| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efopnlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for efopn 26619. (Contributed by Mario Carneiro, 23-Apr-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
| Ref | Expression |
|---|---|
| efopnlem1 | ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (abs‘(ℑ‘𝐴)) < π) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . . 7 ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) | |
| 2 | rpxr 13018 | . . . . . . . . 9 ⊢ (𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ*) | |
| 3 | 2 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → 𝑅 ∈ ℝ*) |
| 4 | eqid 2735 | . . . . . . . . 9 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
| 5 | 4 | cnbl0 24712 | . . . . . . . 8 ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,)𝑅)) = (0(ball‘(abs ∘ − ))𝑅)) |
| 6 | 3, 5 | syl 17 | . . . . . . 7 ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (◡abs “ (0[,)𝑅)) = (0(ball‘(abs ∘ − ))𝑅)) |
| 7 | 1, 6 | eleqtrrd 2837 | . . . . . 6 ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → 𝐴 ∈ (◡abs “ (0[,)𝑅))) |
| 8 | absf 15356 | . . . . . . . 8 ⊢ abs:ℂ⟶ℝ | |
| 9 | ffn 6706 | . . . . . . . 8 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
| 10 | elpreima 7048 | . . . . . . . 8 ⊢ (abs Fn ℂ → (𝐴 ∈ (◡abs “ (0[,)𝑅)) ↔ (𝐴 ∈ ℂ ∧ (abs‘𝐴) ∈ (0[,)𝑅)))) | |
| 11 | 8, 9, 10 | mp2b 10 | . . . . . . 7 ⊢ (𝐴 ∈ (◡abs “ (0[,)𝑅)) ↔ (𝐴 ∈ ℂ ∧ (abs‘𝐴) ∈ (0[,)𝑅))) |
| 12 | 11 | simplbi 497 | . . . . . 6 ⊢ (𝐴 ∈ (◡abs “ (0[,)𝑅)) → 𝐴 ∈ ℂ) |
| 13 | 7, 12 | syl 17 | . . . . 5 ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → 𝐴 ∈ ℂ) |
| 14 | 13 | imcld 15214 | . . . 4 ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (ℑ‘𝐴) ∈ ℝ) |
| 15 | 14 | recnd 11263 | . . 3 ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (ℑ‘𝐴) ∈ ℂ) |
| 16 | 15 | abscld 15455 | . 2 ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (abs‘(ℑ‘𝐴)) ∈ ℝ) |
| 17 | rpre 13017 | . . 3 ⊢ (𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ) | |
| 18 | 17 | ad2antrr 726 | . 2 ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → 𝑅 ∈ ℝ) |
| 19 | pire 26418 | . . 3 ⊢ π ∈ ℝ | |
| 20 | 19 | a1i 11 | . 2 ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → π ∈ ℝ) |
| 21 | 13 | abscld 15455 | . . 3 ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (abs‘𝐴) ∈ ℝ) |
| 22 | absimle 15328 | . . . 4 ⊢ (𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) ≤ (abs‘𝐴)) | |
| 23 | 13, 22 | syl 17 | . . 3 ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (abs‘(ℑ‘𝐴)) ≤ (abs‘𝐴)) |
| 24 | 11 | simprbi 496 | . . . . . 6 ⊢ (𝐴 ∈ (◡abs “ (0[,)𝑅)) → (abs‘𝐴) ∈ (0[,)𝑅)) |
| 25 | 7, 24 | syl 17 | . . . . 5 ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (abs‘𝐴) ∈ (0[,)𝑅)) |
| 26 | 0re 11237 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 27 | elico2 13427 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝐴) ∈ (0[,)𝑅) ↔ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴) ∧ (abs‘𝐴) < 𝑅))) | |
| 28 | 26, 3, 27 | sylancr 587 | . . . . 5 ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → ((abs‘𝐴) ∈ (0[,)𝑅) ↔ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴) ∧ (abs‘𝐴) < 𝑅))) |
| 29 | 25, 28 | mpbid 232 | . . . 4 ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴) ∧ (abs‘𝐴) < 𝑅)) |
| 30 | 29 | simp3d 1144 | . . 3 ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (abs‘𝐴) < 𝑅) |
| 31 | 16, 21, 18, 23, 30 | lelttrd 11393 | . 2 ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (abs‘(ℑ‘𝐴)) < 𝑅) |
| 32 | simplr 768 | . 2 ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → 𝑅 < π) | |
| 33 | 16, 18, 20, 31, 32 | lttrd 11396 | 1 ⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (abs‘(ℑ‘𝐴)) < π) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ◡ccnv 5653 “ cima 5657 ∘ ccom 5658 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 ℝcr 11128 0cc0 11129 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 − cmin 11466 ℝ+crp 13008 [,)cico 13364 ℑcim 15117 abscabs 15253 πcpi 16082 ballcbl 21302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ioc 13367 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-fac 14292 df-bc 14321 df-hash 14349 df-shft 15086 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-sum 15703 df-ef 16083 df-sin 16085 df-cos 16086 df-pi 16088 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-fbas 21312 df-fg 21313 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-lp 23074 df-perf 23075 df-cn 23165 df-cnp 23166 df-haus 23253 df-tx 23500 df-hmeo 23693 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-xms 24259 df-ms 24260 df-tms 24261 df-cncf 24822 df-limc 25819 df-dv 25820 |
| This theorem is referenced by: efopnlem2 26618 |
| Copyright terms: Public domain | W3C validator |