| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > muladdmodid | Structured version Visualization version GIF version | ||
| Description: The sum of a positive real number less than an upper bound and the product of an integer and the upper bound is the positive real number modulo the upper bound. (Contributed by AV, 5-Jul-2020.) |
| Ref | Expression |
|---|---|
| muladdmodid | ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ∧ 𝐴 ∈ (0[,)𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red 11184 | . . . . 5 ⊢ (𝑀 ∈ ℝ+ → 0 ∈ ℝ) | |
| 2 | rpxr 12968 | . . . . 5 ⊢ (𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ*) | |
| 3 | elico2 13378 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝑀 ∈ ℝ+ → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀))) |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀))) |
| 6 | zcn 12541 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 7 | rpcn 12969 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℝ+ → 𝑀 ∈ ℂ) | |
| 8 | mulcl 11159 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 · 𝑀) ∈ ℂ) | |
| 9 | 6, 7, 8 | syl2an 596 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝑁 · 𝑀) ∈ ℂ) |
| 10 | 9 | adantr 480 | . . . . . . 7 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (𝑁 · 𝑀) ∈ ℂ) |
| 11 | recn 11165 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 12 | 11 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀) → 𝐴 ∈ ℂ) |
| 13 | 12 | adantl 481 | . . . . . . 7 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → 𝐴 ∈ ℂ) |
| 14 | 10, 13 | addcomd 11383 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → ((𝑁 · 𝑀) + 𝐴) = (𝐴 + (𝑁 · 𝑀))) |
| 15 | 14 | oveq1d 7405 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = ((𝐴 + (𝑁 · 𝑀)) mod 𝑀)) |
| 16 | simp1 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀) → 𝐴 ∈ ℝ) | |
| 17 | 16 | adantl 481 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → 𝐴 ∈ ℝ) |
| 18 | simpr 484 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ+) | |
| 19 | 18 | adantr 480 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → 𝑀 ∈ ℝ+) |
| 20 | simpll 766 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → 𝑁 ∈ ℤ) | |
| 21 | modcyc 13875 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((𝐴 + (𝑁 · 𝑀)) mod 𝑀) = (𝐴 mod 𝑀)) | |
| 22 | 17, 19, 20, 21 | syl3anc 1373 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → ((𝐴 + (𝑁 · 𝑀)) mod 𝑀) = (𝐴 mod 𝑀)) |
| 23 | 18, 16 | anim12ci 614 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+)) |
| 24 | 3simpc 1150 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀) → (0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) | |
| 25 | 24 | adantl 481 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) |
| 26 | modid 13865 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (𝐴 mod 𝑀) = 𝐴) | |
| 27 | 23, 25, 26 | syl2anc 584 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (𝐴 mod 𝑀) = 𝐴) |
| 28 | 15, 22, 27 | 3eqtrd 2769 | . . . 4 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) |
| 29 | 28 | ex 412 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)) |
| 30 | 5, 29 | sylbid 240 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝐴 ∈ (0[,)𝑀) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)) |
| 31 | 30 | 3impia 1117 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ∧ 𝐴 ∈ (0[,)𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 + caddc 11078 · cmul 11080 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 ℤcz 12536 ℝ+crp 12958 [,)cico 13315 mod cmo 13838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-ico 13319 df-fl 13761 df-mod 13839 |
| This theorem is referenced by: modmuladd 13885 addmodid 13891 mod42tp1mod8 47607 |
| Copyright terms: Public domain | W3C validator |