MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgslem2 Structured version   Visualization version   GIF version

Theorem lgslem2 27185
Description: The set 𝑍 of all integers with absolute value at most 1 contains {-1, 0, 1}. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgslem2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgslem2 (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍)

Proof of Theorem lgslem2
StepHypRef Expression
1 neg1z 12545 . . 3 -1 ∈ ℤ
2 1le1 11782 . . 3 1 ≤ 1
3 fveq2 6840 . . . . . 6 (𝑥 = -1 → (abs‘𝑥) = (abs‘-1))
4 ax-1cn 11102 . . . . . . . 8 1 ∈ ℂ
54absnegi 15343 . . . . . . 7 (abs‘-1) = (abs‘1)
6 abs1 15239 . . . . . . 7 (abs‘1) = 1
75, 6eqtri 2752 . . . . . 6 (abs‘-1) = 1
83, 7eqtrdi 2780 . . . . 5 (𝑥 = -1 → (abs‘𝑥) = 1)
98breq1d 5112 . . . 4 (𝑥 = -1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1))
10 lgslem2.z . . . 4 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
119, 10elrab2 3659 . . 3 (-1 ∈ 𝑍 ↔ (-1 ∈ ℤ ∧ 1 ≤ 1))
121, 2, 11mpbir2an 711 . 2 -1 ∈ 𝑍
13 0z 12516 . . 3 0 ∈ ℤ
14 0le1 11677 . . 3 0 ≤ 1
15 fveq2 6840 . . . . . 6 (𝑥 = 0 → (abs‘𝑥) = (abs‘0))
16 abs0 15227 . . . . . 6 (abs‘0) = 0
1715, 16eqtrdi 2780 . . . . 5 (𝑥 = 0 → (abs‘𝑥) = 0)
1817breq1d 5112 . . . 4 (𝑥 = 0 → ((abs‘𝑥) ≤ 1 ↔ 0 ≤ 1))
1918, 10elrab2 3659 . . 3 (0 ∈ 𝑍 ↔ (0 ∈ ℤ ∧ 0 ≤ 1))
2013, 14, 19mpbir2an 711 . 2 0 ∈ 𝑍
21 1z 12539 . . 3 1 ∈ ℤ
22 fveq2 6840 . . . . . 6 (𝑥 = 1 → (abs‘𝑥) = (abs‘1))
2322, 6eqtrdi 2780 . . . . 5 (𝑥 = 1 → (abs‘𝑥) = 1)
2423breq1d 5112 . . . 4 (𝑥 = 1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1))
2524, 10elrab2 3659 . . 3 (1 ∈ 𝑍 ↔ (1 ∈ ℤ ∧ 1 ≤ 1))
2621, 2, 25mpbir2an 711 . 2 1 ∈ 𝑍
2712, 20, 263pm3.2i 1340 1 (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1540  wcel 2109  {crab 3402   class class class wbr 5102  cfv 6499  0cc0 11044  1c1 11045  cle 11185  -cneg 11382  cz 12505  abscabs 15176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178
This theorem is referenced by:  lgslem4  27187  lgscllem  27191
  Copyright terms: Public domain W3C validator