MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgslem2 Structured version   Visualization version   GIF version

Theorem lgslem2 27231
Description: The set 𝑍 of all integers with absolute value at most 1 contains {-1, 0, 1}. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgslem2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgslem2 (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍)

Proof of Theorem lgslem2
StepHypRef Expression
1 neg1z 12503 . . 3 -1 ∈ ℤ
2 1le1 11740 . . 3 1 ≤ 1
3 fveq2 6817 . . . . . 6 (𝑥 = -1 → (abs‘𝑥) = (abs‘-1))
4 ax-1cn 11059 . . . . . . . 8 1 ∈ ℂ
54absnegi 15303 . . . . . . 7 (abs‘-1) = (abs‘1)
6 abs1 15199 . . . . . . 7 (abs‘1) = 1
75, 6eqtri 2754 . . . . . 6 (abs‘-1) = 1
83, 7eqtrdi 2782 . . . . 5 (𝑥 = -1 → (abs‘𝑥) = 1)
98breq1d 5096 . . . 4 (𝑥 = -1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1))
10 lgslem2.z . . . 4 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
119, 10elrab2 3645 . . 3 (-1 ∈ 𝑍 ↔ (-1 ∈ ℤ ∧ 1 ≤ 1))
121, 2, 11mpbir2an 711 . 2 -1 ∈ 𝑍
13 0z 12474 . . 3 0 ∈ ℤ
14 0le1 11635 . . 3 0 ≤ 1
15 fveq2 6817 . . . . . 6 (𝑥 = 0 → (abs‘𝑥) = (abs‘0))
16 abs0 15187 . . . . . 6 (abs‘0) = 0
1715, 16eqtrdi 2782 . . . . 5 (𝑥 = 0 → (abs‘𝑥) = 0)
1817breq1d 5096 . . . 4 (𝑥 = 0 → ((abs‘𝑥) ≤ 1 ↔ 0 ≤ 1))
1918, 10elrab2 3645 . . 3 (0 ∈ 𝑍 ↔ (0 ∈ ℤ ∧ 0 ≤ 1))
2013, 14, 19mpbir2an 711 . 2 0 ∈ 𝑍
21 1z 12497 . . 3 1 ∈ ℤ
22 fveq2 6817 . . . . . 6 (𝑥 = 1 → (abs‘𝑥) = (abs‘1))
2322, 6eqtrdi 2782 . . . . 5 (𝑥 = 1 → (abs‘𝑥) = 1)
2423breq1d 5096 . . . 4 (𝑥 = 1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1))
2524, 10elrab2 3645 . . 3 (1 ∈ 𝑍 ↔ (1 ∈ ℤ ∧ 1 ≤ 1))
2621, 2, 25mpbir2an 711 . 2 1 ∈ 𝑍
2712, 20, 263pm3.2i 1340 1 (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1541  wcel 2111  {crab 3395   class class class wbr 5086  cfv 6476  0cc0 11001  1c1 11002  cle 11142  -cneg 11340  cz 12463  abscabs 15136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138
This theorem is referenced by:  lgslem4  27233  lgscllem  27237
  Copyright terms: Public domain W3C validator