MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgslem2 Structured version   Visualization version   GIF version

Theorem lgslem2 26351
Description: The set 𝑍 of all integers with absolute value at most 1 contains {-1, 0, 1}. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgslem2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgslem2 (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍)

Proof of Theorem lgslem2
StepHypRef Expression
1 neg1z 12286 . . 3 -1 ∈ ℤ
2 1le1 11533 . . 3 1 ≤ 1
3 fveq2 6756 . . . . . 6 (𝑥 = -1 → (abs‘𝑥) = (abs‘-1))
4 ax-1cn 10860 . . . . . . . 8 1 ∈ ℂ
54absnegi 15040 . . . . . . 7 (abs‘-1) = (abs‘1)
6 abs1 14937 . . . . . . 7 (abs‘1) = 1
75, 6eqtri 2766 . . . . . 6 (abs‘-1) = 1
83, 7eqtrdi 2795 . . . . 5 (𝑥 = -1 → (abs‘𝑥) = 1)
98breq1d 5080 . . . 4 (𝑥 = -1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1))
10 lgslem2.z . . . 4 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
119, 10elrab2 3620 . . 3 (-1 ∈ 𝑍 ↔ (-1 ∈ ℤ ∧ 1 ≤ 1))
121, 2, 11mpbir2an 707 . 2 -1 ∈ 𝑍
13 0z 12260 . . 3 0 ∈ ℤ
14 0le1 11428 . . 3 0 ≤ 1
15 fveq2 6756 . . . . . 6 (𝑥 = 0 → (abs‘𝑥) = (abs‘0))
16 abs0 14925 . . . . . 6 (abs‘0) = 0
1715, 16eqtrdi 2795 . . . . 5 (𝑥 = 0 → (abs‘𝑥) = 0)
1817breq1d 5080 . . . 4 (𝑥 = 0 → ((abs‘𝑥) ≤ 1 ↔ 0 ≤ 1))
1918, 10elrab2 3620 . . 3 (0 ∈ 𝑍 ↔ (0 ∈ ℤ ∧ 0 ≤ 1))
2013, 14, 19mpbir2an 707 . 2 0 ∈ 𝑍
21 1z 12280 . . 3 1 ∈ ℤ
22 fveq2 6756 . . . . . 6 (𝑥 = 1 → (abs‘𝑥) = (abs‘1))
2322, 6eqtrdi 2795 . . . . 5 (𝑥 = 1 → (abs‘𝑥) = 1)
2423breq1d 5080 . . . 4 (𝑥 = 1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1))
2524, 10elrab2 3620 . . 3 (1 ∈ 𝑍 ↔ (1 ∈ ℤ ∧ 1 ≤ 1))
2621, 2, 25mpbir2an 707 . 2 1 ∈ 𝑍
2712, 20, 263pm3.2i 1337 1 (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  w3a 1085   = wceq 1539  wcel 2108  {crab 3067   class class class wbr 5070  cfv 6418  0cc0 10802  1c1 10803  cle 10941  -cneg 11136  cz 12249  abscabs 14873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  lgslem4  26353  lgscllem  26357
  Copyright terms: Public domain W3C validator