MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgslem2 Structured version   Visualization version   GIF version

Theorem lgslem2 25556
Description: The set 𝑍 of all integers with absolute value at most 1 contains {-1, 0, 1}. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgslem2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgslem2 (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍)

Proof of Theorem lgslem2
StepHypRef Expression
1 neg1z 11867 . . 3 -1 ∈ ℤ
2 1le1 11116 . . 3 1 ≤ 1
3 fveq2 6538 . . . . . 6 (𝑥 = -1 → (abs‘𝑥) = (abs‘-1))
4 ax-1cn 10441 . . . . . . . 8 1 ∈ ℂ
54absnegi 14594 . . . . . . 7 (abs‘-1) = (abs‘1)
6 abs1 14491 . . . . . . 7 (abs‘1) = 1
75, 6eqtri 2819 . . . . . 6 (abs‘-1) = 1
83, 7syl6eq 2847 . . . . 5 (𝑥 = -1 → (abs‘𝑥) = 1)
98breq1d 4972 . . . 4 (𝑥 = -1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1))
10 lgslem2.z . . . 4 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
119, 10elrab2 3621 . . 3 (-1 ∈ 𝑍 ↔ (-1 ∈ ℤ ∧ 1 ≤ 1))
121, 2, 11mpbir2an 707 . 2 -1 ∈ 𝑍
13 0z 11840 . . 3 0 ∈ ℤ
14 0le1 11011 . . 3 0 ≤ 1
15 fveq2 6538 . . . . . 6 (𝑥 = 0 → (abs‘𝑥) = (abs‘0))
16 abs0 14479 . . . . . 6 (abs‘0) = 0
1715, 16syl6eq 2847 . . . . 5 (𝑥 = 0 → (abs‘𝑥) = 0)
1817breq1d 4972 . . . 4 (𝑥 = 0 → ((abs‘𝑥) ≤ 1 ↔ 0 ≤ 1))
1918, 10elrab2 3621 . . 3 (0 ∈ 𝑍 ↔ (0 ∈ ℤ ∧ 0 ≤ 1))
2013, 14, 19mpbir2an 707 . 2 0 ∈ 𝑍
21 1z 11861 . . 3 1 ∈ ℤ
22 fveq2 6538 . . . . . 6 (𝑥 = 1 → (abs‘𝑥) = (abs‘1))
2322, 6syl6eq 2847 . . . . 5 (𝑥 = 1 → (abs‘𝑥) = 1)
2423breq1d 4972 . . . 4 (𝑥 = 1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1))
2524, 10elrab2 3621 . . 3 (1 ∈ 𝑍 ↔ (1 ∈ ℤ ∧ 1 ≤ 1))
2621, 2, 25mpbir2an 707 . 2 1 ∈ 𝑍
2712, 20, 263pm3.2i 1332 1 (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  w3a 1080   = wceq 1522  wcel 2081  {crab 3109   class class class wbr 4962  cfv 6225  0cc0 10383  1c1 10384  cle 10522  -cneg 10718  cz 11829  abscabs 14427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-sup 8752  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-z 11830  df-uz 12094  df-rp 12240  df-seq 13220  df-exp 13280  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429
This theorem is referenced by:  lgslem4  25558  lgscllem  25562
  Copyright terms: Public domain W3C validator