Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rhmf | Structured version Visualization version GIF version |
Description: A ring homomorphism is a function. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
Ref | Expression |
---|---|
rhmf.b | ⊢ 𝐵 = (Base‘𝑅) |
rhmf.c | ⊢ 𝐶 = (Base‘𝑆) |
Ref | Expression |
---|---|
rhmf | ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmghm 19884 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
2 | rhmf.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | rhmf.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
4 | 2, 3 | ghmf 18753 | . 2 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐵⟶𝐶) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 GrpHom cghm 18746 RingHom crh 19871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mhm 18345 df-ghm 18747 df-mgp 19636 df-ur 19653 df-ring 19700 df-rnghom 19874 |
This theorem is referenced by: rhmf1o 19891 rnrhmsubrg 19971 srngf1o 20029 mulgrhm2 20612 chrrhm 20647 domnchr 20648 znf1o 20671 znidomb 20681 evlslem3 21200 evlslem6 21201 evlslem1 21202 evlseu 21203 mpfconst 21221 mpfproj 21222 mpfsubrg 21223 mpfind 21227 evls1val 21396 evls1sca 21399 evl1val 21405 fveval1fvcl 21409 evl1addd 21417 evl1subd 21418 evl1muld 21419 evl1expd 21421 pf1const 21422 pf1id 21423 pf1subrg 21424 mpfpf1 21427 pf1mpf 21428 pf1ind 21431 ply1remlem 25232 ply1rem 25233 fta1glem1 25235 fta1glem2 25236 fta1g 25237 fta1blem 25238 plypf1 25278 dchrzrhmul 26299 lgsqrlem1 26399 lgsqrlem2 26400 lgsqrlem3 26401 lgseisenlem3 26430 lgseisenlem4 26431 rhmdvdsr 31419 rhmopp 31420 rhmdvd 31422 kerunit 31424 znfermltl 31464 rhmpreimaidl 31505 elrspunidl 31508 rhmimaidl 31511 rhmpreimaprmidl 31529 ply1fermltl 31572 mdetlap 31684 rhmpreimacnlem 31736 pl1cn 31807 zrhunitpreima 31828 elzrhunit 31829 qqhval2lem 31831 qqhf 31836 qqhghm 31838 qqhrhm 31839 qqhnm 31840 selvval2lem4 40154 selvcl 40156 evlsexpval 40199 evlsaddval 40200 evlsmulval 40201 mhphf 40208 idomrootle 40936 elringchom 45460 rhmsscmap2 45465 rhmsscmap 45466 rhmsubcsetclem2 45468 rhmsubcrngclem2 45474 ringcsect 45477 ringcinv 45478 funcringcsetc 45481 funcringcsetcALTV2lem8 45489 funcringcsetcALTV2lem9 45490 elringchomALTV 45495 ringcinvALTV 45502 funcringcsetclem8ALTV 45512 funcringcsetclem9ALTV 45513 zrtermoringc 45516 rhmsubclem4 45535 |
Copyright terms: Public domain | W3C validator |