝑘) is the largest rational number with denominator 𝑘 that is strictly less than 𝑥. In this manner, we get a monotonically increasing sequence that converges to 𝑥, and since each sequence converges to a unique real number, this mapping from reals to sequences of rational numbers is injective. Note: The ℕ and ℚ existence hypotheses provide for use with either nnex 11989 and qex 12711, or nnexALT 11985 and qexALT 12714. The proof should not be modified to use any of those 4 theorems. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 16-Jun-2013.) (Revised by NM, 15-Aug-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
rpnnen1.n | ⊢ ℕ ∈ V |
rpnnen1.q | ⊢ ℚ ∈ V |
Ref | Expression |
---|---|
rpnnen1 | ⊢ ℝ ≼ (ℚ ↑m ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7274 | . . . 4 ⊢ (𝑚 = 𝑛 → (𝑚 / 𝑘) = (𝑛 / 𝑘)) | |
2 | 1 | breq1d 5083 | . . 3 ⊢ (𝑚 = 𝑛 → ((𝑚 / 𝑘) < 𝑥 ↔ (𝑛 / 𝑘) < 𝑥)) |
3 | 2 | cbvrabv 3423 | . 2 ⊢ {𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥} = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} |
4 | oveq2 7275 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → (𝑚 / 𝑗) = (𝑚 / 𝑘)) | |
5 | 4 | breq1d 5083 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → ((𝑚 / 𝑗) < 𝑦 ↔ (𝑚 / 𝑘) < 𝑦)) |
6 | 5 | rabbidv 3411 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → {𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦} = {𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}) |
7 | 6 | supeq1d 9192 | . . . . . 6 ⊢ (𝑗 = 𝑘 → sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) = sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < )) |
8 | id 22 | . . . . . 6 ⊢ (𝑗 = 𝑘 → 𝑗 = 𝑘) | |
9 | 7, 8 | oveq12d 7285 | . . . . 5 ⊢ (𝑗 = 𝑘 → (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) / 𝑗) = (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) / 𝑘)) |
10 | 9 | cbvmptv 5186 | . . . 4 ⊢ (𝑗 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) / 𝑗)) = (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) / 𝑘)) |
11 | breq2 5077 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → ((𝑚 / 𝑘) < 𝑦 ↔ (𝑚 / 𝑘) < 𝑥)) | |
12 | 11 | rabbidv 3411 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → {𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦} = {𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}) |
13 | 12 | supeq1d 9192 | . . . . . 6 ⊢ (𝑦 = 𝑥 → sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) = sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < )) |
14 | 13 | oveq1d 7282 | . . . . 5 ⊢ (𝑦 = 𝑥 → (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) / 𝑘) = (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ) / 𝑘)) |
15 | 14 | mpteq2dv 5175 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) / 𝑘)) = (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ) / 𝑘))) |
16 | 10, 15 | eqtrid 2790 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑗 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) / 𝑗)) = (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ) / 𝑘))) |
17 | 16 | cbvmptv 5186 | . 2 ⊢ (𝑦 ∈ ℝ ↦ (𝑗 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) / 𝑗))) = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ) / 𝑘))) |
18 | rpnnen1.n | . 2 ⊢ ℕ ∈ V | |
19 | rpnnen1.q | . 2 ⊢ ℚ ∈ V | |
20 | 3, 17, 18, 19 | rpnnen1lem6 12732 | 1 ⊢ ℝ ≼ (ℚ ↑m ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 {crab 3068 Vcvv 3429 class class class wbr 5073 ↦ cmpt 5156 (class class class)co 7267 ↑m cmap 8602 ≼ cdom 8718 supcsup 9186 ℝcr 10880 < clt 11019 / cdiv 11642 ℕcn 11983 ℤcz 12329 ℚcq 12698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-pre-sup 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-er 8485 df-map 8604 df-en 8721 df-dom 8722 df-sdom 8723 df-sup 9188 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-n0 12244 df-z 12330 df-q 12699 |
This theorem is referenced by: reexALT 12734 rpnnen 15946 |
Copyright terms: Public domain | W3C validator |