MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgslem2 Structured version   Visualization version   GIF version

Theorem lgslem2 26662
Description: The set 𝑍 of all integers with absolute value at most 1 contains {-1, 0, 1}. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgslem2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgslem2 (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍)

Proof of Theorem lgslem2
StepHypRef Expression
1 neg1z 12546 . . 3 -1 ∈ ℤ
2 1le1 11790 . . 3 1 ≤ 1
3 fveq2 6847 . . . . . 6 (𝑥 = -1 → (abs‘𝑥) = (abs‘-1))
4 ax-1cn 11116 . . . . . . . 8 1 ∈ ℂ
54absnegi 15292 . . . . . . 7 (abs‘-1) = (abs‘1)
6 abs1 15189 . . . . . . 7 (abs‘1) = 1
75, 6eqtri 2765 . . . . . 6 (abs‘-1) = 1
83, 7eqtrdi 2793 . . . . 5 (𝑥 = -1 → (abs‘𝑥) = 1)
98breq1d 5120 . . . 4 (𝑥 = -1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1))
10 lgslem2.z . . . 4 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
119, 10elrab2 3653 . . 3 (-1 ∈ 𝑍 ↔ (-1 ∈ ℤ ∧ 1 ≤ 1))
121, 2, 11mpbir2an 710 . 2 -1 ∈ 𝑍
13 0z 12517 . . 3 0 ∈ ℤ
14 0le1 11685 . . 3 0 ≤ 1
15 fveq2 6847 . . . . . 6 (𝑥 = 0 → (abs‘𝑥) = (abs‘0))
16 abs0 15177 . . . . . 6 (abs‘0) = 0
1715, 16eqtrdi 2793 . . . . 5 (𝑥 = 0 → (abs‘𝑥) = 0)
1817breq1d 5120 . . . 4 (𝑥 = 0 → ((abs‘𝑥) ≤ 1 ↔ 0 ≤ 1))
1918, 10elrab2 3653 . . 3 (0 ∈ 𝑍 ↔ (0 ∈ ℤ ∧ 0 ≤ 1))
2013, 14, 19mpbir2an 710 . 2 0 ∈ 𝑍
21 1z 12540 . . 3 1 ∈ ℤ
22 fveq2 6847 . . . . . 6 (𝑥 = 1 → (abs‘𝑥) = (abs‘1))
2322, 6eqtrdi 2793 . . . . 5 (𝑥 = 1 → (abs‘𝑥) = 1)
2423breq1d 5120 . . . 4 (𝑥 = 1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1))
2524, 10elrab2 3653 . . 3 (1 ∈ 𝑍 ↔ (1 ∈ ℤ ∧ 1 ≤ 1))
2621, 2, 25mpbir2an 710 . 2 1 ∈ 𝑍
2712, 20, 263pm3.2i 1340 1 (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  w3a 1088   = wceq 1542  wcel 2107  {crab 3410   class class class wbr 5110  cfv 6501  0cc0 11058  1c1 11059  cle 11197  -cneg 11393  cz 12506  abscabs 15126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-sup 9385  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-rp 12923  df-seq 13914  df-exp 13975  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128
This theorem is referenced by:  lgslem4  26664  lgscllem  26668
  Copyright terms: Public domain W3C validator