| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > saddisj | Structured version Visualization version GIF version | ||
| Description: The sum of disjoint sequences is the union of the sequences. (In this case, there are no carried bits.) (Contributed by Mario Carneiro, 9-Sep-2016.) |
| Ref | Expression |
|---|---|
| saddisj.1 | ⊢ (𝜑 → 𝐴 ⊆ ℕ0) |
| saddisj.2 | ⊢ (𝜑 → 𝐵 ⊆ ℕ0) |
| saddisj.3 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| Ref | Expression |
|---|---|
| saddisj | ⊢ (𝜑 → (𝐴 sadd 𝐵) = (𝐴 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | saddisj.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℕ0) | |
| 2 | saddisj.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ ℕ0) | |
| 3 | sadcl 16373 | . . . . 5 ⊢ ((𝐴 ⊆ ℕ0 ∧ 𝐵 ⊆ ℕ0) → (𝐴 sadd 𝐵) ⊆ ℕ0) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴 sadd 𝐵) ⊆ ℕ0) |
| 5 | 4 | sseld 3928 | . . 3 ⊢ (𝜑 → (𝑘 ∈ (𝐴 sadd 𝐵) → 𝑘 ∈ ℕ0)) |
| 6 | 1, 2 | unssd 4139 | . . . 4 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ ℕ0) |
| 7 | 6 | sseld 3928 | . . 3 ⊢ (𝜑 → (𝑘 ∈ (𝐴 ∪ 𝐵) → 𝑘 ∈ ℕ0)) |
| 8 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ⊆ ℕ0) |
| 9 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ⊆ ℕ0) |
| 10 | saddisj.3 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴 ∩ 𝐵) = ∅) |
| 12 | eqid 2731 | . . . . 5 ⊢ seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑥 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑥 − 1)))) | |
| 13 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
| 14 | 8, 9, 11, 12, 13 | saddisjlem 16375 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (𝐴 sadd 𝐵) ↔ 𝑘 ∈ (𝐴 ∪ 𝐵))) |
| 15 | 14 | ex 412 | . . 3 ⊢ (𝜑 → (𝑘 ∈ ℕ0 → (𝑘 ∈ (𝐴 sadd 𝐵) ↔ 𝑘 ∈ (𝐴 ∪ 𝐵)))) |
| 16 | 5, 7, 15 | pm5.21ndd 379 | . 2 ⊢ (𝜑 → (𝑘 ∈ (𝐴 sadd 𝐵) ↔ 𝑘 ∈ (𝐴 ∪ 𝐵))) |
| 17 | 16 | eqrdv 2729 | 1 ⊢ (𝜑 → (𝐴 sadd 𝐵) = (𝐴 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 caddwcad 1607 ∈ wcel 2111 ∪ cun 3895 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 ifcif 4472 ↦ cmpt 5170 (class class class)co 7346 ∈ cmpo 7348 1oc1o 8378 2oc2o 8379 0cc0 11006 1c1 11007 − cmin 11344 ℕ0cn0 12381 seqcseq 13908 sadd csad 16331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-had 1595 df-cad 1608 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-seq 13909 df-sad 16362 |
| This theorem is referenced by: sadid1 16379 bitsres 16384 |
| Copyright terms: Public domain | W3C validator |