Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1541
∈ wcel 2106 ⟶wf 6536 ‘cfv 6540
(class class class)co 7405 Basecbs 17140
GrpHom cghm 19083 RingHom
crh 20240 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271
df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-0g 17383 df-mhm 18667 df-ghm 19084 df-mgp 19982 df-ur 19999 df-ring 20051 df-rnghom 20243 |
This theorem is referenced by: rhmf1o
20261 rhmdvdsr
20279 rhmopp
20280 rnrhmsubrg
20389 imadrhmcl
20405 srngf1o
20454 mulgrhm2
21039 chrrhm
21074 domnchr
21075 znf1o
21098 znidomb
21108 evlslem3
21634 evlslem6
21635 evlslem1
21636 evlseu
21637 mpfconst
21655 mpfproj
21656 mpfsubrg
21657 mpfind
21661 evls1val
21830 evls1sca
21833 evl1val
21839 fveval1fvcl
21843 evl1addd
21851 evl1subd
21852 evl1muld
21853 evl1expd
21855 pf1const
21856 pf1id
21857 pf1subrg
21858 mpfpf1
21861 pf1mpf
21862 pf1ind
21865 ply1remlem
25671 ply1rem
25672 fta1glem1
25674 fta1glem2
25675 fta1g
25676 fta1blem
25677 plypf1
25717 dchrzrhmul
26738 lgsqrlem1
26838 lgsqrlem2
26839 lgsqrlem3
26840 lgseisenlem3
26869 lgseisenlem4
26870 rndrhmcl
32384 rhmdvd
32424 kerunit
32425 fermltlchr
32466 znfermltl
32467 rhmpreimaidl
32525 elrspunidl
32534 rhmimaidl
32538 rhmpreimaprmidl
32558 evls1fn
32628 evls1dm
32629 evls1fvf
32630 evls1expd
32632 evls1fpws
32634 ressply1evl
32635 ply1fermltlchr
32650 elirng
32738 irngss
32739 irngnzply1lem
32742 irngnzply1
32743 mdetlap
32800 rhmpreimacnlem
32852 pl1cn
32923 zrhunitpreima
32946 elzrhunit
32947 qqhval2lem
32949 qqhf
32954 qqhghm
32956 qqhrhm
32957 qqhnm
32958 fldhmf1
40943 imacrhmcl
41086 rimcnv
41089 rhmcomulmpl
41121 rhmmpl
41122 evlscl
41127 evlsexpval
41136 evlsaddval
41137 evlsmulval
41138 evlcl
41141 evladdval
41144 evlmulval
41145 selvcl
41152 idomrootle
41922 elringchom
46865 rhmsscmap2
46870 rhmsscmap
46871 rhmsubcsetclem2
46873 rhmsubcrngclem2
46879 ringcsect
46882 ringcinv
46883 funcringcsetc
46886 funcringcsetcALTV2lem8
46894 funcringcsetcALTV2lem9
46895 elringchomALTV
46900 ringcinvALTV
46907 funcringcsetclem8ALTV
46917 funcringcsetclem9ALTV
46918 zrtermoringc
46921 rhmsubclem4
46940 |