MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muladdmodid Structured version   Visualization version   GIF version

Theorem muladdmodid 13872
Description: The sum of a positive real number less than an upper bound and the product of an integer and the upper bound is the positive real number modulo the upper bound. (Contributed by AV, 5-Jul-2020.)
Assertion
Ref Expression
muladdmodid ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+𝐴 ∈ (0[,)𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)

Proof of Theorem muladdmodid
StepHypRef Expression
1 0red 11213 . . . . 5 (𝑀 ∈ ℝ+ → 0 ∈ ℝ)
2 rpxr 12979 . . . . 5 (𝑀 ∈ ℝ+𝑀 ∈ ℝ*)
3 elico2 13384 . . . . 5 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)))
41, 2, 3syl2anc 585 . . . 4 (𝑀 ∈ ℝ+ → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)))
54adantl 483 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)))
6 zcn 12559 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
7 rpcn 12980 . . . . . . . . 9 (𝑀 ∈ ℝ+𝑀 ∈ ℂ)
8 mulcl 11190 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 · 𝑀) ∈ ℂ)
96, 7, 8syl2an 597 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝑁 · 𝑀) ∈ ℂ)
109adantr 482 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → (𝑁 · 𝑀) ∈ ℂ)
11 recn 11196 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
12113ad2ant1 1134 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀) → 𝐴 ∈ ℂ)
1312adantl 483 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → 𝐴 ∈ ℂ)
1410, 13addcomd 11412 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → ((𝑁 · 𝑀) + 𝐴) = (𝐴 + (𝑁 · 𝑀)))
1514oveq1d 7419 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = ((𝐴 + (𝑁 · 𝑀)) mod 𝑀))
16 simp1 1137 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀) → 𝐴 ∈ ℝ)
1716adantl 483 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → 𝐴 ∈ ℝ)
18 simpr 486 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ+)
1918adantr 482 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → 𝑀 ∈ ℝ+)
20 simpll 766 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → 𝑁 ∈ ℤ)
21 modcyc 13867 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+𝑁 ∈ ℤ) → ((𝐴 + (𝑁 · 𝑀)) mod 𝑀) = (𝐴 mod 𝑀))
2217, 19, 20, 21syl3anc 1372 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → ((𝐴 + (𝑁 · 𝑀)) mod 𝑀) = (𝐴 mod 𝑀))
2318, 16anim12ci 615 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → (𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+))
24 3simpc 1151 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀) → (0 ≤ 𝐴𝐴 < 𝑀))
2524adantl 483 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → (0 ≤ 𝐴𝐴 < 𝑀))
26 modid 13857 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝑀)) → (𝐴 mod 𝑀) = 𝐴)
2723, 25, 26syl2anc 585 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → (𝐴 mod 𝑀) = 𝐴)
2815, 22, 273eqtrd 2777 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)
2928ex 414 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴))
305, 29sylbid 239 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝐴 ∈ (0[,)𝑀) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴))
31303impia 1118 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+𝐴 ∈ (0[,)𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5147  (class class class)co 7404  cc 11104  cr 11105  0cc0 11106   + caddc 11109   · cmul 11111  *cxr 11243   < clt 11244  cle 11245  cz 12554  +crp 12970  [,)cico 13322   mod cmo 13830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-fl 13753  df-mod 13831
This theorem is referenced by:  modmuladd  13874  addmodid  13880  mod42tp1mod8  46205
  Copyright terms: Public domain W3C validator