| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > muladdmodid | Structured version Visualization version GIF version | ||
| Description: The sum of a positive real number less than an upper bound and the product of an integer and the upper bound is the positive real number modulo the upper bound. (Contributed by AV, 5-Jul-2020.) |
| Ref | Expression |
|---|---|
| muladdmodid | ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ∧ 𝐴 ∈ (0[,)𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red 11246 | . . . . 5 ⊢ (𝑀 ∈ ℝ+ → 0 ∈ ℝ) | |
| 2 | rpxr 13026 | . . . . 5 ⊢ (𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ*) | |
| 3 | elico2 13433 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝑀 ∈ ℝ+ → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀))) |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀))) |
| 6 | zcn 12601 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 7 | rpcn 13027 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℝ+ → 𝑀 ∈ ℂ) | |
| 8 | mulcl 11221 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 · 𝑀) ∈ ℂ) | |
| 9 | 6, 7, 8 | syl2an 596 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝑁 · 𝑀) ∈ ℂ) |
| 10 | 9 | adantr 480 | . . . . . . 7 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (𝑁 · 𝑀) ∈ ℂ) |
| 11 | recn 11227 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 12 | 11 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀) → 𝐴 ∈ ℂ) |
| 13 | 12 | adantl 481 | . . . . . . 7 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → 𝐴 ∈ ℂ) |
| 14 | 10, 13 | addcomd 11445 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → ((𝑁 · 𝑀) + 𝐴) = (𝐴 + (𝑁 · 𝑀))) |
| 15 | 14 | oveq1d 7428 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = ((𝐴 + (𝑁 · 𝑀)) mod 𝑀)) |
| 16 | simp1 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀) → 𝐴 ∈ ℝ) | |
| 17 | 16 | adantl 481 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → 𝐴 ∈ ℝ) |
| 18 | simpr 484 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ+) | |
| 19 | 18 | adantr 480 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → 𝑀 ∈ ℝ+) |
| 20 | simpll 766 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → 𝑁 ∈ ℤ) | |
| 21 | modcyc 13928 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((𝐴 + (𝑁 · 𝑀)) mod 𝑀) = (𝐴 mod 𝑀)) | |
| 22 | 17, 19, 20, 21 | syl3anc 1372 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → ((𝐴 + (𝑁 · 𝑀)) mod 𝑀) = (𝐴 mod 𝑀)) |
| 23 | 18, 16 | anim12ci 614 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+)) |
| 24 | 3simpc 1150 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀) → (0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) | |
| 25 | 24 | adantl 481 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) |
| 26 | modid 13918 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (𝐴 mod 𝑀) = 𝐴) | |
| 27 | 23, 25, 26 | syl2anc 584 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (𝐴 mod 𝑀) = 𝐴) |
| 28 | 15, 22, 27 | 3eqtrd 2773 | . . . 4 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) |
| 29 | 28 | ex 412 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)) |
| 30 | 5, 29 | sylbid 240 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝐴 ∈ (0[,)𝑀) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)) |
| 31 | 30 | 3impia 1117 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ∧ 𝐴 ∈ (0[,)𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 (class class class)co 7413 ℂcc 11135 ℝcr 11136 0cc0 11137 + caddc 11140 · cmul 11142 ℝ*cxr 11276 < clt 11277 ≤ cle 11278 ℤcz 12596 ℝ+crp 13016 [,)cico 13371 mod cmo 13891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-inf 9465 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-ico 13375 df-fl 13814 df-mod 13892 |
| This theorem is referenced by: modmuladd 13936 addmodid 13942 mod42tp1mod8 47547 |
| Copyright terms: Public domain | W3C validator |