![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cxplea | Structured version Visualization version GIF version |
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 10-Sep-2014.) |
Ref | Expression |
---|---|
cxplea | ⊢ (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) → (𝐴↑𝑐𝐵) ≤ (𝐴↑𝑐𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1174 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) ∧ 1 < 𝐴) → 𝐵 ≤ 𝐶) | |
2 | simpl1l 1205 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) ∧ 1 < 𝐴) → 𝐴 ∈ ℝ) | |
3 | simpr 477 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) ∧ 1 < 𝐴) → 1 < 𝐴) | |
4 | simpl2 1173 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) ∧ 1 < 𝐴) → (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) | |
5 | cxple 24994 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 ≤ 𝐶 ↔ (𝐴↑𝑐𝐵) ≤ (𝐴↑𝑐𝐶))) | |
6 | 2, 3, 4, 5 | syl21anc 826 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) ∧ 1 < 𝐴) → (𝐵 ≤ 𝐶 ↔ (𝐴↑𝑐𝐵) ≤ (𝐴↑𝑐𝐶))) |
7 | 1, 6 | mpbid 224 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) ∧ 1 < 𝐴) → (𝐴↑𝑐𝐵) ≤ (𝐴↑𝑐𝐶)) |
8 | 1le1 11067 | . . . . 5 ⊢ 1 ≤ 1 | |
9 | simp2l 1180 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) → 𝐵 ∈ ℝ) | |
10 | 9 | recnd 10466 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) → 𝐵 ∈ ℂ) |
11 | 1cxp 24971 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (1↑𝑐𝐵) = 1) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) → (1↑𝑐𝐵) = 1) |
13 | simp2r 1181 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) → 𝐶 ∈ ℝ) | |
14 | 13 | recnd 10466 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) → 𝐶 ∈ ℂ) |
15 | 1cxp 24971 | . . . . . . 7 ⊢ (𝐶 ∈ ℂ → (1↑𝑐𝐶) = 1) | |
16 | 14, 15 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) → (1↑𝑐𝐶) = 1) |
17 | 12, 16 | breq12d 4938 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) → ((1↑𝑐𝐵) ≤ (1↑𝑐𝐶) ↔ 1 ≤ 1)) |
18 | 8, 17 | mpbiri 250 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) → (1↑𝑐𝐵) ≤ (1↑𝑐𝐶)) |
19 | oveq1 6981 | . . . . 5 ⊢ (1 = 𝐴 → (1↑𝑐𝐵) = (𝐴↑𝑐𝐵)) | |
20 | oveq1 6981 | . . . . 5 ⊢ (1 = 𝐴 → (1↑𝑐𝐶) = (𝐴↑𝑐𝐶)) | |
21 | 19, 20 | breq12d 4938 | . . . 4 ⊢ (1 = 𝐴 → ((1↑𝑐𝐵) ≤ (1↑𝑐𝐶) ↔ (𝐴↑𝑐𝐵) ≤ (𝐴↑𝑐𝐶))) |
22 | 18, 21 | syl5ibcom 237 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) → (1 = 𝐴 → (𝐴↑𝑐𝐵) ≤ (𝐴↑𝑐𝐶))) |
23 | 22 | imp 398 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) ∧ 1 = 𝐴) → (𝐴↑𝑐𝐵) ≤ (𝐴↑𝑐𝐶)) |
24 | 1re 10437 | . . . . 5 ⊢ 1 ∈ ℝ | |
25 | leloe 10525 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 ≤ 𝐴 ↔ (1 < 𝐴 ∨ 1 = 𝐴))) | |
26 | 24, 25 | mpan 678 | . . . 4 ⊢ (𝐴 ∈ ℝ → (1 ≤ 𝐴 ↔ (1 < 𝐴 ∨ 1 = 𝐴))) |
27 | 26 | biimpa 469 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1 < 𝐴 ∨ 1 = 𝐴)) |
28 | 27 | 3ad2ant1 1114 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) → (1 < 𝐴 ∨ 1 = 𝐴)) |
29 | 7, 23, 28 | mpjaodan 942 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) → (𝐴↑𝑐𝐵) ≤ (𝐴↑𝑐𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∨ wo 834 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 class class class wbr 4925 (class class class)co 6974 ℂcc 10331 ℝcr 10332 1c1 10334 < clt 10472 ≤ cle 10473 ↑𝑐ccxp 24855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-inf2 8896 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 ax-addf 10412 ax-mulf 10413 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-iin 4791 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-se 5363 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-isom 6194 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-of 7225 df-om 7395 df-1st 7499 df-2nd 7500 df-supp 7632 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-2o 7904 df-oadd 7907 df-er 8087 df-map 8206 df-pm 8207 df-ixp 8258 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-fsupp 8627 df-fi 8668 df-sup 8699 df-inf 8700 df-oi 8767 df-card 9160 df-cda 9386 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-3 11502 df-4 11503 df-5 11504 df-6 11505 df-7 11506 df-8 11507 df-9 11508 df-n0 11706 df-z 11792 df-dec 11910 df-uz 12057 df-q 12161 df-rp 12203 df-xneg 12322 df-xadd 12323 df-xmul 12324 df-ioo 12556 df-ioc 12557 df-ico 12558 df-icc 12559 df-fz 12707 df-fzo 12848 df-fl 12975 df-mod 13051 df-seq 13183 df-exp 13243 df-fac 13447 df-bc 13476 df-hash 13504 df-shft 14285 df-cj 14317 df-re 14318 df-im 14319 df-sqrt 14453 df-abs 14454 df-limsup 14687 df-clim 14704 df-rlim 14705 df-sum 14902 df-ef 15279 df-sin 15281 df-cos 15282 df-pi 15284 df-struct 16339 df-ndx 16340 df-slot 16341 df-base 16343 df-sets 16344 df-ress 16345 df-plusg 16432 df-mulr 16433 df-starv 16434 df-sca 16435 df-vsca 16436 df-ip 16437 df-tset 16438 df-ple 16439 df-ds 16441 df-unif 16442 df-hom 16443 df-cco 16444 df-rest 16550 df-topn 16551 df-0g 16569 df-gsum 16570 df-topgen 16571 df-pt 16572 df-prds 16575 df-xrs 16629 df-qtop 16634 df-imas 16635 df-xps 16637 df-mre 16727 df-mrc 16728 df-acs 16730 df-mgm 17722 df-sgrp 17764 df-mnd 17775 df-submnd 17816 df-mulg 18024 df-cntz 18230 df-cmn 18680 df-psmet 20254 df-xmet 20255 df-met 20256 df-bl 20257 df-mopn 20258 df-fbas 20259 df-fg 20260 df-cnfld 20263 df-top 21221 df-topon 21238 df-topsp 21260 df-bases 21273 df-cld 21346 df-ntr 21347 df-cls 21348 df-nei 21425 df-lp 21463 df-perf 21464 df-cn 21554 df-cnp 21555 df-haus 21642 df-tx 21889 df-hmeo 22082 df-fil 22173 df-fm 22265 df-flim 22266 df-flf 22267 df-xms 22648 df-ms 22649 df-tms 22650 df-cncf 23204 df-limc 24182 df-dv 24183 df-log 24856 df-cxp 24857 |
This theorem is referenced by: cxplead 25020 |
Copyright terms: Public domain | W3C validator |