MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1 Structured version   Visualization version   GIF version

Theorem rpnnen1 12652
Description: One half of rpnnen 15864, where we show an injection from the real numbers to sequences of rational numbers. Specifically, we map a real number 𝑥 to the sequence (𝐹𝑥):ℕ⟶ℚ (see rpnnen1lem6 12651) such that ((𝐹𝑥)‘𝑘) is the largest rational number with denominator 𝑘 that is strictly less than 𝑥. In this manner, we get a monotonically increasing sequence that converges to 𝑥, and since each sequence converges to a unique real number, this mapping from reals to sequences of rational numbers is injective. Note: The and existence hypotheses provide for use with either nnex 11909 and qex 12630, or nnexALT 11905 and qexALT 12633. The proof should not be modified to use any of those 4 theorems. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 16-Jun-2013.) (Revised by NM, 15-Aug-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rpnnen1.n ℕ ∈ V
rpnnen1.q ℚ ∈ V
Assertion
Ref Expression
rpnnen1 ℝ ≼ (ℚ ↑m ℕ)

Proof of Theorem rpnnen1
Dummy variables 𝑗 𝑘 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7262 . . . 4 (𝑚 = 𝑛 → (𝑚 / 𝑘) = (𝑛 / 𝑘))
21breq1d 5080 . . 3 (𝑚 = 𝑛 → ((𝑚 / 𝑘) < 𝑥 ↔ (𝑛 / 𝑘) < 𝑥))
32cbvrabv 3416 . 2 {𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥} = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
4 oveq2 7263 . . . . . . . . 9 (𝑗 = 𝑘 → (𝑚 / 𝑗) = (𝑚 / 𝑘))
54breq1d 5080 . . . . . . . 8 (𝑗 = 𝑘 → ((𝑚 / 𝑗) < 𝑦 ↔ (𝑚 / 𝑘) < 𝑦))
65rabbidv 3404 . . . . . . 7 (𝑗 = 𝑘 → {𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦} = {𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦})
76supeq1d 9135 . . . . . 6 (𝑗 = 𝑘 → sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) = sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ))
8 id 22 . . . . . 6 (𝑗 = 𝑘𝑗 = 𝑘)
97, 8oveq12d 7273 . . . . 5 (𝑗 = 𝑘 → (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) / 𝑗) = (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) / 𝑘))
109cbvmptv 5183 . . . 4 (𝑗 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) / 𝑗)) = (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) / 𝑘))
11 breq2 5074 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑚 / 𝑘) < 𝑦 ↔ (𝑚 / 𝑘) < 𝑥))
1211rabbidv 3404 . . . . . . 7 (𝑦 = 𝑥 → {𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦} = {𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥})
1312supeq1d 9135 . . . . . 6 (𝑦 = 𝑥 → sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) = sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ))
1413oveq1d 7270 . . . . 5 (𝑦 = 𝑥 → (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) / 𝑘) = (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ) / 𝑘))
1514mpteq2dv 5172 . . . 4 (𝑦 = 𝑥 → (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) / 𝑘)) = (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ) / 𝑘)))
1610, 15eqtrid 2790 . . 3 (𝑦 = 𝑥 → (𝑗 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) / 𝑗)) = (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ) / 𝑘)))
1716cbvmptv 5183 . 2 (𝑦 ∈ ℝ ↦ (𝑗 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) / 𝑗))) = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ) / 𝑘)))
18 rpnnen1.n . 2 ℕ ∈ V
19 rpnnen1.q . 2 ℚ ∈ V
203, 17, 18, 19rpnnen1lem6 12651 1 ℝ ≼ (ℚ ↑m ℕ)
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  {crab 3067  Vcvv 3422   class class class wbr 5070  cmpt 5153  (class class class)co 7255  m cmap 8573  cdom 8689  supcsup 9129  cr 10801   < clt 10940   / cdiv 11562  cn 11903  cz 12249  cq 12617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-q 12618
This theorem is referenced by:  reexALT  12653  rpnnen  15864
  Copyright terms: Public domain W3C validator