MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqp1d Structured version   Visualization version   GIF version

Theorem seqp1d 13980
Description: Value of the sequence builder function at a successor, deduction form. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by AV, 3-May-2024.)
Hypotheses
Ref Expression
seqp1d.1 𝑍 = (ℤ𝑀)
seqp1d.2 (𝜑𝑁𝑍)
seqp1d.3 𝐾 = (𝑁 + 1)
seqp1d.4 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝐴)
seqp1d.5 (𝜑 → (𝐹𝐾) = 𝐵)
Assertion
Ref Expression
seqp1d (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐴 + 𝐵))

Proof of Theorem seqp1d
StepHypRef Expression
1 seqp1d.3 . . . 4 𝐾 = (𝑁 + 1)
21fveq2i 6884 . . 3 (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑁 + 1))
32a1i 11 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑁 + 1)))
4 seqp1d.2 . . . 4 (𝜑𝑁𝑍)
5 seqp1d.1 . . . 4 𝑍 = (ℤ𝑀)
64, 5eleqtrdi 2835 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
7 seqp1 13978 . . 3 (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
86, 7syl 17 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
9 seqp1d.4 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝐴)
101fveq2i 6884 . . . 4 (𝐹𝐾) = (𝐹‘(𝑁 + 1))
11 seqp1d.5 . . . 4 (𝜑 → (𝐹𝐾) = 𝐵)
1210, 11eqtr3id 2778 . . 3 (𝜑 → (𝐹‘(𝑁 + 1)) = 𝐵)
139, 12oveq12d 7419 . 2 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) = (𝐴 + 𝐵))
143, 8, 133eqtrd 2768 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6533  (class class class)co 7401  1c1 11107   + caddc 11109  cuz 12819  seqcseq 13963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-n0 12470  df-z 12556  df-uz 12820  df-seq 13964
This theorem is referenced by:  seqp1iOLD  13981  climcndslem2  15793  ege2le3  16030  efgt1p2  16054  efgt1p  16055  ovolunlem1a  25347  itcoval1  47537  itcoval2  47538  itcoval3  47539  itcovalsuc  47541  ackvalsuc1mpt  47552
  Copyright terms: Public domain W3C validator