Step | Hyp | Ref
| Expression |
1 | | seqf1o.4 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | eluzfz2 13120 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
4 | | fveq2 6717 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (seq𝑀( + , 𝐺)‘𝑚) = (seq𝑀( + , 𝐺)‘𝑀)) |
5 | 4 | oveq2d 7229 |
. . . . 5
⊢ (𝑚 = 𝑀 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑀))) |
6 | 4 | oveq1d 7228 |
. . . . 5
⊢ (𝑚 = 𝑀 → ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺‘𝐾))) |
7 | 5, 6 | eqeq12d 2753 |
. . . 4
⊢ (𝑚 = 𝑀 → (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾)) ↔ ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑀)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺‘𝐾)))) |
8 | 7 | imbi2d 344 |
. . 3
⊢ (𝑚 = 𝑀 → ((𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾))) ↔ (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑀)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺‘𝐾))))) |
9 | | fveq2 6717 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (seq𝑀( + , 𝐺)‘𝑚) = (seq𝑀( + , 𝐺)‘𝑛)) |
10 | 9 | oveq2d 7229 |
. . . . 5
⊢ (𝑚 = 𝑛 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛))) |
11 | 9 | oveq1d 7228 |
. . . . 5
⊢ (𝑚 = 𝑛 → ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾))) |
12 | 10, 11 | eqeq12d 2753 |
. . . 4
⊢ (𝑚 = 𝑛 → (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾)) ↔ ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾)))) |
13 | 12 | imbi2d 344 |
. . 3
⊢ (𝑚 = 𝑛 → ((𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾))) ↔ (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾))))) |
14 | | fveq2 6717 |
. . . . . 6
⊢ (𝑚 = (𝑛 + 1) → (seq𝑀( + , 𝐺)‘𝑚) = (seq𝑀( + , 𝐺)‘(𝑛 + 1))) |
15 | 14 | oveq2d 7229 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1)))) |
16 | 14 | oveq1d 7228 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾)) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺‘𝐾))) |
17 | 15, 16 | eqeq12d 2753 |
. . . 4
⊢ (𝑚 = (𝑛 + 1) → (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾)) ↔ ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺‘𝐾)))) |
18 | 17 | imbi2d 344 |
. . 3
⊢ (𝑚 = (𝑛 + 1) → ((𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾))) ↔ (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺‘𝐾))))) |
19 | | fveq2 6717 |
. . . . . 6
⊢ (𝑚 = 𝑁 → (seq𝑀( + , 𝐺)‘𝑚) = (seq𝑀( + , 𝐺)‘𝑁)) |
20 | 19 | oveq2d 7229 |
. . . . 5
⊢ (𝑚 = 𝑁 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑁))) |
21 | 19 | oveq1d 7228 |
. . . . 5
⊢ (𝑚 = 𝑁 → ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘𝐾))) |
22 | 20, 21 | eqeq12d 2753 |
. . . 4
⊢ (𝑚 = 𝑁 → (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾)) ↔ ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘𝐾)))) |
23 | 22 | imbi2d 344 |
. . 3
⊢ (𝑚 = 𝑁 → ((𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺‘𝐾))) ↔ (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘𝐾))))) |
24 | | seqf1o.2 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
25 | | seqf1olem2a.1 |
. . . . . 6
⊢ (𝜑 → 𝐺:𝐴⟶𝐶) |
26 | | seqf1olem2a.3 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ 𝐴) |
27 | 25, 26 | ffvelrnd 6905 |
. . . . 5
⊢ (𝜑 → (𝐺‘𝐾) ∈ 𝐶) |
28 | | eluzel2 12443 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
29 | | seq1 13587 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝐺)‘𝑀) = (𝐺‘𝑀)) |
30 | 1, 28, 29 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , 𝐺)‘𝑀) = (𝐺‘𝑀)) |
31 | | seqf1olem2a.4 |
. . . . . . . 8
⊢ (𝜑 → (𝑀...𝑁) ⊆ 𝐴) |
32 | | eluzfz1 13119 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
33 | 1, 32 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
34 | 31, 33 | sseldd 3902 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ 𝐴) |
35 | 25, 34 | ffvelrnd 6905 |
. . . . . 6
⊢ (𝜑 → (𝐺‘𝑀) ∈ 𝐶) |
36 | 30, 35 | eqeltrd 2838 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , 𝐺)‘𝑀) ∈ 𝐶) |
37 | 24, 27, 36 | caovcomd 7404 |
. . . 4
⊢ (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑀)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺‘𝐾))) |
38 | 37 | a1i 11 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑀)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺‘𝐾)))) |
39 | | oveq1 7220 |
. . . . . 6
⊢ (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾)) → (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) + (𝐺‘(𝑛 + 1))) = (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾)) + (𝐺‘(𝑛 + 1)))) |
40 | | elfzouz 13247 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ≥‘𝑀)) |
41 | 40 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
42 | | seqp1 13589 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (seq𝑀( + , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))) |
43 | 41, 42 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))) |
44 | 43 | oveq2d 7229 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((𝐺‘𝐾) + ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
45 | | seqf1o.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
46 | 45 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
47 | | seqf1o.5 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ⊆ 𝑆) |
48 | 47, 27 | sseldd 3902 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘𝐾) ∈ 𝑆) |
49 | 48 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘𝐾) ∈ 𝑆) |
50 | 47 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝐶 ⊆ 𝑆) |
51 | 50 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝐶 ⊆ 𝑆) |
52 | 25 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝐺:𝐴⟶𝐶) |
53 | 52 | adantr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝐺:𝐴⟶𝐶) |
54 | | elfzouz2 13257 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ≥‘𝑛)) |
55 | 54 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝑁 ∈ (ℤ≥‘𝑛)) |
56 | | fzss2 13152 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁)) |
57 | 55, 56 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝑀...𝑛) ⊆ (𝑀...𝑁)) |
58 | 31 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝑀...𝑁) ⊆ 𝐴) |
59 | 57, 58 | sstrd 3911 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝑀...𝑛) ⊆ 𝐴) |
60 | 59 | sselda 3901 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝑥 ∈ 𝐴) |
61 | 53, 60 | ffvelrnd 6905 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → (𝐺‘𝑥) ∈ 𝐶) |
62 | 51, 61 | sseldd 3902 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → (𝐺‘𝑥) ∈ 𝑆) |
63 | | seqf1o.1 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
64 | 63 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
65 | 41, 62, 64 | seqcl 13596 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐺)‘𝑛) ∈ 𝑆) |
66 | | fzofzp1 13339 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
67 | 66 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
68 | 58, 67 | sseldd 3902 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝑛 + 1) ∈ 𝐴) |
69 | 52, 68 | ffvelrnd 6905 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝐶) |
70 | 50, 69 | sseldd 3902 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆) |
71 | 46, 49, 65, 70 | caovassd 7407 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) + (𝐺‘(𝑛 + 1))) = ((𝐺‘𝐾) + ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
72 | 44, 71 | eqtr4d 2780 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) + (𝐺‘(𝑛 + 1)))) |
73 | 46, 65, 70, 49 | caovassd 7407 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))) + (𝐺‘𝐾)) = ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺‘(𝑛 + 1)) + (𝐺‘𝐾)))) |
74 | 43 | oveq1d 7228 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺‘𝐾)) = (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))) + (𝐺‘𝐾))) |
75 | 46, 65, 49, 70 | caovassd 7407 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾)) + (𝐺‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺‘𝐾) + (𝐺‘(𝑛 + 1))))) |
76 | 24 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
77 | 27 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘𝐾) ∈ 𝐶) |
78 | 76, 69, 77 | caovcomd 7404 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((𝐺‘(𝑛 + 1)) + (𝐺‘𝐾)) = ((𝐺‘𝐾) + (𝐺‘(𝑛 + 1)))) |
79 | 78 | oveq2d 7229 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺‘(𝑛 + 1)) + (𝐺‘𝐾))) = ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺‘𝐾) + (𝐺‘(𝑛 + 1))))) |
80 | 75, 79 | eqtr4d 2780 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾)) + (𝐺‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺‘(𝑛 + 1)) + (𝐺‘𝐾)))) |
81 | 73, 74, 80 | 3eqtr4d 2787 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺‘𝐾)) = (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾)) + (𝐺‘(𝑛 + 1)))) |
82 | 72, 81 | eqeq12d 2753 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺‘𝐾)) ↔ (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) + (𝐺‘(𝑛 + 1))) = (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾)) + (𝐺‘(𝑛 + 1))))) |
83 | 39, 82 | syl5ibr 249 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾)) → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺‘𝐾)))) |
84 | 83 | expcom 417 |
. . . 4
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾)) → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺‘𝐾))))) |
85 | 84 | a2d 29 |
. . 3
⊢ (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘𝐾))) → (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺‘𝐾))))) |
86 | 8, 13, 18, 23, 38, 85 | fzind2 13360 |
. 2
⊢ (𝑁 ∈ (𝑀...𝑁) → (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘𝐾)))) |
87 | 3, 86 | mpcom 38 |
1
⊢ (𝜑 → ((𝐺‘𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺‘𝐾))) |