![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > saddisj | Structured version Visualization version GIF version |
Description: The sum of disjoint sequences is the union of the sequences. (In this case, there are no carried bits.) (Contributed by Mario Carneiro, 9-Sep-2016.) |
Ref | Expression |
---|---|
saddisj.1 | ⊢ (𝜑 → 𝐴 ⊆ ℕ0) |
saddisj.2 | ⊢ (𝜑 → 𝐵 ⊆ ℕ0) |
saddisj.3 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
Ref | Expression |
---|---|
saddisj | ⊢ (𝜑 → (𝐴 sadd 𝐵) = (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | saddisj.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℕ0) | |
2 | saddisj.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ ℕ0) | |
3 | sadcl 16402 | . . . . 5 ⊢ ((𝐴 ⊆ ℕ0 ∧ 𝐵 ⊆ ℕ0) → (𝐴 sadd 𝐵) ⊆ ℕ0) | |
4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴 sadd 𝐵) ⊆ ℕ0) |
5 | 4 | sseld 3981 | . . 3 ⊢ (𝜑 → (𝑘 ∈ (𝐴 sadd 𝐵) → 𝑘 ∈ ℕ0)) |
6 | 1, 2 | unssd 4186 | . . . 4 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ ℕ0) |
7 | 6 | sseld 3981 | . . 3 ⊢ (𝜑 → (𝑘 ∈ (𝐴 ∪ 𝐵) → 𝑘 ∈ ℕ0)) |
8 | 1 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ⊆ ℕ0) |
9 | 2 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ⊆ ℕ0) |
10 | saddisj.3 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
11 | 10 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴 ∩ 𝐵) = ∅) |
12 | eqid 2732 | . . . . 5 ⊢ seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑥 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑥 − 1)))) | |
13 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
14 | 8, 9, 11, 12, 13 | saddisjlem 16404 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (𝐴 sadd 𝐵) ↔ 𝑘 ∈ (𝐴 ∪ 𝐵))) |
15 | 14 | ex 413 | . . 3 ⊢ (𝜑 → (𝑘 ∈ ℕ0 → (𝑘 ∈ (𝐴 sadd 𝐵) ↔ 𝑘 ∈ (𝐴 ∪ 𝐵)))) |
16 | 5, 7, 15 | pm5.21ndd 380 | . 2 ⊢ (𝜑 → (𝑘 ∈ (𝐴 sadd 𝐵) ↔ 𝑘 ∈ (𝐴 ∪ 𝐵))) |
17 | 16 | eqrdv 2730 | 1 ⊢ (𝜑 → (𝐴 sadd 𝐵) = (𝐴 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 caddwcad 1607 ∈ wcel 2106 ∪ cun 3946 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 ifcif 4528 ↦ cmpt 5231 (class class class)co 7408 ∈ cmpo 7410 1oc1o 8458 2oc2o 8459 0cc0 11109 1c1 11110 − cmin 11443 ℕ0cn0 12471 seqcseq 13965 sadd csad 16360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-xor 1510 df-tru 1544 df-fal 1554 df-had 1595 df-cad 1608 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-seq 13966 df-sad 16391 |
This theorem is referenced by: sadid1 16408 bitsres 16413 |
Copyright terms: Public domain | W3C validator |