MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muladdmodid Structured version   Visualization version   GIF version

Theorem muladdmodid 13933
Description: The sum of a positive real number less than an upper bound and the product of an integer and the upper bound is the positive real number modulo the upper bound. (Contributed by AV, 5-Jul-2020.)
Assertion
Ref Expression
muladdmodid ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+𝐴 ∈ (0[,)𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)

Proof of Theorem muladdmodid
StepHypRef Expression
1 0red 11243 . . . . 5 (𝑀 ∈ ℝ+ → 0 ∈ ℝ)
2 rpxr 13023 . . . . 5 (𝑀 ∈ ℝ+𝑀 ∈ ℝ*)
3 elico2 13432 . . . . 5 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)))
41, 2, 3syl2anc 584 . . . 4 (𝑀 ∈ ℝ+ → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)))
54adantl 481 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)))
6 zcn 12598 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
7 rpcn 13024 . . . . . . . . 9 (𝑀 ∈ ℝ+𝑀 ∈ ℂ)
8 mulcl 11218 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 · 𝑀) ∈ ℂ)
96, 7, 8syl2an 596 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝑁 · 𝑀) ∈ ℂ)
109adantr 480 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → (𝑁 · 𝑀) ∈ ℂ)
11 recn 11224 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
12113ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀) → 𝐴 ∈ ℂ)
1312adantl 481 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → 𝐴 ∈ ℂ)
1410, 13addcomd 11442 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → ((𝑁 · 𝑀) + 𝐴) = (𝐴 + (𝑁 · 𝑀)))
1514oveq1d 7425 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = ((𝐴 + (𝑁 · 𝑀)) mod 𝑀))
16 simp1 1136 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀) → 𝐴 ∈ ℝ)
1716adantl 481 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → 𝐴 ∈ ℝ)
18 simpr 484 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ+)
1918adantr 480 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → 𝑀 ∈ ℝ+)
20 simpll 766 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → 𝑁 ∈ ℤ)
21 modcyc 13928 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+𝑁 ∈ ℤ) → ((𝐴 + (𝑁 · 𝑀)) mod 𝑀) = (𝐴 mod 𝑀))
2217, 19, 20, 21syl3anc 1373 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → ((𝐴 + (𝑁 · 𝑀)) mod 𝑀) = (𝐴 mod 𝑀))
2318, 16anim12ci 614 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → (𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+))
24 3simpc 1150 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀) → (0 ≤ 𝐴𝐴 < 𝑀))
2524adantl 481 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → (0 ≤ 𝐴𝐴 < 𝑀))
26 modid 13918 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝑀)) → (𝐴 mod 𝑀) = 𝐴)
2723, 25, 26syl2anc 584 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → (𝐴 mod 𝑀) = 𝐴)
2815, 22, 273eqtrd 2775 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)
2928ex 412 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴))
305, 29sylbid 240 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝐴 ∈ (0[,)𝑀) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴))
31303impia 1117 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+𝐴 ∈ (0[,)𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134   + caddc 11137   · cmul 11139  *cxr 11273   < clt 11274  cle 11275  cz 12593  +crp 13013  [,)cico 13369   mod cmo 13891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-ico 13373  df-fl 13814  df-mod 13892
This theorem is referenced by:  modmuladd  13936  addmodid  13942  mod42tp1mod8  47583
  Copyright terms: Public domain W3C validator