![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > muladdmodid | Structured version Visualization version GIF version |
Description: The sum of a positive real number less than an upper bound and the product of an integer and the upper bound is the positive real number modulo the upper bound. (Contributed by AV, 5-Jul-2020.) |
Ref | Expression |
---|---|
muladdmodid | ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ∧ 𝐴 ∈ (0[,)𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 11213 | . . . . 5 ⊢ (𝑀 ∈ ℝ+ → 0 ∈ ℝ) | |
2 | rpxr 12979 | . . . . 5 ⊢ (𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ*) | |
3 | elico2 13384 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀))) | |
4 | 1, 2, 3 | syl2anc 585 | . . . 4 ⊢ (𝑀 ∈ ℝ+ → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀))) |
5 | 4 | adantl 483 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀))) |
6 | zcn 12559 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
7 | rpcn 12980 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℝ+ → 𝑀 ∈ ℂ) | |
8 | mulcl 11190 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 · 𝑀) ∈ ℂ) | |
9 | 6, 7, 8 | syl2an 597 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝑁 · 𝑀) ∈ ℂ) |
10 | 9 | adantr 482 | . . . . . . 7 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (𝑁 · 𝑀) ∈ ℂ) |
11 | recn 11196 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
12 | 11 | 3ad2ant1 1134 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀) → 𝐴 ∈ ℂ) |
13 | 12 | adantl 483 | . . . . . . 7 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → 𝐴 ∈ ℂ) |
14 | 10, 13 | addcomd 11412 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → ((𝑁 · 𝑀) + 𝐴) = (𝐴 + (𝑁 · 𝑀))) |
15 | 14 | oveq1d 7419 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = ((𝐴 + (𝑁 · 𝑀)) mod 𝑀)) |
16 | simp1 1137 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀) → 𝐴 ∈ ℝ) | |
17 | 16 | adantl 483 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → 𝐴 ∈ ℝ) |
18 | simpr 486 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ+) | |
19 | 18 | adantr 482 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → 𝑀 ∈ ℝ+) |
20 | simpll 766 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → 𝑁 ∈ ℤ) | |
21 | modcyc 13867 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → ((𝐴 + (𝑁 · 𝑀)) mod 𝑀) = (𝐴 mod 𝑀)) | |
22 | 17, 19, 20, 21 | syl3anc 1372 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → ((𝐴 + (𝑁 · 𝑀)) mod 𝑀) = (𝐴 mod 𝑀)) |
23 | 18, 16 | anim12ci 615 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+)) |
24 | 3simpc 1151 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀) → (0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) | |
25 | 24 | adantl 483 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) |
26 | modid 13857 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (𝐴 mod 𝑀) = 𝐴) | |
27 | 23, 25, 26 | syl2anc 585 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (𝐴 mod 𝑀) = 𝐴) |
28 | 15, 22, 27 | 3eqtrd 2777 | . . . 4 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) |
29 | 28 | ex 414 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)) |
30 | 5, 29 | sylbid 239 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝐴 ∈ (0[,)𝑀) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)) |
31 | 30 | 3impia 1118 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ∧ 𝐴 ∈ (0[,)𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 class class class wbr 5147 (class class class)co 7404 ℂcc 11104 ℝcr 11105 0cc0 11106 + caddc 11109 · cmul 11111 ℝ*cxr 11243 < clt 11244 ≤ cle 11245 ℤcz 12554 ℝ+crp 12970 [,)cico 13322 mod cmo 13830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-ico 13326 df-fl 13753 df-mod 13831 |
This theorem is referenced by: modmuladd 13874 addmodid 13880 mod42tp1mod8 46205 |
Copyright terms: Public domain | W3C validator |