| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lgslem2 | Structured version Visualization version GIF version | ||
| Description: The set 𝑍 of all integers with absolute value at most 1 contains {-1, 0, 1}. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| lgslem2.z | ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} |
| Ref | Expression |
|---|---|
| lgslem2 | ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1z 12511 | . . 3 ⊢ -1 ∈ ℤ | |
| 2 | 1le1 11748 | . . 3 ⊢ 1 ≤ 1 | |
| 3 | fveq2 6822 | . . . . . 6 ⊢ (𝑥 = -1 → (abs‘𝑥) = (abs‘-1)) | |
| 4 | ax-1cn 11067 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 5 | 4 | absnegi 15308 | . . . . . . 7 ⊢ (abs‘-1) = (abs‘1) |
| 6 | abs1 15204 | . . . . . . 7 ⊢ (abs‘1) = 1 | |
| 7 | 5, 6 | eqtri 2752 | . . . . . 6 ⊢ (abs‘-1) = 1 |
| 8 | 3, 7 | eqtrdi 2780 | . . . . 5 ⊢ (𝑥 = -1 → (abs‘𝑥) = 1) |
| 9 | 8 | breq1d 5102 | . . . 4 ⊢ (𝑥 = -1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1)) |
| 10 | lgslem2.z | . . . 4 ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} | |
| 11 | 9, 10 | elrab2 3651 | . . 3 ⊢ (-1 ∈ 𝑍 ↔ (-1 ∈ ℤ ∧ 1 ≤ 1)) |
| 12 | 1, 2, 11 | mpbir2an 711 | . 2 ⊢ -1 ∈ 𝑍 |
| 13 | 0z 12482 | . . 3 ⊢ 0 ∈ ℤ | |
| 14 | 0le1 11643 | . . 3 ⊢ 0 ≤ 1 | |
| 15 | fveq2 6822 | . . . . . 6 ⊢ (𝑥 = 0 → (abs‘𝑥) = (abs‘0)) | |
| 16 | abs0 15192 | . . . . . 6 ⊢ (abs‘0) = 0 | |
| 17 | 15, 16 | eqtrdi 2780 | . . . . 5 ⊢ (𝑥 = 0 → (abs‘𝑥) = 0) |
| 18 | 17 | breq1d 5102 | . . . 4 ⊢ (𝑥 = 0 → ((abs‘𝑥) ≤ 1 ↔ 0 ≤ 1)) |
| 19 | 18, 10 | elrab2 3651 | . . 3 ⊢ (0 ∈ 𝑍 ↔ (0 ∈ ℤ ∧ 0 ≤ 1)) |
| 20 | 13, 14, 19 | mpbir2an 711 | . 2 ⊢ 0 ∈ 𝑍 |
| 21 | 1z 12505 | . . 3 ⊢ 1 ∈ ℤ | |
| 22 | fveq2 6822 | . . . . . 6 ⊢ (𝑥 = 1 → (abs‘𝑥) = (abs‘1)) | |
| 23 | 22, 6 | eqtrdi 2780 | . . . . 5 ⊢ (𝑥 = 1 → (abs‘𝑥) = 1) |
| 24 | 23 | breq1d 5102 | . . . 4 ⊢ (𝑥 = 1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1)) |
| 25 | 24, 10 | elrab2 3651 | . . 3 ⊢ (1 ∈ 𝑍 ↔ (1 ∈ ℤ ∧ 1 ≤ 1)) |
| 26 | 21, 2, 25 | mpbir2an 711 | . 2 ⊢ 1 ∈ 𝑍 |
| 27 | 12, 20, 26 | 3pm3.2i 1340 | 1 ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3394 class class class wbr 5092 ‘cfv 6482 0cc0 11009 1c1 11010 ≤ cle 11150 -cneg 11348 ℤcz 12471 abscabs 15141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 |
| This theorem is referenced by: lgslem4 27209 lgscllem 27213 |
| Copyright terms: Public domain | W3C validator |