| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lgslem2 | Structured version Visualization version GIF version | ||
| Description: The set 𝑍 of all integers with absolute value at most 1 contains {-1, 0, 1}. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| lgslem2.z | ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} |
| Ref | Expression |
|---|---|
| lgslem2 | ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1z 12653 | . . 3 ⊢ -1 ∈ ℤ | |
| 2 | 1le1 11891 | . . 3 ⊢ 1 ≤ 1 | |
| 3 | fveq2 6906 | . . . . . 6 ⊢ (𝑥 = -1 → (abs‘𝑥) = (abs‘-1)) | |
| 4 | ax-1cn 11213 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 5 | 4 | absnegi 15439 | . . . . . . 7 ⊢ (abs‘-1) = (abs‘1) |
| 6 | abs1 15336 | . . . . . . 7 ⊢ (abs‘1) = 1 | |
| 7 | 5, 6 | eqtri 2765 | . . . . . 6 ⊢ (abs‘-1) = 1 |
| 8 | 3, 7 | eqtrdi 2793 | . . . . 5 ⊢ (𝑥 = -1 → (abs‘𝑥) = 1) |
| 9 | 8 | breq1d 5153 | . . . 4 ⊢ (𝑥 = -1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1)) |
| 10 | lgslem2.z | . . . 4 ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} | |
| 11 | 9, 10 | elrab2 3695 | . . 3 ⊢ (-1 ∈ 𝑍 ↔ (-1 ∈ ℤ ∧ 1 ≤ 1)) |
| 12 | 1, 2, 11 | mpbir2an 711 | . 2 ⊢ -1 ∈ 𝑍 |
| 13 | 0z 12624 | . . 3 ⊢ 0 ∈ ℤ | |
| 14 | 0le1 11786 | . . 3 ⊢ 0 ≤ 1 | |
| 15 | fveq2 6906 | . . . . . 6 ⊢ (𝑥 = 0 → (abs‘𝑥) = (abs‘0)) | |
| 16 | abs0 15324 | . . . . . 6 ⊢ (abs‘0) = 0 | |
| 17 | 15, 16 | eqtrdi 2793 | . . . . 5 ⊢ (𝑥 = 0 → (abs‘𝑥) = 0) |
| 18 | 17 | breq1d 5153 | . . . 4 ⊢ (𝑥 = 0 → ((abs‘𝑥) ≤ 1 ↔ 0 ≤ 1)) |
| 19 | 18, 10 | elrab2 3695 | . . 3 ⊢ (0 ∈ 𝑍 ↔ (0 ∈ ℤ ∧ 0 ≤ 1)) |
| 20 | 13, 14, 19 | mpbir2an 711 | . 2 ⊢ 0 ∈ 𝑍 |
| 21 | 1z 12647 | . . 3 ⊢ 1 ∈ ℤ | |
| 22 | fveq2 6906 | . . . . . 6 ⊢ (𝑥 = 1 → (abs‘𝑥) = (abs‘1)) | |
| 23 | 22, 6 | eqtrdi 2793 | . . . . 5 ⊢ (𝑥 = 1 → (abs‘𝑥) = 1) |
| 24 | 23 | breq1d 5153 | . . . 4 ⊢ (𝑥 = 1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1)) |
| 25 | 24, 10 | elrab2 3695 | . . 3 ⊢ (1 ∈ 𝑍 ↔ (1 ∈ ℤ ∧ 1 ≤ 1)) |
| 26 | 21, 2, 25 | mpbir2an 711 | . 2 ⊢ 1 ∈ 𝑍 |
| 27 | 12, 20, 26 | 3pm3.2i 1340 | 1 ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 {crab 3436 class class class wbr 5143 ‘cfv 6561 0cc0 11155 1c1 11156 ≤ cle 11296 -cneg 11493 ℤcz 12613 abscabs 15273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 |
| This theorem is referenced by: lgslem4 27344 lgscllem 27348 |
| Copyright terms: Public domain | W3C validator |