MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqf1olem2a Structured version   Visualization version   GIF version

Theorem seqf1olem2a 13689
Description: Lemma for seqf1o 13692. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
seqf1o.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqf1o.2 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
seqf1o.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
seqf1o.4 (𝜑𝑁 ∈ (ℤ𝑀))
seqf1o.5 (𝜑𝐶𝑆)
seqf1olem2a.1 (𝜑𝐺:𝐴𝐶)
seqf1olem2a.3 (𝜑𝐾𝐴)
seqf1olem2a.4 (𝜑 → (𝑀...𝑁) ⊆ 𝐴)
Assertion
Ref Expression
seqf1olem2a (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺𝐾)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝑀,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥,𝑁,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem seqf1olem2a
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqf1o.4 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 13193 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 6756 . . . . . 6 (𝑚 = 𝑀 → (seq𝑀( + , 𝐺)‘𝑚) = (seq𝑀( + , 𝐺)‘𝑀))
54oveq2d 7271 . . . . 5 (𝑚 = 𝑀 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑀)))
64oveq1d 7270 . . . . 5 (𝑚 = 𝑀 → ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺𝐾)))
75, 6eqeq12d 2754 . . . 4 (𝑚 = 𝑀 → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) ↔ ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑀)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺𝐾))))
87imbi2d 340 . . 3 (𝑚 = 𝑀 → ((𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾))) ↔ (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑀)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺𝐾)))))
9 fveq2 6756 . . . . . 6 (𝑚 = 𝑛 → (seq𝑀( + , 𝐺)‘𝑚) = (seq𝑀( + , 𝐺)‘𝑛))
109oveq2d 7271 . . . . 5 (𝑚 = 𝑛 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)))
119oveq1d 7270 . . . . 5 (𝑚 = 𝑛 → ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)))
1210, 11eqeq12d 2754 . . . 4 (𝑚 = 𝑛 → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) ↔ ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾))))
1312imbi2d 340 . . 3 (𝑚 = 𝑛 → ((𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾))) ↔ (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)))))
14 fveq2 6756 . . . . . 6 (𝑚 = (𝑛 + 1) → (seq𝑀( + , 𝐺)‘𝑚) = (seq𝑀( + , 𝐺)‘(𝑛 + 1)))
1514oveq2d 7271 . . . . 5 (𝑚 = (𝑛 + 1) → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))))
1614oveq1d 7270 . . . . 5 (𝑚 = (𝑛 + 1) → ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)))
1715, 16eqeq12d 2754 . . . 4 (𝑚 = (𝑛 + 1) → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) ↔ ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾))))
1817imbi2d 340 . . 3 (𝑚 = (𝑛 + 1) → ((𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾))) ↔ (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)))))
19 fveq2 6756 . . . . . 6 (𝑚 = 𝑁 → (seq𝑀( + , 𝐺)‘𝑚) = (seq𝑀( + , 𝐺)‘𝑁))
2019oveq2d 7271 . . . . 5 (𝑚 = 𝑁 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑁)))
2119oveq1d 7270 . . . . 5 (𝑚 = 𝑁 → ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺𝐾)))
2220, 21eqeq12d 2754 . . . 4 (𝑚 = 𝑁 → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) ↔ ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺𝐾))))
2322imbi2d 340 . . 3 (𝑚 = 𝑁 → ((𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾))) ↔ (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺𝐾)))))
24 seqf1o.2 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
25 seqf1olem2a.1 . . . . . 6 (𝜑𝐺:𝐴𝐶)
26 seqf1olem2a.3 . . . . . 6 (𝜑𝐾𝐴)
2725, 26ffvelrnd 6944 . . . . 5 (𝜑 → (𝐺𝐾) ∈ 𝐶)
28 eluzel2 12516 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
29 seq1 13662 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐺)‘𝑀) = (𝐺𝑀))
301, 28, 293syl 18 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐺)‘𝑀) = (𝐺𝑀))
31 seqf1olem2a.4 . . . . . . . 8 (𝜑 → (𝑀...𝑁) ⊆ 𝐴)
32 eluzfz1 13192 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
331, 32syl 17 . . . . . . . 8 (𝜑𝑀 ∈ (𝑀...𝑁))
3431, 33sseldd 3918 . . . . . . 7 (𝜑𝑀𝐴)
3525, 34ffvelrnd 6944 . . . . . 6 (𝜑 → (𝐺𝑀) ∈ 𝐶)
3630, 35eqeltrd 2839 . . . . 5 (𝜑 → (seq𝑀( + , 𝐺)‘𝑀) ∈ 𝐶)
3724, 27, 36caovcomd 7446 . . . 4 (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑀)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺𝐾)))
3837a1i 11 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑀)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺𝐾))))
39 oveq1 7262 . . . . . 6 (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) + (𝐺‘(𝑛 + 1))) = (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) + (𝐺‘(𝑛 + 1))))
40 elfzouz 13320 . . . . . . . . . . 11 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ𝑀))
4140adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ𝑀))
42 seqp1 13664 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))
4341, 42syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))
4443oveq2d 7271 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((𝐺𝐾) + ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
45 seqf1o.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
4645adantlr 711 . . . . . . . . 9 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
47 seqf1o.5 . . . . . . . . . . 11 (𝜑𝐶𝑆)
4847, 27sseldd 3918 . . . . . . . . . 10 (𝜑 → (𝐺𝐾) ∈ 𝑆)
4948adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐺𝐾) ∈ 𝑆)
5047adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝐶𝑆)
5150adantr 480 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝐶𝑆)
5225adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝐺:𝐴𝐶)
5352adantr 480 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝐺:𝐴𝐶)
54 elfzouz2 13330 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ𝑛))
5554adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑁 ∈ (ℤ𝑛))
56 fzss2 13225 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
5755, 56syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
5831adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝑀...𝑁) ⊆ 𝐴)
5957, 58sstrd 3927 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝑀...𝑛) ⊆ 𝐴)
6059sselda 3917 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝑥𝐴)
6153, 60ffvelrnd 6944 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → (𝐺𝑥) ∈ 𝐶)
6251, 61sseldd 3918 . . . . . . . . . 10 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → (𝐺𝑥) ∈ 𝑆)
63 seqf1o.1 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
6463adantlr 711 . . . . . . . . . 10 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
6541, 62, 64seqcl 13671 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐺)‘𝑛) ∈ 𝑆)
66 fzofzp1 13412 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁))
6766adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝑛 + 1) ∈ (𝑀...𝑁))
6858, 67sseldd 3918 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝑛 + 1) ∈ 𝐴)
6952, 68ffvelrnd 6944 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝐶)
7050, 69sseldd 3918 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆)
7146, 49, 65, 70caovassd 7449 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) + (𝐺‘(𝑛 + 1))) = ((𝐺𝐾) + ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
7244, 71eqtr4d 2781 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) + (𝐺‘(𝑛 + 1))))
7346, 65, 70, 49caovassd 7449 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))) + (𝐺𝐾)) = ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺‘(𝑛 + 1)) + (𝐺𝐾))))
7443oveq1d 7270 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)) = (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))) + (𝐺𝐾)))
7546, 65, 49, 70caovassd 7449 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) + (𝐺‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺𝐾) + (𝐺‘(𝑛 + 1)))))
7624adantlr 711 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
7727adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐺𝐾) ∈ 𝐶)
7876, 69, 77caovcomd 7446 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((𝐺‘(𝑛 + 1)) + (𝐺𝐾)) = ((𝐺𝐾) + (𝐺‘(𝑛 + 1))))
7978oveq2d 7271 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺‘(𝑛 + 1)) + (𝐺𝐾))) = ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺𝐾) + (𝐺‘(𝑛 + 1)))))
8075, 79eqtr4d 2781 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) + (𝐺‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺‘(𝑛 + 1)) + (𝐺𝐾))))
8173, 74, 803eqtr4d 2788 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)) = (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) + (𝐺‘(𝑛 + 1))))
8272, 81eqeq12d 2754 . . . . . 6 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)) ↔ (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) + (𝐺‘(𝑛 + 1))) = (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) + (𝐺‘(𝑛 + 1)))))
8339, 82syl5ibr 245 . . . . 5 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾))))
8483expcom 413 . . . 4 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)))))
8584a2d 29 . . 3 (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾))) → (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)))))
868, 13, 18, 23, 38, 85fzind2 13433 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺𝐾))))
873, 86mpcom 38 1 (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883  wf 6414  cfv 6418  (class class class)co 7255  1c1 10803   + caddc 10805  cz 12249  cuz 12511  ...cfz 13168  ..^cfzo 13311  seqcseq 13649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650
This theorem is referenced by:  seqf1olem2  13691
  Copyright terms: Public domain W3C validator