MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkreslem Structured version   Visualization version   GIF version

Theorem wlkreslem 29702
Description: Lemma for wlkres 29703. (Contributed by AV, 5-Mar-2021.) (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
wlkres.v 𝑉 = (Vtx‘𝐺)
wlkres.i 𝐼 = (iEdg‘𝐺)
wlkres.d (𝜑𝐹(Walks‘𝐺)𝑃)
wlkres.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
wlkres.s (𝜑 → (Vtx‘𝑆) = 𝑉)
Assertion
Ref Expression
wlkreslem (𝜑𝑆 ∈ V)

Proof of Theorem wlkreslem
StepHypRef Expression
1 ax-1 6 . 2 (𝑆 ∈ V → (𝜑𝑆 ∈ V))
2 df-nel 3045 . . 3 (𝑆 ∉ V ↔ ¬ 𝑆 ∈ V)
3 wlkres.d . . . . 5 (𝜑𝐹(Walks‘𝐺)𝑃)
4 df-br 5149 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (Walks‘𝐺))
5 ne0i 4347 . . . . . . 7 (⟨𝐹, 𝑃⟩ ∈ (Walks‘𝐺) → (Walks‘𝐺) ≠ ∅)
6 wlkres.s . . . . . . . . . . . 12 (𝜑 → (Vtx‘𝑆) = 𝑉)
7 wlkres.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
86, 7eqtrdi 2791 . . . . . . . . . . 11 (𝜑 → (Vtx‘𝑆) = (Vtx‘𝐺))
98anim1ci 616 . . . . . . . . . 10 ((𝜑𝑆 ∉ V) → (𝑆 ∉ V ∧ (Vtx‘𝑆) = (Vtx‘𝐺)))
10 wlk0prc 29687 . . . . . . . . . 10 ((𝑆 ∉ V ∧ (Vtx‘𝑆) = (Vtx‘𝐺)) → (Walks‘𝐺) = ∅)
11 eqneqall 2949 . . . . . . . . . 10 ((Walks‘𝐺) = ∅ → ((Walks‘𝐺) ≠ ∅ → 𝑆 ∈ V))
129, 10, 113syl 18 . . . . . . . . 9 ((𝜑𝑆 ∉ V) → ((Walks‘𝐺) ≠ ∅ → 𝑆 ∈ V))
1312expcom 413 . . . . . . . 8 (𝑆 ∉ V → (𝜑 → ((Walks‘𝐺) ≠ ∅ → 𝑆 ∈ V)))
1413com13 88 . . . . . . 7 ((Walks‘𝐺) ≠ ∅ → (𝜑 → (𝑆 ∉ V → 𝑆 ∈ V)))
155, 14syl 17 . . . . . 6 (⟨𝐹, 𝑃⟩ ∈ (Walks‘𝐺) → (𝜑 → (𝑆 ∉ V → 𝑆 ∈ V)))
164, 15sylbi 217 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝜑 → (𝑆 ∉ V → 𝑆 ∈ V)))
173, 16mpcom 38 . . . 4 (𝜑 → (𝑆 ∉ V → 𝑆 ∈ V))
1817com12 32 . . 3 (𝑆 ∉ V → (𝜑𝑆 ∈ V))
192, 18sylbir 235 . 2 𝑆 ∈ V → (𝜑𝑆 ∈ V))
201, 19pm2.61i 182 1 (𝜑𝑆 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wnel 3044  Vcvv 3478  c0 4339  cop 4637   class class class wbr 5148  cfv 6563  (class class class)co 7431  0cc0 11153  ..^cfzo 13691  chash 14366  Vtxcvtx 29028  iEdgciedg 29029  Walkscwlks 29629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-wlks 29632
This theorem is referenced by:  wlkres  29703
  Copyright terms: Public domain W3C validator