![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efopnlem1 | Structured version Visualization version GIF version |
Description: Lemma for efopn 26608. (Contributed by Mario Carneiro, 23-Apr-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
Ref | Expression |
---|---|
efopnlem1 | β’ (((π β β+ β§ π < Ο) β§ π΄ β (0(ballβ(abs β β ))π )) β (absβ(ββπ΄)) < Ο) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . . . . . . 7 β’ (((π β β+ β§ π < Ο) β§ π΄ β (0(ballβ(abs β β ))π )) β π΄ β (0(ballβ(abs β β ))π )) | |
2 | rpxr 13013 | . . . . . . . . 9 β’ (π β β+ β π β β*) | |
3 | 2 | ad2antrr 724 | . . . . . . . 8 β’ (((π β β+ β§ π < Ο) β§ π΄ β (0(ballβ(abs β β ))π )) β π β β*) |
4 | eqid 2725 | . . . . . . . . 9 β’ (abs β β ) = (abs β β ) | |
5 | 4 | cnbl0 24706 | . . . . . . . 8 β’ (π β β* β (β‘abs β (0[,)π )) = (0(ballβ(abs β β ))π )) |
6 | 3, 5 | syl 17 | . . . . . . 7 β’ (((π β β+ β§ π < Ο) β§ π΄ β (0(ballβ(abs β β ))π )) β (β‘abs β (0[,)π )) = (0(ballβ(abs β β ))π )) |
7 | 1, 6 | eleqtrrd 2828 | . . . . . 6 β’ (((π β β+ β§ π < Ο) β§ π΄ β (0(ballβ(abs β β ))π )) β π΄ β (β‘abs β (0[,)π ))) |
8 | absf 15314 | . . . . . . . 8 β’ abs:ββΆβ | |
9 | ffn 6715 | . . . . . . . 8 β’ (abs:ββΆβ β abs Fn β) | |
10 | elpreima 7060 | . . . . . . . 8 β’ (abs Fn β β (π΄ β (β‘abs β (0[,)π )) β (π΄ β β β§ (absβπ΄) β (0[,)π )))) | |
11 | 8, 9, 10 | mp2b 10 | . . . . . . 7 β’ (π΄ β (β‘abs β (0[,)π )) β (π΄ β β β§ (absβπ΄) β (0[,)π ))) |
12 | 11 | simplbi 496 | . . . . . 6 β’ (π΄ β (β‘abs β (0[,)π )) β π΄ β β) |
13 | 7, 12 | syl 17 | . . . . 5 β’ (((π β β+ β§ π < Ο) β§ π΄ β (0(ballβ(abs β β ))π )) β π΄ β β) |
14 | 13 | imcld 15172 | . . . 4 β’ (((π β β+ β§ π < Ο) β§ π΄ β (0(ballβ(abs β β ))π )) β (ββπ΄) β β) |
15 | 14 | recnd 11270 | . . 3 β’ (((π β β+ β§ π < Ο) β§ π΄ β (0(ballβ(abs β β ))π )) β (ββπ΄) β β) |
16 | 15 | abscld 15413 | . 2 β’ (((π β β+ β§ π < Ο) β§ π΄ β (0(ballβ(abs β β ))π )) β (absβ(ββπ΄)) β β) |
17 | rpre 13012 | . . 3 β’ (π β β+ β π β β) | |
18 | 17 | ad2antrr 724 | . 2 β’ (((π β β+ β§ π < Ο) β§ π΄ β (0(ballβ(abs β β ))π )) β π β β) |
19 | pire 26409 | . . 3 β’ Ο β β | |
20 | 19 | a1i 11 | . 2 β’ (((π β β+ β§ π < Ο) β§ π΄ β (0(ballβ(abs β β ))π )) β Ο β β) |
21 | 13 | abscld 15413 | . . 3 β’ (((π β β+ β§ π < Ο) β§ π΄ β (0(ballβ(abs β β ))π )) β (absβπ΄) β β) |
22 | absimle 15286 | . . . 4 β’ (π΄ β β β (absβ(ββπ΄)) β€ (absβπ΄)) | |
23 | 13, 22 | syl 17 | . . 3 β’ (((π β β+ β§ π < Ο) β§ π΄ β (0(ballβ(abs β β ))π )) β (absβ(ββπ΄)) β€ (absβπ΄)) |
24 | 11 | simprbi 495 | . . . . . 6 β’ (π΄ β (β‘abs β (0[,)π )) β (absβπ΄) β (0[,)π )) |
25 | 7, 24 | syl 17 | . . . . 5 β’ (((π β β+ β§ π < Ο) β§ π΄ β (0(ballβ(abs β β ))π )) β (absβπ΄) β (0[,)π )) |
26 | 0re 11244 | . . . . . 6 β’ 0 β β | |
27 | elico2 13418 | . . . . . 6 β’ ((0 β β β§ π β β*) β ((absβπ΄) β (0[,)π ) β ((absβπ΄) β β β§ 0 β€ (absβπ΄) β§ (absβπ΄) < π ))) | |
28 | 26, 3, 27 | sylancr 585 | . . . . 5 β’ (((π β β+ β§ π < Ο) β§ π΄ β (0(ballβ(abs β β ))π )) β ((absβπ΄) β (0[,)π ) β ((absβπ΄) β β β§ 0 β€ (absβπ΄) β§ (absβπ΄) < π ))) |
29 | 25, 28 | mpbid 231 | . . . 4 β’ (((π β β+ β§ π < Ο) β§ π΄ β (0(ballβ(abs β β ))π )) β ((absβπ΄) β β β§ 0 β€ (absβπ΄) β§ (absβπ΄) < π )) |
30 | 29 | simp3d 1141 | . . 3 β’ (((π β β+ β§ π < Ο) β§ π΄ β (0(ballβ(abs β β ))π )) β (absβπ΄) < π ) |
31 | 16, 21, 18, 23, 30 | lelttrd 11400 | . 2 β’ (((π β β+ β§ π < Ο) β§ π΄ β (0(ballβ(abs β β ))π )) β (absβ(ββπ΄)) < π ) |
32 | simplr 767 | . 2 β’ (((π β β+ β§ π < Ο) β§ π΄ β (0(ballβ(abs β β ))π )) β π < Ο) | |
33 | 16, 18, 20, 31, 32 | lttrd 11403 | 1 β’ (((π β β+ β§ π < Ο) β§ π΄ β (0(ballβ(abs β β ))π )) β (absβ(ββπ΄)) < Ο) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 class class class wbr 5141 β‘ccnv 5669 β cima 5673 β ccom 5674 Fn wfn 6536 βΆwf 6537 βcfv 6541 (class class class)co 7414 βcc 11134 βcr 11135 0cc0 11136 β*cxr 11275 < clt 11276 β€ cle 11277 β cmin 11472 β+crp 13004 [,)cico 13356 βcim 15075 abscabs 15211 Οcpi 16040 ballcbl 21268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-inf2 9662 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 ax-addf 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-iin 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-se 5626 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7867 df-1st 7989 df-2nd 7990 df-supp 8162 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-2o 8484 df-er 8721 df-map 8843 df-pm 8844 df-ixp 8913 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fsupp 9384 df-fi 9432 df-sup 9463 df-inf 9464 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-q 12961 df-rp 13005 df-xneg 13122 df-xadd 13123 df-xmul 13124 df-ioo 13358 df-ioc 13359 df-ico 13360 df-icc 13361 df-fz 13515 df-fzo 13658 df-fl 13787 df-seq 13997 df-exp 14057 df-fac 14263 df-bc 14292 df-hash 14320 df-shft 15044 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-limsup 15445 df-clim 15462 df-rlim 15463 df-sum 15663 df-ef 16041 df-sin 16043 df-cos 16044 df-pi 16046 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-starv 17245 df-sca 17246 df-vsca 17247 df-ip 17248 df-tset 17249 df-ple 17250 df-ds 17252 df-unif 17253 df-hom 17254 df-cco 17255 df-rest 17401 df-topn 17402 df-0g 17420 df-gsum 17421 df-topgen 17422 df-pt 17423 df-prds 17426 df-xrs 17481 df-qtop 17486 df-imas 17487 df-xps 17489 df-mre 17563 df-mrc 17564 df-acs 17566 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-submnd 18738 df-mulg 19026 df-cntz 19270 df-cmn 19739 df-psmet 21273 df-xmet 21274 df-met 21275 df-bl 21276 df-mopn 21277 df-fbas 21278 df-fg 21279 df-cnfld 21282 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22865 df-cld 22939 df-ntr 22940 df-cls 22941 df-nei 23018 df-lp 23056 df-perf 23057 df-cn 23147 df-cnp 23148 df-haus 23235 df-tx 23482 df-hmeo 23675 df-fil 23766 df-fm 23858 df-flim 23859 df-flf 23860 df-xms 24242 df-ms 24243 df-tms 24244 df-cncf 24814 df-limc 25811 df-dv 25812 |
This theorem is referenced by: efopnlem2 26607 |
Copyright terms: Public domain | W3C validator |