Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1542
∈ wcel 2107 ⟶wf 6540 ‘cfv 6544
(class class class)co 7409 Basecbs 17144
GrpHom cghm 19089 RingHom
crh 20248 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275
df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-plusg 17210 df-0g 17387 df-mhm 18671 df-ghm 19090 df-mgp 19988 df-ur 20005 df-ring 20058 df-rnghom 20251 |
This theorem is referenced by: rhmf1o
20269 rhmdvdsr
20287 rhmopp
20288 rnrhmsubrg
20352 imadrhmcl
20413 srngf1o
20462 mulgrhm2
21048 chrrhm
21083 domnchr
21084 znf1o
21107 znidomb
21117 evlslem3
21643 evlslem6
21644 evlslem1
21645 evlseu
21646 mpfconst
21664 mpfproj
21665 mpfsubrg
21666 mpfind
21670 evls1val
21839 evls1sca
21842 evl1val
21848 fveval1fvcl
21852 evl1addd
21860 evl1subd
21861 evl1muld
21862 evl1expd
21864 pf1const
21865 pf1id
21866 pf1subrg
21867 mpfpf1
21870 pf1mpf
21871 pf1ind
21874 ply1remlem
25680 ply1rem
25681 fta1glem1
25683 fta1glem2
25684 fta1g
25685 fta1blem
25686 plypf1
25726 dchrzrhmul
26749 lgsqrlem1
26849 lgsqrlem2
26850 lgsqrlem3
26851 lgseisenlem3
26880 lgseisenlem4
26881 rndrhmcl
32396 rhmdvd
32436 kerunit
32437 fermltlchr
32478 znfermltl
32479 rhmpreimaidl
32537 elrspunidl
32546 rhmimaidl
32550 rhmpreimaprmidl
32570 evls1fn
32640 evls1dm
32641 evls1fvf
32642 evls1expd
32644 evls1fpws
32646 ressply1evl
32647 ply1fermltlchr
32662 elirng
32750 irngss
32751 irngnzply1lem
32754 irngnzply1
32755 mdetlap
32812 rhmpreimacnlem
32864 pl1cn
32935 zrhunitpreima
32958 elzrhunit
32959 qqhval2lem
32961 qqhf
32966 qqhghm
32968 qqhrhm
32969 qqhnm
32970 fldhmf1
40955 imacrhmcl
41089 rimcnv
41092 rhmcomulmpl
41124 rhmmpl
41125 evlscl
41130 evlsexpval
41139 evlsaddval
41140 evlsmulval
41141 evlcl
41144 evladdval
41147 evlmulval
41148 selvcl
41155 idomrootle
41937 elringchom
46912 rhmsscmap2
46917 rhmsscmap
46918 rhmsubcsetclem2
46920 rhmsubcrngclem2
46926 ringcsect
46929 ringcinv
46930 funcringcsetc
46933 funcringcsetcALTV2lem8
46941 funcringcsetcALTV2lem9
46942 elringchomALTV
46947 ringcinvALTV
46954 funcringcsetclem8ALTV
46964 funcringcsetclem9ALTV
46965 zrtermoringc
46968 rhmsubclem4
46987 |