| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > muladdmodid | Structured version Visualization version GIF version | ||
| Description: The sum of a positive real number less than an upper bound and the product of an integer and the upper bound is the positive real number modulo the upper bound. (Contributed by AV, 5-Jul-2020.) |
| Ref | Expression |
|---|---|
| muladdmodid | ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ∧ 𝐴 ∈ (0[,)𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red 11264 | . . . . 5 ⊢ (𝑀 ∈ ℝ+ → 0 ∈ ℝ) | |
| 2 | rpxr 13044 | . . . . 5 ⊢ (𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ*) | |
| 3 | elico2 13451 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝑀 ∈ ℝ+ → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀))) |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀))) |
| 6 | zcn 12618 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 7 | rpcn 13045 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℝ+ → 𝑀 ∈ ℂ) | |
| 8 | mulcl 11239 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 · 𝑀) ∈ ℂ) | |
| 9 | 6, 7, 8 | syl2an 596 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝑁 · 𝑀) ∈ ℂ) |
| 10 | 9 | adantr 480 | . . . . . . 7 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (𝑁 · 𝑀) ∈ ℂ) |
| 11 | recn 11245 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 12 | 11 | 3ad2ant1 1134 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀) → 𝐴 ∈ ℂ) |
| 13 | 12 | adantl 481 | . . . . . . 7 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → 𝐴 ∈ ℂ) |
| 14 | 10, 13 | addcomd 11463 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → ((𝑁 · 𝑀) + 𝐴) = (𝐴 + (𝑁 · 𝑀))) |
| 15 | 14 | oveq1d 7446 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = ((𝐴 + (𝑁 · 𝑀)) mod 𝑀)) |
| 16 | simp1 1137 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀) → 𝐴 ∈ ℝ) | |
| 17 | 16 | adantl 481 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → 𝐴 ∈ ℝ) |
| 18 | simpr 484 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ+) | |
| 19 | 18 | adantr 480 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → 𝑀 ∈ ℝ+) |
| 20 | simpll 767 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → 𝑁 ∈ ℤ) | |
| 21 | modcyc 13946 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((𝐴 + (𝑁 · 𝑀)) mod 𝑀) = (𝐴 mod 𝑀)) | |
| 22 | 17, 19, 20, 21 | syl3anc 1373 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → ((𝐴 + (𝑁 · 𝑀)) mod 𝑀) = (𝐴 mod 𝑀)) |
| 23 | 18, 16 | anim12ci 614 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+)) |
| 24 | 3simpc 1151 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀) → (0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) | |
| 25 | 24 | adantl 481 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) |
| 26 | modid 13936 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (𝐴 mod 𝑀) = 𝐴) | |
| 27 | 23, 25, 26 | syl2anc 584 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (𝐴 mod 𝑀) = 𝐴) |
| 28 | 15, 22, 27 | 3eqtrd 2781 | . . . 4 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) |
| 29 | 28 | ex 412 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)) |
| 30 | 5, 29 | sylbid 240 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝐴 ∈ (0[,)𝑀) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)) |
| 31 | 30 | 3impia 1118 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ∧ 𝐴 ∈ (0[,)𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 (class class class)co 7431 ℂcc 11153 ℝcr 11154 0cc0 11155 + caddc 11158 · cmul 11160 ℝ*cxr 11294 < clt 11295 ≤ cle 11296 ℤcz 12613 ℝ+crp 13034 [,)cico 13389 mod cmo 13909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-ico 13393 df-fl 13832 df-mod 13910 |
| This theorem is referenced by: modmuladd 13954 addmodid 13960 mod42tp1mod8 47589 |
| Copyright terms: Public domain | W3C validator |