MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1 Structured version   Visualization version   GIF version

Theorem rpnnen1 12918
Description: One half of rpnnen 16171, where we show an injection from the real numbers to sequences of rational numbers. Specifically, we map a real number 𝑥 to the sequence (𝐹𝑥):ℕ⟶ℚ (see rpnnen1lem6 12917) such that ((𝐹𝑥)‘𝑘) is the largest rational number with denominator 𝑘 that is strictly less than 𝑥. In this manner, we get a monotonically increasing sequence that converges to 𝑥, and since each sequence converges to a unique real number, this mapping from reals to sequences of rational numbers is injective. Note: The and existence hypotheses provide for use with either nnex 12168 and qex 12896, or nnexALT 12164 and qexALT 12899. The proof should not be modified to use any of those 4 theorems. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 16-Jun-2013.) (Revised by NM, 15-Aug-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rpnnen1.n ℕ ∈ V
rpnnen1.q ℚ ∈ V
Assertion
Ref Expression
rpnnen1 ℝ ≼ (ℚ ↑m ℕ)

Proof of Theorem rpnnen1
Dummy variables 𝑗 𝑘 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7376 . . . 4 (𝑚 = 𝑛 → (𝑚 / 𝑘) = (𝑛 / 𝑘))
21breq1d 5112 . . 3 (𝑚 = 𝑛 → ((𝑚 / 𝑘) < 𝑥 ↔ (𝑛 / 𝑘) < 𝑥))
32cbvrabv 3413 . 2 {𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥} = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
4 oveq2 7377 . . . . . . . . 9 (𝑗 = 𝑘 → (𝑚 / 𝑗) = (𝑚 / 𝑘))
54breq1d 5112 . . . . . . . 8 (𝑗 = 𝑘 → ((𝑚 / 𝑗) < 𝑦 ↔ (𝑚 / 𝑘) < 𝑦))
65rabbidv 3410 . . . . . . 7 (𝑗 = 𝑘 → {𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦} = {𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦})
76supeq1d 9373 . . . . . 6 (𝑗 = 𝑘 → sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) = sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ))
8 id 22 . . . . . 6 (𝑗 = 𝑘𝑗 = 𝑘)
97, 8oveq12d 7387 . . . . 5 (𝑗 = 𝑘 → (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) / 𝑗) = (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) / 𝑘))
109cbvmptv 5206 . . . 4 (𝑗 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) / 𝑗)) = (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) / 𝑘))
11 breq2 5106 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑚 / 𝑘) < 𝑦 ↔ (𝑚 / 𝑘) < 𝑥))
1211rabbidv 3410 . . . . . . 7 (𝑦 = 𝑥 → {𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦} = {𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥})
1312supeq1d 9373 . . . . . 6 (𝑦 = 𝑥 → sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) = sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ))
1413oveq1d 7384 . . . . 5 (𝑦 = 𝑥 → (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) / 𝑘) = (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ) / 𝑘))
1514mpteq2dv 5196 . . . 4 (𝑦 = 𝑥 → (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑦}, ℝ, < ) / 𝑘)) = (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ) / 𝑘)))
1610, 15eqtrid 2776 . . 3 (𝑦 = 𝑥 → (𝑗 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) / 𝑗)) = (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ) / 𝑘)))
1716cbvmptv 5206 . 2 (𝑦 ∈ ℝ ↦ (𝑗 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑗) < 𝑦}, ℝ, < ) / 𝑗))) = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup({𝑚 ∈ ℤ ∣ (𝑚 / 𝑘) < 𝑥}, ℝ, < ) / 𝑘)))
18 rpnnen1.n . 2 ℕ ∈ V
19 rpnnen1.q . 2 ℚ ∈ V
203, 17, 18, 19rpnnen1lem6 12917 1 ℝ ≼ (ℚ ↑m ℕ)
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  {crab 3402  Vcvv 3444   class class class wbr 5102  cmpt 5183  (class class class)co 7369  m cmap 8776  cdom 8893  supcsup 9367  cr 11043   < clt 11184   / cdiv 11811  cn 12162  cz 12505  cq 12883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-q 12884
This theorem is referenced by:  reexALT  12919  rpnnen  16171
  Copyright terms: Public domain W3C validator