| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnexpcld | GIF version | ||
| Description: Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| nnexpcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| nnexpcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| nnexpcld | ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnexpcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | nnexpcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 3 | nnexpcl 10649 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 (class class class)co 5925 ℕcn 8995 ℕ0cn0 9254 ↑cexp 10635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7975 ax-resscn 7976 ax-1cn 7977 ax-1re 7978 ax-icn 7979 ax-addcl 7980 ax-addrcl 7981 ax-mulcl 7982 ax-mulrcl 7983 ax-addcom 7984 ax-mulcom 7985 ax-addass 7986 ax-mulass 7987 ax-distr 7988 ax-i2m1 7989 ax-0lt1 7990 ax-1rid 7991 ax-0id 7992 ax-rnegex 7993 ax-precex 7994 ax-cnre 7995 ax-pre-ltirr 7996 ax-pre-ltwlin 7997 ax-pre-lttrn 7998 ax-pre-apti 7999 ax-pre-ltadd 8000 ax-pre-mulgt0 8001 ax-pre-mulext 8002 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6202 df-2nd 6203 df-recs 6367 df-frec 6453 df-pnf 8068 df-mnf 8069 df-xr 8070 df-ltxr 8071 df-le 8072 df-sub 8204 df-neg 8205 df-reap 8607 df-ap 8614 df-div 8705 df-inn 8996 df-n0 9255 df-z 9332 df-uz 9607 df-seqfrec 10545 df-exp 10636 |
| This theorem is referenced by: resqrexlemnm 11188 bitsdc 12117 bitsp1 12121 bitsfzolem 12124 bitsfzo 12125 bitsmod 12126 bitsfi 12127 bitscmp 12128 bitsinv1lem 12131 bitsinv1 12132 rplpwr 12207 rppwr 12208 pw2dvdseulemle 12348 oddpwdclemxy 12350 oddpwdclemodd 12353 oddpwdclemdc 12354 sqpweven 12356 2sqpwodd 12357 pclemub 12469 pcprendvds2 12473 pcpre1 12474 pcpremul 12475 pcdvdsb 12502 pcidlem 12505 pcid 12506 pcdvdstr 12509 pcgcd1 12510 pcprmpw2 12515 pcaddlem 12521 pcadd 12522 pcmpt 12525 pcfaclem 12531 pcfac 12532 pcbc 12533 oddprmdvds 12536 prmpwdvds 12537 pockthlem 12538 2expltfac 12621 sgmppw 15275 gausslemma2d 15357 lgseisen 15362 redcwlpolemeq1 15748 nconstwlpolem0 15757 |
| Copyright terms: Public domain | W3C validator |