MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muladdmodid Structured version   Visualization version   GIF version

Theorem muladdmodid 13274
Description: The sum of a positive real number less than an upper bound and the product of an integer and the upper bound is the positive real number modulo the upper bound. (Contributed by AV, 5-Jul-2020.)
Assertion
Ref Expression
muladdmodid ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+𝐴 ∈ (0[,)𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)

Proof of Theorem muladdmodid
StepHypRef Expression
1 0red 10638 . . . . 5 (𝑀 ∈ ℝ+ → 0 ∈ ℝ)
2 rpxr 12393 . . . . 5 (𝑀 ∈ ℝ+𝑀 ∈ ℝ*)
3 elico2 12795 . . . . 5 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ*) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)))
41, 2, 3syl2anc 584 . . . 4 (𝑀 ∈ ℝ+ → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)))
54adantl 482 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)))
6 zcn 11980 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
7 rpcn 12394 . . . . . . . . 9 (𝑀 ∈ ℝ+𝑀 ∈ ℂ)
8 mulcl 10615 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 · 𝑀) ∈ ℂ)
96, 7, 8syl2an 595 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝑁 · 𝑀) ∈ ℂ)
109adantr 481 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → (𝑁 · 𝑀) ∈ ℂ)
11 recn 10621 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
12113ad2ant1 1127 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀) → 𝐴 ∈ ℂ)
1312adantl 482 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → 𝐴 ∈ ℂ)
1410, 13addcomd 10836 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → ((𝑁 · 𝑀) + 𝐴) = (𝐴 + (𝑁 · 𝑀)))
1514oveq1d 7165 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = ((𝐴 + (𝑁 · 𝑀)) mod 𝑀))
16 simp1 1130 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀) → 𝐴 ∈ ℝ)
1716adantl 482 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → 𝐴 ∈ ℝ)
18 simpr 485 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ+)
1918adantr 481 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → 𝑀 ∈ ℝ+)
20 simpll 763 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → 𝑁 ∈ ℤ)
21 modcyc 13269 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+𝑁 ∈ ℤ) → ((𝐴 + (𝑁 · 𝑀)) mod 𝑀) = (𝐴 mod 𝑀))
2217, 19, 20, 21syl3anc 1365 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → ((𝐴 + (𝑁 · 𝑀)) mod 𝑀) = (𝐴 mod 𝑀))
2318, 16anim12ci 613 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → (𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+))
24 3simpc 1144 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀) → (0 ≤ 𝐴𝐴 < 𝑀))
2524adantl 482 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → (0 ≤ 𝐴𝐴 < 𝑀))
26 modid 13259 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝑀)) → (𝐴 mod 𝑀) = 𝐴)
2723, 25, 26syl2anc 584 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → (𝐴 mod 𝑀) = 𝐴)
2815, 22, 273eqtrd 2865 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)
2928ex 413 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 < 𝑀) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴))
305, 29sylbid 241 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝐴 ∈ (0[,)𝑀) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴))
31303impia 1111 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+𝐴 ∈ (0[,)𝑀)) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107   class class class wbr 5063  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531   + caddc 10534   · cmul 10536  *cxr 10668   < clt 10669  cle 10670  cz 11975  +crp 12384  [,)cico 12735   mod cmo 13232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12385  df-ico 12739  df-fl 13157  df-mod 13233
This theorem is referenced by:  modmuladd  13276  addmodid  13282  mod42tp1mod8  43618
  Copyright terms: Public domain W3C validator