ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdspsleq GIF version

Theorem swrdspsleq 11194
Description: Two words have a common subword (starting at the same position with the same length) iff they have the same symbols at each position. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Proof shortened by AV, 7-May-2020.)
Assertion
Ref Expression
swrdspsleq (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
Distinct variable groups:   𝑖,𝑀   𝑖,𝑁   𝑈,𝑖   𝑖,𝑉   𝑖,𝑊

Proof of Theorem swrdspsleq
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 swrdsb0eq 11192 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝑀) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩))
213expa 1227 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) ∧ 𝑁𝑀) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩))
32ancoms 268 . . . . 5 ((𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0))) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩))
433adantr3 1182 . . . 4 ((𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩))
5 ral0 3593 . . . . . . . 8 𝑖 ∈ ∅ (𝑊𝑖) = (𝑈𝑖)
6 nn0z 9462 . . . . . . . . . . 11 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
7 nn0z 9462 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
8 fzon 10359 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
96, 7, 8syl2an 289 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀 ↔ (𝑀..^𝑁) = ∅))
109biimpa 296 . . . . . . . . 9 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝑀) → (𝑀..^𝑁) = ∅)
1110raleqdv 2734 . . . . . . . 8 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝑀) → (∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖) ↔ ∀𝑖 ∈ ∅ (𝑊𝑖) = (𝑈𝑖)))
125, 11mpbiri 168 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑁𝑀) → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖))
1312ex 115 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀 → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
14133ad2ant2 1043 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑁𝑀 → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
1514impcom 125 . . . 4 ((𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖))
164, 152thd 175 . . 3 ((𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
1716ancoms 268 . 2 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑁𝑀) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
18 simp1l 1045 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑊 ∈ Word 𝑉)
19 simp2l 1047 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑀 ∈ ℕ0)
2019nn0zd 9563 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑀 ∈ ℤ)
21 simp2r 1048 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑁 ∈ ℕ0)
2221nn0zd 9563 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑁 ∈ ℤ)
23 swrdclg 11177 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
2418, 20, 22, 23syl3anc 1271 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
25 simp1r 1046 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑈 ∈ Word 𝑉)
26 swrdclg 11177 . . . . . . 7 ((𝑈 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑈 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
2725, 20, 22, 26syl3anc 1271 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑈 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
28 eqwrd 11107 . . . . . 6 (((𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉 ∧ (𝑈 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ((♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)) ∧ ∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗))))
2924, 27, 28syl2anc 411 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ((♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)) ∧ ∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗))))
3029adantl 277 . . . 4 ((¬ 𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ((♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)) ∧ ∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗))))
31 swrdsbslen 11193 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)))
3231adantl 277 . . . . 5 ((¬ 𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)))
3332biantrurd 305 . . . 4 ((¬ 𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → (∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ((♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (♯‘(𝑈 substr ⟨𝑀, 𝑁⟩)) ∧ ∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗))))
34 zltnle 9488 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ ¬ 𝑁𝑀))
3520, 22, 34syl2anc 411 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑀 < 𝑁 ↔ ¬ 𝑁𝑀))
3619nn0red 9419 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑀 ∈ ℝ)
3721nn0red 9419 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑁 ∈ ℝ)
38 ltle 8230 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁𝑀𝑁))
3936, 37, 38syl2anc 411 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑀 < 𝑁𝑀𝑁))
4035, 39sylbird 170 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (¬ 𝑁𝑀𝑀𝑁))
41 simpl1l 1072 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → 𝑊 ∈ Word 𝑉)
42 simpl2l 1074 . . . . . . . . . . . 12 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → 𝑀 ∈ ℕ0)
436, 7anim12i 338 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
44433ad2ant2 1043 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
4544anim1i 340 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁))
46 df-3an 1004 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁))
4745, 46sylibr 134 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
48 eluz2 9724 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
4947, 48sylibr 134 . . . . . . . . . . . 12 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → 𝑁 ∈ (ℤ𝑀))
5042, 49jca 306 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)))
51 simpl3l 1076 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → 𝑁 ≤ (♯‘𝑊))
52 swrdlen2 11189 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ 𝑁 ≤ (♯‘𝑊)) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (𝑁𝑀))
5341, 50, 51, 52syl3anc 1271 . . . . . . . . . 10 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (𝑁𝑀))
5453oveq2d 6016 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩))) = (0..^(𝑁𝑀)))
5554raleqdv 2734 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑗 ∈ (0..^(𝑁𝑀))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗)))
56 0zd 9454 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 0 ∈ ℤ)
57 zsubcl 9483 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀) ∈ ℤ)
587, 6, 57syl2anr 290 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝑀) ∈ ℤ)
59583ad2ant2 1043 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑁𝑀) ∈ ℤ)
606adantr 276 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ)
61603ad2ant2 1043 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑀 ∈ ℤ)
62 fzoshftral 10439 . . . . . . . . . 10 ((0 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (∀𝑗 ∈ (0..^(𝑁𝑀))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ ((0 + 𝑀)..^((𝑁𝑀) + 𝑀))[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗)))
6356, 59, 61, 62syl3anc 1271 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (∀𝑗 ∈ (0..^(𝑁𝑀))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ ((0 + 𝑀)..^((𝑁𝑀) + 𝑀))[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗)))
6463adantr 276 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (∀𝑗 ∈ (0..^(𝑁𝑀))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ ((0 + 𝑀)..^((𝑁𝑀) + 𝑀))[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗)))
65 nn0cn 9375 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
66 nn0cn 9375 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
67 addlid 8281 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℂ → (0 + 𝑀) = 𝑀)
6867adantl 277 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (0 + 𝑀) = 𝑀)
69 npcan 8351 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁𝑀) + 𝑀) = 𝑁)
7068, 69oveq12d 6018 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((0 + 𝑀)..^((𝑁𝑀) + 𝑀)) = (𝑀..^𝑁))
7165, 66, 70syl2anr 290 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 + 𝑀)..^((𝑁𝑀) + 𝑀)) = (𝑀..^𝑁))
72713ad2ant2 1043 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((0 + 𝑀)..^((𝑁𝑀) + 𝑀)) = (𝑀..^𝑁))
7372adantr 276 . . . . . . . . . 10 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → ((0 + 𝑀)..^((𝑁𝑀) + 𝑀)) = (𝑀..^𝑁))
7473raleqdv 2734 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (∀𝑖 ∈ ((0 + 𝑀)..^((𝑁𝑀) + 𝑀))[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗)))
75 elfzoelz 10339 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀..^𝑁) → 𝑖 ∈ ℤ)
7675adantl 277 . . . . . . . . . . . . . 14 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → 𝑖 ∈ ℤ)
7720ad2antrr 488 . . . . . . . . . . . . . 14 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℤ)
7876, 77zsubcld 9570 . . . . . . . . . . . . 13 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑖𝑀) ∈ ℤ)
7978elexd 2813 . . . . . . . . . . . 12 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑖𝑀) ∈ V)
80 sbceqg 3140 . . . . . . . . . . . . 13 ((𝑖𝑀) ∈ V → ([(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ (𝑖𝑀) / 𝑗((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = (𝑖𝑀) / 𝑗((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗)))
81 csbfvg 5668 . . . . . . . . . . . . . 14 ((𝑖𝑀) ∈ V → (𝑖𝑀) / 𝑗((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)))
82 csbfvg 5668 . . . . . . . . . . . . . 14 ((𝑖𝑀) ∈ V → (𝑖𝑀) / 𝑗((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)))
8381, 82eqeq12d 2244 . . . . . . . . . . . . 13 ((𝑖𝑀) ∈ V → ((𝑖𝑀) / 𝑗((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = (𝑖𝑀) / 𝑗((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀))))
8480, 83bitrd 188 . . . . . . . . . . . 12 ((𝑖𝑀) ∈ V → ([(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀))))
8579, 84syl 14 . . . . . . . . . . 11 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ([(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀))))
8641, 50, 513jca 1201 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ 𝑁 ≤ (♯‘𝑊)))
87 swrdfv2 11190 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ 𝑁 ≤ (♯‘𝑊)) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = (𝑊𝑖))
8886, 87sylan 283 . . . . . . . . . . . 12 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = (𝑊𝑖))
89 simpl1r 1073 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → 𝑈 ∈ Word 𝑉)
90 simpl3r 1077 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → 𝑁 ≤ (♯‘𝑈))
9189, 50, 903jca 1201 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (𝑈 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ 𝑁 ≤ (♯‘𝑈)))
92 swrdfv2 11190 . . . . . . . . . . . . 13 (((𝑈 ∈ Word 𝑉 ∧ (𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ 𝑁 ≤ (♯‘𝑈)) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = (𝑈𝑖))
9391, 92sylan 283 . . . . . . . . . . . 12 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = (𝑈𝑖))
9488, 93eqeq12d 2244 . . . . . . . . . . 11 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → (((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘(𝑖𝑀)) ↔ (𝑊𝑖) = (𝑈𝑖)))
9585, 94bitrd 188 . . . . . . . . . 10 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) ∧ 𝑖 ∈ (𝑀..^𝑁)) → ([(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ (𝑊𝑖) = (𝑈𝑖)))
9695ralbidva 2526 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (∀𝑖 ∈ (𝑀..^𝑁)[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
9774, 96bitrd 188 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (∀𝑖 ∈ ((0 + 𝑀)..^((𝑁𝑀) + 𝑀))[(𝑖𝑀) / 𝑗]((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
9855, 64, 973bitrd 214 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀𝑁) → (∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
9998ex 115 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑀𝑁 → (∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖))))
10040, 99syld 45 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (¬ 𝑁𝑀 → (∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖))))
101100impcom 125 . . . 4 ((¬ 𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → (∀𝑗 ∈ (0..^(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = ((𝑈 substr ⟨𝑀, 𝑁⟩)‘𝑗) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
10230, 33, 1013bitr2d 216 . . 3 ((¬ 𝑁𝑀 ∧ ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
103102ancoms 268 . 2 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ ¬ 𝑁𝑀) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
10444simprd 114 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑁 ∈ ℤ)
105 zdcle 9519 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑁𝑀)
106104, 61, 105syl2anc 411 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → DECID 𝑁𝑀)
107 exmiddc 841 . . 3 (DECID 𝑁𝑀 → (𝑁𝑀 ∨ ¬ 𝑁𝑀))
108106, 107syl 14 . 2 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑁𝑀 ∨ ¬ 𝑁𝑀))
10917, 103, 108mpjaodan 803 1 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑈 substr ⟨𝑀, 𝑁⟩) ↔ ∀𝑖 ∈ (𝑀..^𝑁)(𝑊𝑖) = (𝑈𝑖)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  [wsbc 3028  csb 3124  c0 3491  cop 3669   class class class wbr 4082  cfv 5317  (class class class)co 6000  cc 7993  cr 7994  0cc0 7995   + caddc 7998   < clt 8177  cle 8178  cmin 8313  0cn0 9365  cz 9442  cuz 9718  ..^cfzo 10334  chash 10992  Word cword 11066   substr csubstr 11172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-substr 11173
This theorem is referenced by:  pfxsuffeqwrdeq  11225
  Copyright terms: Public domain W3C validator