![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkreslem | Structured version Visualization version GIF version |
Description: Lemma for wlkres 29528. (Contributed by AV, 5-Mar-2021.) (Revised by AV, 30-Nov-2022.) |
Ref | Expression |
---|---|
wlkres.v | β’ π = (VtxβπΊ) |
wlkres.i | β’ πΌ = (iEdgβπΊ) |
wlkres.d | β’ (π β πΉ(WalksβπΊ)π) |
wlkres.n | β’ (π β π β (0..^(β―βπΉ))) |
wlkres.s | β’ (π β (Vtxβπ) = π) |
Ref | Expression |
---|---|
wlkreslem | β’ (π β π β V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 β’ (π β V β (π β π β V)) | |
2 | df-nel 3037 | . . 3 β’ (π β V β Β¬ π β V) | |
3 | wlkres.d | . . . . 5 β’ (π β πΉ(WalksβπΊ)π) | |
4 | df-br 5144 | . . . . . 6 β’ (πΉ(WalksβπΊ)π β β¨πΉ, πβ© β (WalksβπΊ)) | |
5 | ne0i 4330 | . . . . . . 7 β’ (β¨πΉ, πβ© β (WalksβπΊ) β (WalksβπΊ) β β ) | |
6 | wlkres.s | . . . . . . . . . . . 12 β’ (π β (Vtxβπ) = π) | |
7 | wlkres.v | . . . . . . . . . . . 12 β’ π = (VtxβπΊ) | |
8 | 6, 7 | eqtrdi 2781 | . . . . . . . . . . 11 β’ (π β (Vtxβπ) = (VtxβπΊ)) |
9 | 8 | anim1ci 614 | . . . . . . . . . 10 β’ ((π β§ π β V) β (π β V β§ (Vtxβπ) = (VtxβπΊ))) |
10 | wlk0prc 29512 | . . . . . . . . . 10 β’ ((π β V β§ (Vtxβπ) = (VtxβπΊ)) β (WalksβπΊ) = β ) | |
11 | eqneqall 2941 | . . . . . . . . . 10 β’ ((WalksβπΊ) = β β ((WalksβπΊ) β β β π β V)) | |
12 | 9, 10, 11 | 3syl 18 | . . . . . . . . 9 β’ ((π β§ π β V) β ((WalksβπΊ) β β β π β V)) |
13 | 12 | expcom 412 | . . . . . . . 8 β’ (π β V β (π β ((WalksβπΊ) β β β π β V))) |
14 | 13 | com13 88 | . . . . . . 7 β’ ((WalksβπΊ) β β β (π β (π β V β π β V))) |
15 | 5, 14 | syl 17 | . . . . . 6 β’ (β¨πΉ, πβ© β (WalksβπΊ) β (π β (π β V β π β V))) |
16 | 4, 15 | sylbi 216 | . . . . 5 β’ (πΉ(WalksβπΊ)π β (π β (π β V β π β V))) |
17 | 3, 16 | mpcom 38 | . . . 4 β’ (π β (π β V β π β V)) |
18 | 17 | com12 32 | . . 3 β’ (π β V β (π β π β V)) |
19 | 2, 18 | sylbir 234 | . 2 β’ (Β¬ π β V β (π β π β V)) |
20 | 1, 19 | pm2.61i 182 | 1 β’ (π β π β V) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2930 β wnel 3036 Vcvv 3463 β c0 4318 β¨cop 4630 class class class wbr 5143 βcfv 6543 (class class class)co 7416 0cc0 11138 ..^cfzo 13659 β―chash 14321 Vtxcvtx 28853 iEdgciedg 28854 Walkscwlks 29454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-fzo 13660 df-hash 14322 df-word 14497 df-wlks 29457 |
This theorem is referenced by: wlkres 29528 |
Copyright terms: Public domain | W3C validator |