MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkreslem Structured version   Visualization version   GIF version

Theorem wlkreslem 27378
Description: Lemma for wlkres 27379. (Contributed by AV, 5-Mar-2021.) (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
wlkres.v 𝑉 = (Vtx‘𝐺)
wlkres.i 𝐼 = (iEdg‘𝐺)
wlkres.d (𝜑𝐹(Walks‘𝐺)𝑃)
wlkres.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
wlkres.s (𝜑 → (Vtx‘𝑆) = 𝑉)
Assertion
Ref Expression
wlkreslem (𝜑𝑆 ∈ V)

Proof of Theorem wlkreslem
StepHypRef Expression
1 ax-1 6 . 2 (𝑆 ∈ V → (𝜑𝑆 ∈ V))
2 df-nel 3121 . . 3 (𝑆 ∉ V ↔ ¬ 𝑆 ∈ V)
3 wlkres.d . . . . 5 (𝜑𝐹(Walks‘𝐺)𝑃)
4 df-br 5058 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (Walks‘𝐺))
5 ne0i 4297 . . . . . . 7 (⟨𝐹, 𝑃⟩ ∈ (Walks‘𝐺) → (Walks‘𝐺) ≠ ∅)
6 wlkres.s . . . . . . . . . . . 12 (𝜑 → (Vtx‘𝑆) = 𝑉)
7 wlkres.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
86, 7syl6eq 2869 . . . . . . . . . . 11 (𝜑 → (Vtx‘𝑆) = (Vtx‘𝐺))
98anim1ci 615 . . . . . . . . . 10 ((𝜑𝑆 ∉ V) → (𝑆 ∉ V ∧ (Vtx‘𝑆) = (Vtx‘𝐺)))
10 wlk0prc 27362 . . . . . . . . . 10 ((𝑆 ∉ V ∧ (Vtx‘𝑆) = (Vtx‘𝐺)) → (Walks‘𝐺) = ∅)
11 eqneqall 3024 . . . . . . . . . 10 ((Walks‘𝐺) = ∅ → ((Walks‘𝐺) ≠ ∅ → 𝑆 ∈ V))
129, 10, 113syl 18 . . . . . . . . 9 ((𝜑𝑆 ∉ V) → ((Walks‘𝐺) ≠ ∅ → 𝑆 ∈ V))
1312expcom 414 . . . . . . . 8 (𝑆 ∉ V → (𝜑 → ((Walks‘𝐺) ≠ ∅ → 𝑆 ∈ V)))
1413com13 88 . . . . . . 7 ((Walks‘𝐺) ≠ ∅ → (𝜑 → (𝑆 ∉ V → 𝑆 ∈ V)))
155, 14syl 17 . . . . . 6 (⟨𝐹, 𝑃⟩ ∈ (Walks‘𝐺) → (𝜑 → (𝑆 ∉ V → 𝑆 ∈ V)))
164, 15sylbi 218 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝜑 → (𝑆 ∉ V → 𝑆 ∈ V)))
173, 16mpcom 38 . . . 4 (𝜑 → (𝑆 ∉ V → 𝑆 ∈ V))
1817com12 32 . . 3 (𝑆 ∉ V → (𝜑𝑆 ∈ V))
192, 18sylbir 236 . 2 𝑆 ∈ V → (𝜑𝑆 ∈ V))
201, 19pm2.61i 183 1 (𝜑𝑆 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3013  wnel 3120  Vcvv 3492  c0 4288  cop 4563   class class class wbr 5057  cfv 6348  (class class class)co 7145  0cc0 10525  ..^cfzo 13021  chash 13678  Vtxcvtx 26708  iEdgciedg 26709  Walkscwlks 27305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-ifp 1055  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679  df-word 13850  df-wlks 27308
This theorem is referenced by:  wlkres  27379
  Copyright terms: Public domain W3C validator