| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lgslem2 | Structured version Visualization version GIF version | ||
| Description: The set 𝑍 of all integers with absolute value at most 1 contains {-1, 0, 1}. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| lgslem2.z | ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} |
| Ref | Expression |
|---|---|
| lgslem2 | ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1z 12633 | . . 3 ⊢ -1 ∈ ℤ | |
| 2 | 1le1 11870 | . . 3 ⊢ 1 ≤ 1 | |
| 3 | fveq2 6881 | . . . . . 6 ⊢ (𝑥 = -1 → (abs‘𝑥) = (abs‘-1)) | |
| 4 | ax-1cn 11192 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 5 | 4 | absnegi 15424 | . . . . . . 7 ⊢ (abs‘-1) = (abs‘1) |
| 6 | abs1 15321 | . . . . . . 7 ⊢ (abs‘1) = 1 | |
| 7 | 5, 6 | eqtri 2759 | . . . . . 6 ⊢ (abs‘-1) = 1 |
| 8 | 3, 7 | eqtrdi 2787 | . . . . 5 ⊢ (𝑥 = -1 → (abs‘𝑥) = 1) |
| 9 | 8 | breq1d 5134 | . . . 4 ⊢ (𝑥 = -1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1)) |
| 10 | lgslem2.z | . . . 4 ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} | |
| 11 | 9, 10 | elrab2 3679 | . . 3 ⊢ (-1 ∈ 𝑍 ↔ (-1 ∈ ℤ ∧ 1 ≤ 1)) |
| 12 | 1, 2, 11 | mpbir2an 711 | . 2 ⊢ -1 ∈ 𝑍 |
| 13 | 0z 12604 | . . 3 ⊢ 0 ∈ ℤ | |
| 14 | 0le1 11765 | . . 3 ⊢ 0 ≤ 1 | |
| 15 | fveq2 6881 | . . . . . 6 ⊢ (𝑥 = 0 → (abs‘𝑥) = (abs‘0)) | |
| 16 | abs0 15309 | . . . . . 6 ⊢ (abs‘0) = 0 | |
| 17 | 15, 16 | eqtrdi 2787 | . . . . 5 ⊢ (𝑥 = 0 → (abs‘𝑥) = 0) |
| 18 | 17 | breq1d 5134 | . . . 4 ⊢ (𝑥 = 0 → ((abs‘𝑥) ≤ 1 ↔ 0 ≤ 1)) |
| 19 | 18, 10 | elrab2 3679 | . . 3 ⊢ (0 ∈ 𝑍 ↔ (0 ∈ ℤ ∧ 0 ≤ 1)) |
| 20 | 13, 14, 19 | mpbir2an 711 | . 2 ⊢ 0 ∈ 𝑍 |
| 21 | 1z 12627 | . . 3 ⊢ 1 ∈ ℤ | |
| 22 | fveq2 6881 | . . . . . 6 ⊢ (𝑥 = 1 → (abs‘𝑥) = (abs‘1)) | |
| 23 | 22, 6 | eqtrdi 2787 | . . . . 5 ⊢ (𝑥 = 1 → (abs‘𝑥) = 1) |
| 24 | 23 | breq1d 5134 | . . . 4 ⊢ (𝑥 = 1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1)) |
| 25 | 24, 10 | elrab2 3679 | . . 3 ⊢ (1 ∈ 𝑍 ↔ (1 ∈ ℤ ∧ 1 ≤ 1)) |
| 26 | 21, 2, 25 | mpbir2an 711 | . 2 ⊢ 1 ∈ 𝑍 |
| 27 | 12, 20, 26 | 3pm3.2i 1340 | 1 ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3420 class class class wbr 5124 ‘cfv 6536 0cc0 11134 1c1 11135 ≤ cle 11275 -cneg 11472 ℤcz 12593 abscabs 15258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 |
| This theorem is referenced by: lgslem4 27268 lgscllem 27272 |
| Copyright terms: Public domain | W3C validator |