| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rhmf | Structured version Visualization version GIF version | ||
| Description: A ring homomorphism is a function. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
| Ref | Expression |
|---|---|
| rhmf.b | ⊢ 𝐵 = (Base‘𝑅) |
| rhmf.c | ⊢ 𝐶 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| rhmf | ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmghm 20485 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
| 2 | rhmf.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | rhmf.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
| 4 | 2, 3 | ghmf 19239 | . 2 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐵⟶𝐶) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐵⟶𝐶) |
| Copyright terms: Public domain | W3C validator |