ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnexpcld GIF version

Theorem nnexpcld 10792
Description: Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
nnexpcld.1 (𝜑𝐴 ∈ ℕ)
nnexpcld.2 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
nnexpcld (𝜑 → (𝐴𝑁) ∈ ℕ)

Proof of Theorem nnexpcld
StepHypRef Expression
1 nnexpcld.1 . 2 (𝜑𝐴 ∈ ℕ)
2 nnexpcld.2 . 2 (𝜑𝑁 ∈ ℕ0)
3 nnexpcl 10649 . 2 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℕ)
41, 2, 3syl2anc 411 1 (𝜑 → (𝐴𝑁) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  (class class class)co 5925  cn 8995  0cn0 9254  cexp 10635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7975  ax-resscn 7976  ax-1cn 7977  ax-1re 7978  ax-icn 7979  ax-addcl 7980  ax-addrcl 7981  ax-mulcl 7982  ax-mulrcl 7983  ax-addcom 7984  ax-mulcom 7985  ax-addass 7986  ax-mulass 7987  ax-distr 7988  ax-i2m1 7989  ax-0lt1 7990  ax-1rid 7991  ax-0id 7992  ax-rnegex 7993  ax-precex 7994  ax-cnre 7995  ax-pre-ltirr 7996  ax-pre-ltwlin 7997  ax-pre-lttrn 7998  ax-pre-apti 7999  ax-pre-ltadd 8000  ax-pre-mulgt0 8001  ax-pre-mulext 8002
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6202  df-2nd 6203  df-recs 6367  df-frec 6453  df-pnf 8068  df-mnf 8069  df-xr 8070  df-ltxr 8071  df-le 8072  df-sub 8204  df-neg 8205  df-reap 8607  df-ap 8614  df-div 8705  df-inn 8996  df-n0 9255  df-z 9332  df-uz 9607  df-seqfrec 10545  df-exp 10636
This theorem is referenced by:  resqrexlemnm  11188  bitsdc  12117  bitsp1  12121  bitsfzolem  12124  bitsfzo  12125  bitsmod  12126  bitsfi  12127  bitscmp  12128  bitsinv1lem  12131  bitsinv1  12132  rplpwr  12207  rppwr  12208  pw2dvdseulemle  12348  oddpwdclemxy  12350  oddpwdclemodd  12353  oddpwdclemdc  12354  sqpweven  12356  2sqpwodd  12357  pclemub  12469  pcprendvds2  12473  pcpre1  12474  pcpremul  12475  pcdvdsb  12502  pcidlem  12505  pcid  12506  pcdvdstr  12509  pcgcd1  12510  pcprmpw2  12515  pcaddlem  12521  pcadd  12522  pcmpt  12525  pcfaclem  12531  pcfac  12532  pcbc  12533  oddprmdvds  12536  prmpwdvds  12537  pockthlem  12538  2expltfac  12621  sgmppw  15275  gausslemma2d  15357  lgseisen  15362  redcwlpolemeq1  15748  nconstwlpolem0  15757
  Copyright terms: Public domain W3C validator