| Step | Hyp | Ref
| Expression |
| 1 | | swrdsb0eq 11118 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ 𝑁 ≤ 𝑀) → (𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉)) |
| 2 | 1 | 3expa 1206 |
. . . . . 6
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0))
∧ 𝑁 ≤ 𝑀) → (𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉)) |
| 3 | 2 | ancoms 268 |
. . . . 5
⊢ ((𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)))
→ (𝑊 substr
〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉)) |
| 4 | 3 | 3adantr3 1161 |
. . . 4
⊢ ((𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈)))) → (𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉)) |
| 5 | | ral0 3562 |
. . . . . . . 8
⊢
∀𝑖 ∈
∅ (𝑊‘𝑖) = (𝑈‘𝑖) |
| 6 | | nn0z 9392 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℤ) |
| 7 | | nn0z 9392 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
| 8 | | fzon 10289 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 𝑀 ↔ (𝑀..^𝑁) = ∅)) |
| 9 | 6, 7, 8 | syl2an 289 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑁 ≤ 𝑀 ↔ (𝑀..^𝑁) = ∅)) |
| 10 | 9 | biimpa 296 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑁 ≤ 𝑀) → (𝑀..^𝑁) = ∅) |
| 11 | 10 | raleqdv 2708 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑁 ≤ 𝑀) → (∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖) ↔ ∀𝑖 ∈ ∅ (𝑊‘𝑖) = (𝑈‘𝑖))) |
| 12 | 5, 11 | mpbiri 168 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑁 ≤ 𝑀) → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖)) |
| 13 | 12 | ex 115 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑁 ≤ 𝑀 → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
| 14 | 13 | 3ad2ant2 1022 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (𝑁 ≤ 𝑀 → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
| 15 | 14 | impcom 125 |
. . . 4
⊢ ((𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈)))) → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖)) |
| 16 | 4, 15 | 2thd 175 |
. . 3
⊢ ((𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈)))) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
| 17 | 16 | ancoms 268 |
. 2
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑁 ≤ 𝑀) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
| 18 | | simp1l 1024 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → 𝑊 ∈ Word 𝑉) |
| 19 | | simp2l 1026 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → 𝑀 ∈
ℕ0) |
| 20 | 19 | nn0zd 9493 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → 𝑀 ∈ ℤ) |
| 21 | | simp2r 1027 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → 𝑁 ∈
ℕ0) |
| 22 | 21 | nn0zd 9493 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → 𝑁 ∈ ℤ) |
| 23 | | swrdclg 11103 |
. . . . . . 7
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑊 substr 〈𝑀, 𝑁〉) ∈ Word 𝑉) |
| 24 | 18, 20, 22, 23 | syl3anc 1250 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (𝑊 substr 〈𝑀, 𝑁〉) ∈ Word 𝑉) |
| 25 | | simp1r 1025 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → 𝑈 ∈ Word 𝑉) |
| 26 | | swrdclg 11103 |
. . . . . . 7
⊢ ((𝑈 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑈 substr 〈𝑀, 𝑁〉) ∈ Word 𝑉) |
| 27 | 25, 20, 22, 26 | syl3anc 1250 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (𝑈 substr 〈𝑀, 𝑁〉) ∈ Word 𝑉) |
| 28 | | eqwrd 11034 |
. . . . . 6
⊢ (((𝑊 substr 〈𝑀, 𝑁〉) ∈ Word 𝑉 ∧ (𝑈 substr 〈𝑀, 𝑁〉) ∈ Word 𝑉) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ((♯‘(𝑊 substr 〈𝑀, 𝑁〉)) = (♯‘(𝑈 substr 〈𝑀, 𝑁〉)) ∧ ∀𝑗 ∈ (0..^(♯‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗)))) |
| 29 | 24, 27, 28 | syl2anc 411 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ((♯‘(𝑊 substr 〈𝑀, 𝑁〉)) = (♯‘(𝑈 substr 〈𝑀, 𝑁〉)) ∧ ∀𝑗 ∈ (0..^(♯‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗)))) |
| 30 | 29 | adantl 277 |
. . . 4
⊢ ((¬
𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈)))) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ((♯‘(𝑊 substr 〈𝑀, 𝑁〉)) = (♯‘(𝑈 substr 〈𝑀, 𝑁〉)) ∧ ∀𝑗 ∈ (0..^(♯‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗)))) |
| 31 | | swrdsbslen 11119 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (♯‘(𝑊 substr 〈𝑀, 𝑁〉)) = (♯‘(𝑈 substr 〈𝑀, 𝑁〉))) |
| 32 | 31 | adantl 277 |
. . . . 5
⊢ ((¬
𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈)))) →
(♯‘(𝑊 substr
〈𝑀, 𝑁〉)) = (♯‘(𝑈 substr 〈𝑀, 𝑁〉))) |
| 33 | 32 | biantrurd 305 |
. . . 4
⊢ ((¬
𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈)))) → (∀𝑗 ∈
(0..^(♯‘(𝑊
substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ((♯‘(𝑊 substr 〈𝑀, 𝑁〉)) = (♯‘(𝑈 substr 〈𝑀, 𝑁〉)) ∧ ∀𝑗 ∈ (0..^(♯‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗)))) |
| 34 | | zltnle 9418 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ ¬ 𝑁 ≤ 𝑀)) |
| 35 | 20, 22, 34 | syl2anc 411 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (𝑀 < 𝑁 ↔ ¬ 𝑁 ≤ 𝑀)) |
| 36 | 19 | nn0red 9349 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → 𝑀 ∈ ℝ) |
| 37 | 21 | nn0red 9349 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → 𝑁 ∈ ℝ) |
| 38 | | ltle 8160 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 → 𝑀 ≤ 𝑁)) |
| 39 | 36, 37, 38 | syl2anc 411 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (𝑀 < 𝑁 → 𝑀 ≤ 𝑁)) |
| 40 | 35, 39 | sylbird 170 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (¬ 𝑁 ≤ 𝑀 → 𝑀 ≤ 𝑁)) |
| 41 | | simpl1l 1051 |
. . . . . . . . . . 11
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → 𝑊 ∈ Word 𝑉) |
| 42 | | simpl2l 1053 |
. . . . . . . . . . . 12
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈
ℕ0) |
| 43 | 6, 7 | anim12i 338 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 44 | 43 | 3ad2ant2 1022 |
. . . . . . . . . . . . . . 15
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 45 | 44 | anim1i 340 |
. . . . . . . . . . . . . 14
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁)) |
| 46 | | df-3an 983 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≤ 𝑁)) |
| 47 | 45, 46 | sylibr 134 |
. . . . . . . . . . . . 13
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| 48 | | eluz2 9654 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| 49 | 47, 48 | sylibr 134 |
. . . . . . . . . . . 12
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 50 | 42, 49 | jca 306 |
. . . . . . . . . . 11
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (𝑀 ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘𝑀))) |
| 51 | | simpl3l 1055 |
. . . . . . . . . . 11
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → 𝑁 ≤ (♯‘𝑊)) |
| 52 | | swrdlen2 11115 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ 𝑁 ≤ (♯‘𝑊)) → (♯‘(𝑊 substr 〈𝑀, 𝑁〉)) = (𝑁 − 𝑀)) |
| 53 | 41, 50, 51, 52 | syl3anc 1250 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (♯‘(𝑊 substr 〈𝑀, 𝑁〉)) = (𝑁 − 𝑀)) |
| 54 | 53 | oveq2d 5960 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (0..^(♯‘(𝑊 substr 〈𝑀, 𝑁〉))) = (0..^(𝑁 − 𝑀))) |
| 55 | 54 | raleqdv 2708 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (∀𝑗 ∈ (0..^(♯‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑗 ∈ (0..^(𝑁 − 𝑀))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗))) |
| 56 | | 0zd 9384 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → 0 ∈
ℤ) |
| 57 | | zsubcl 9413 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 − 𝑀) ∈ ℤ) |
| 58 | 7, 6, 57 | syl2anr 290 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑁 − 𝑀) ∈ ℤ) |
| 59 | 58 | 3ad2ant2 1022 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (𝑁 − 𝑀) ∈ ℤ) |
| 60 | 6 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → 𝑀 ∈ ℤ) |
| 61 | 60 | 3ad2ant2 1022 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → 𝑀 ∈ ℤ) |
| 62 | | fzoshftral 10367 |
. . . . . . . . . 10
⊢ ((0
∈ ℤ ∧ (𝑁
− 𝑀) ∈ ℤ
∧ 𝑀 ∈ ℤ)
→ (∀𝑗 ∈
(0..^(𝑁 − 𝑀))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀))[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗))) |
| 63 | 56, 59, 61, 62 | syl3anc 1250 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (∀𝑗 ∈ (0..^(𝑁 − 𝑀))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀))[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗))) |
| 64 | 63 | adantr 276 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (∀𝑗 ∈ (0..^(𝑁 − 𝑀))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀))[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗))) |
| 65 | | nn0cn 9305 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
| 66 | | nn0cn 9305 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℂ) |
| 67 | | addlid 8211 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℂ → (0 +
𝑀) = 𝑀) |
| 68 | 67 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (0 +
𝑀) = 𝑀) |
| 69 | | npcan 8281 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁 − 𝑀) + 𝑀) = 𝑁) |
| 70 | 68, 69 | oveq12d 5962 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((0 +
𝑀)..^((𝑁 − 𝑀) + 𝑀)) = (𝑀..^𝑁)) |
| 71 | 65, 66, 70 | syl2anr 290 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀)) = (𝑀..^𝑁)) |
| 72 | 71 | 3ad2ant2 1022 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀)) = (𝑀..^𝑁)) |
| 73 | 72 | adantr 276 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀)) = (𝑀..^𝑁)) |
| 74 | 73 | raleqdv 2708 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (∀𝑖 ∈ ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀))[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗))) |
| 75 | | elfzoelz 10269 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (𝑀..^𝑁) → 𝑖 ∈ ℤ) |
| 76 | 75 | adantl 277 |
. . . . . . . . . . . . . 14
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → 𝑖 ∈ ℤ) |
| 77 | 20 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℤ) |
| 78 | 76, 77 | zsubcld 9500 |
. . . . . . . . . . . . 13
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑖 − 𝑀) ∈ ℤ) |
| 79 | 78 | elexd 2785 |
. . . . . . . . . . . 12
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑖 − 𝑀) ∈ V) |
| 80 | | sbceqg 3109 |
. . . . . . . . . . . . 13
⊢ ((𝑖 − 𝑀) ∈ V → ([(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ⦋(𝑖 − 𝑀) / 𝑗⦌((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ⦋(𝑖 − 𝑀) / 𝑗⦌((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗))) |
| 81 | | csbfvg 5616 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 − 𝑀) ∈ V → ⦋(𝑖 − 𝑀) / 𝑗⦌((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀))) |
| 82 | | csbfvg 5616 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 − 𝑀) ∈ V → ⦋(𝑖 − 𝑀) / 𝑗⦌((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀))) |
| 83 | 81, 82 | eqeq12d 2220 |
. . . . . . . . . . . . 13
⊢ ((𝑖 − 𝑀) ∈ V → (⦋(𝑖 − 𝑀) / 𝑗⦌((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ⦋(𝑖 − 𝑀) / 𝑗⦌((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)))) |
| 84 | 80, 83 | bitrd 188 |
. . . . . . . . . . . 12
⊢ ((𝑖 − 𝑀) ∈ V → ([(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)))) |
| 85 | 79, 84 | syl 14 |
. . . . . . . . . . 11
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ([(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)))) |
| 86 | 41, 50, 51 | 3jca 1180 |
. . . . . . . . . . . . 13
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ 𝑁 ≤ (♯‘𝑊))) |
| 87 | | swrdfv2 11116 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ 𝑁 ≤ (♯‘𝑊)) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = (𝑊‘𝑖)) |
| 88 | 86, 87 | sylan 283 |
. . . . . . . . . . . 12
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = (𝑊‘𝑖)) |
| 89 | | simpl1r 1052 |
. . . . . . . . . . . . . 14
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → 𝑈 ∈ Word 𝑉) |
| 90 | | simpl3r 1056 |
. . . . . . . . . . . . . 14
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → 𝑁 ≤ (♯‘𝑈)) |
| 91 | 89, 50, 90 | 3jca 1180 |
. . . . . . . . . . . . 13
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (𝑈 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ 𝑁 ≤ (♯‘𝑈))) |
| 92 | | swrdfv2 11116 |
. . . . . . . . . . . . 13
⊢ (((𝑈 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ 𝑁 ≤ (♯‘𝑈)) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = (𝑈‘𝑖)) |
| 93 | 91, 92 | sylan 283 |
. . . . . . . . . . . 12
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = (𝑈‘𝑖)) |
| 94 | 88, 93 | eqeq12d 2220 |
. . . . . . . . . . 11
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → (((𝑊 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) = ((𝑈 substr 〈𝑀, 𝑁〉)‘(𝑖 − 𝑀)) ↔ (𝑊‘𝑖) = (𝑈‘𝑖))) |
| 95 | 85, 94 | bitrd 188 |
. . . . . . . . . 10
⊢
(((((𝑊 ∈ Word
𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ([(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ (𝑊‘𝑖) = (𝑈‘𝑖))) |
| 96 | 95 | ralbidva 2502 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (∀𝑖 ∈ (𝑀..^𝑁)[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
| 97 | 74, 96 | bitrd 188 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (∀𝑖 ∈ ((0 + 𝑀)..^((𝑁 − 𝑀) + 𝑀))[(𝑖 − 𝑀) / 𝑗]((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
| 98 | 55, 64, 97 | 3bitrd 214 |
. . . . . . 7
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 ≤ 𝑁) → (∀𝑗 ∈ (0..^(♯‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
| 99 | 98 | ex 115 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (𝑀 ≤ 𝑁 → (∀𝑗 ∈ (0..^(♯‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖)))) |
| 100 | 40, 99 | syld 45 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (¬ 𝑁 ≤ 𝑀 → (∀𝑗 ∈ (0..^(♯‘(𝑊 substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖)))) |
| 101 | 100 | impcom 125 |
. . . 4
⊢ ((¬
𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈)))) → (∀𝑗 ∈
(0..^(♯‘(𝑊
substr 〈𝑀, 𝑁〉)))((𝑊 substr 〈𝑀, 𝑁〉)‘𝑗) = ((𝑈 substr 〈𝑀, 𝑁〉)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
| 102 | 30, 33, 101 | 3bitr2d 216 |
. . 3
⊢ ((¬
𝑁 ≤ 𝑀 ∧ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈)))) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
| 103 | 102 | ancoms 268 |
. 2
⊢ ((((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) ∧ ¬ 𝑁 ≤ 𝑀) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |
| 104 | 44 | simprd 114 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → 𝑁 ∈ ℤ) |
| 105 | | zdcle 9449 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) →
DECID 𝑁 ≤
𝑀) |
| 106 | 104, 61, 105 | syl2anc 411 |
. . 3
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → DECID
𝑁 ≤ 𝑀) |
| 107 | | exmiddc 838 |
. . 3
⊢
(DECID 𝑁 ≤ 𝑀 → (𝑁 ≤ 𝑀 ∨ ¬ 𝑁 ≤ 𝑀)) |
| 108 | 106, 107 | syl 14 |
. 2
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → (𝑁 ≤ 𝑀 ∨ ¬ 𝑁 ≤ 𝑀)) |
| 109 | 17, 103, 108 | mpjaodan 800 |
1
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
∧ (𝑁 ≤
(♯‘𝑊) ∧
𝑁 ≤ (♯‘𝑈))) → ((𝑊 substr 〈𝑀, 𝑁〉) = (𝑈 substr 〈𝑀, 𝑁〉) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊‘𝑖) = (𝑈‘𝑖))) |