MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqf1olem2a Structured version   Visualization version   GIF version

Theorem seqf1olem2a 13947
Description: Lemma for seqf1o 13950. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
seqf1o.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqf1o.2 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
seqf1o.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
seqf1o.4 (𝜑𝑁 ∈ (ℤ𝑀))
seqf1o.5 (𝜑𝐶𝑆)
seqf1olem2a.1 (𝜑𝐺:𝐴𝐶)
seqf1olem2a.3 (𝜑𝐾𝐴)
seqf1olem2a.4 (𝜑 → (𝑀...𝑁) ⊆ 𝐴)
Assertion
Ref Expression
seqf1olem2a (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺𝐾)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝑀,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥,𝑁,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem seqf1olem2a
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqf1o.4 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 13435 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 6822 . . . . . 6 (𝑚 = 𝑀 → (seq𝑀( + , 𝐺)‘𝑚) = (seq𝑀( + , 𝐺)‘𝑀))
54oveq2d 7365 . . . . 5 (𝑚 = 𝑀 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑀)))
64oveq1d 7364 . . . . 5 (𝑚 = 𝑀 → ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺𝐾)))
75, 6eqeq12d 2745 . . . 4 (𝑚 = 𝑀 → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) ↔ ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑀)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺𝐾))))
87imbi2d 340 . . 3 (𝑚 = 𝑀 → ((𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾))) ↔ (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑀)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺𝐾)))))
9 fveq2 6822 . . . . . 6 (𝑚 = 𝑛 → (seq𝑀( + , 𝐺)‘𝑚) = (seq𝑀( + , 𝐺)‘𝑛))
109oveq2d 7365 . . . . 5 (𝑚 = 𝑛 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)))
119oveq1d 7364 . . . . 5 (𝑚 = 𝑛 → ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)))
1210, 11eqeq12d 2745 . . . 4 (𝑚 = 𝑛 → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) ↔ ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾))))
1312imbi2d 340 . . 3 (𝑚 = 𝑛 → ((𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾))) ↔ (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)))))
14 fveq2 6822 . . . . . 6 (𝑚 = (𝑛 + 1) → (seq𝑀( + , 𝐺)‘𝑚) = (seq𝑀( + , 𝐺)‘(𝑛 + 1)))
1514oveq2d 7365 . . . . 5 (𝑚 = (𝑛 + 1) → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))))
1614oveq1d 7364 . . . . 5 (𝑚 = (𝑛 + 1) → ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)))
1715, 16eqeq12d 2745 . . . 4 (𝑚 = (𝑛 + 1) → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) ↔ ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾))))
1817imbi2d 340 . . 3 (𝑚 = (𝑛 + 1) → ((𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾))) ↔ (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)))))
19 fveq2 6822 . . . . . 6 (𝑚 = 𝑁 → (seq𝑀( + , 𝐺)‘𝑚) = (seq𝑀( + , 𝐺)‘𝑁))
2019oveq2d 7365 . . . . 5 (𝑚 = 𝑁 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑁)))
2119oveq1d 7364 . . . . 5 (𝑚 = 𝑁 → ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺𝐾)))
2220, 21eqeq12d 2745 . . . 4 (𝑚 = 𝑁 → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) ↔ ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺𝐾))))
2322imbi2d 340 . . 3 (𝑚 = 𝑁 → ((𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾))) ↔ (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺𝐾)))))
24 seqf1o.2 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
25 seqf1olem2a.1 . . . . . 6 (𝜑𝐺:𝐴𝐶)
26 seqf1olem2a.3 . . . . . 6 (𝜑𝐾𝐴)
2725, 26ffvelcdmd 7019 . . . . 5 (𝜑 → (𝐺𝐾) ∈ 𝐶)
28 eluzel2 12740 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
29 seq1 13921 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐺)‘𝑀) = (𝐺𝑀))
301, 28, 293syl 18 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐺)‘𝑀) = (𝐺𝑀))
31 seqf1olem2a.4 . . . . . . . 8 (𝜑 → (𝑀...𝑁) ⊆ 𝐴)
32 eluzfz1 13434 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
331, 32syl 17 . . . . . . . 8 (𝜑𝑀 ∈ (𝑀...𝑁))
3431, 33sseldd 3936 . . . . . . 7 (𝜑𝑀𝐴)
3525, 34ffvelcdmd 7019 . . . . . 6 (𝜑 → (𝐺𝑀) ∈ 𝐶)
3630, 35eqeltrd 2828 . . . . 5 (𝜑 → (seq𝑀( + , 𝐺)‘𝑀) ∈ 𝐶)
3724, 27, 36caovcomd 7545 . . . 4 (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑀)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺𝐾)))
3837a1i 11 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑀)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺𝐾))))
39 oveq1 7356 . . . . . 6 (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) + (𝐺‘(𝑛 + 1))) = (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) + (𝐺‘(𝑛 + 1))))
40 elfzouz 13566 . . . . . . . . . . 11 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ𝑀))
4140adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ𝑀))
42 seqp1 13923 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))
4341, 42syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))
4443oveq2d 7365 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((𝐺𝐾) + ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
45 seqf1o.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
4645adantlr 715 . . . . . . . . 9 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
47 seqf1o.5 . . . . . . . . . . 11 (𝜑𝐶𝑆)
4847, 27sseldd 3936 . . . . . . . . . 10 (𝜑 → (𝐺𝐾) ∈ 𝑆)
4948adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐺𝐾) ∈ 𝑆)
5047adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝐶𝑆)
5150adantr 480 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝐶𝑆)
5225adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝐺:𝐴𝐶)
5352adantr 480 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝐺:𝐴𝐶)
54 elfzouz2 13577 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ𝑛))
5554adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑁 ∈ (ℤ𝑛))
56 fzss2 13467 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
5755, 56syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
5831adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝑀...𝑁) ⊆ 𝐴)
5957, 58sstrd 3946 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝑀...𝑛) ⊆ 𝐴)
6059sselda 3935 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝑥𝐴)
6153, 60ffvelcdmd 7019 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → (𝐺𝑥) ∈ 𝐶)
6251, 61sseldd 3936 . . . . . . . . . 10 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → (𝐺𝑥) ∈ 𝑆)
63 seqf1o.1 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
6463adantlr 715 . . . . . . . . . 10 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
6541, 62, 64seqcl 13929 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐺)‘𝑛) ∈ 𝑆)
66 fzofzp1 13667 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁))
6766adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝑛 + 1) ∈ (𝑀...𝑁))
6858, 67sseldd 3936 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝑛 + 1) ∈ 𝐴)
6952, 68ffvelcdmd 7019 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝐶)
7050, 69sseldd 3936 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆)
7146, 49, 65, 70caovassd 7548 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) + (𝐺‘(𝑛 + 1))) = ((𝐺𝐾) + ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
7244, 71eqtr4d 2767 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) + (𝐺‘(𝑛 + 1))))
7346, 65, 70, 49caovassd 7548 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))) + (𝐺𝐾)) = ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺‘(𝑛 + 1)) + (𝐺𝐾))))
7443oveq1d 7364 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)) = (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))) + (𝐺𝐾)))
7546, 65, 49, 70caovassd 7548 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) + (𝐺‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺𝐾) + (𝐺‘(𝑛 + 1)))))
7624adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
7727adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐺𝐾) ∈ 𝐶)
7876, 69, 77caovcomd 7545 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((𝐺‘(𝑛 + 1)) + (𝐺𝐾)) = ((𝐺𝐾) + (𝐺‘(𝑛 + 1))))
7978oveq2d 7365 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺‘(𝑛 + 1)) + (𝐺𝐾))) = ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺𝐾) + (𝐺‘(𝑛 + 1)))))
8075, 79eqtr4d 2767 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) + (𝐺‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺‘(𝑛 + 1)) + (𝐺𝐾))))
8173, 74, 803eqtr4d 2774 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)) = (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) + (𝐺‘(𝑛 + 1))))
8272, 81eqeq12d 2745 . . . . . 6 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)) ↔ (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) + (𝐺‘(𝑛 + 1))) = (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) + (𝐺‘(𝑛 + 1)))))
8339, 82imbitrrid 246 . . . . 5 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾))))
8483expcom 413 . . . 4 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)))))
8584a2d 29 . . 3 (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾))) → (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)))))
868, 13, 18, 23, 38, 85fzind2 13688 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺𝐾))))
873, 86mpcom 38 1 (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3903  wf 6478  cfv 6482  (class class class)co 7349  1c1 11010   + caddc 11012  cz 12471  cuz 12735  ...cfz 13410  ..^cfzo 13557  seqcseq 13908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909
This theorem is referenced by:  seqf1olem2  13949
  Copyright terms: Public domain W3C validator