| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lgslem2 | Structured version Visualization version GIF version | ||
| Description: The set 𝑍 of all integers with absolute value at most 1 contains {-1, 0, 1}. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| lgslem2.z | ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} |
| Ref | Expression |
|---|---|
| lgslem2 | ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1z 12576 | . . 3 ⊢ -1 ∈ ℤ | |
| 2 | 1le1 11813 | . . 3 ⊢ 1 ≤ 1 | |
| 3 | fveq2 6861 | . . . . . 6 ⊢ (𝑥 = -1 → (abs‘𝑥) = (abs‘-1)) | |
| 4 | ax-1cn 11133 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 5 | 4 | absnegi 15374 | . . . . . . 7 ⊢ (abs‘-1) = (abs‘1) |
| 6 | abs1 15270 | . . . . . . 7 ⊢ (abs‘1) = 1 | |
| 7 | 5, 6 | eqtri 2753 | . . . . . 6 ⊢ (abs‘-1) = 1 |
| 8 | 3, 7 | eqtrdi 2781 | . . . . 5 ⊢ (𝑥 = -1 → (abs‘𝑥) = 1) |
| 9 | 8 | breq1d 5120 | . . . 4 ⊢ (𝑥 = -1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1)) |
| 10 | lgslem2.z | . . . 4 ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} | |
| 11 | 9, 10 | elrab2 3665 | . . 3 ⊢ (-1 ∈ 𝑍 ↔ (-1 ∈ ℤ ∧ 1 ≤ 1)) |
| 12 | 1, 2, 11 | mpbir2an 711 | . 2 ⊢ -1 ∈ 𝑍 |
| 13 | 0z 12547 | . . 3 ⊢ 0 ∈ ℤ | |
| 14 | 0le1 11708 | . . 3 ⊢ 0 ≤ 1 | |
| 15 | fveq2 6861 | . . . . . 6 ⊢ (𝑥 = 0 → (abs‘𝑥) = (abs‘0)) | |
| 16 | abs0 15258 | . . . . . 6 ⊢ (abs‘0) = 0 | |
| 17 | 15, 16 | eqtrdi 2781 | . . . . 5 ⊢ (𝑥 = 0 → (abs‘𝑥) = 0) |
| 18 | 17 | breq1d 5120 | . . . 4 ⊢ (𝑥 = 0 → ((abs‘𝑥) ≤ 1 ↔ 0 ≤ 1)) |
| 19 | 18, 10 | elrab2 3665 | . . 3 ⊢ (0 ∈ 𝑍 ↔ (0 ∈ ℤ ∧ 0 ≤ 1)) |
| 20 | 13, 14, 19 | mpbir2an 711 | . 2 ⊢ 0 ∈ 𝑍 |
| 21 | 1z 12570 | . . 3 ⊢ 1 ∈ ℤ | |
| 22 | fveq2 6861 | . . . . . 6 ⊢ (𝑥 = 1 → (abs‘𝑥) = (abs‘1)) | |
| 23 | 22, 6 | eqtrdi 2781 | . . . . 5 ⊢ (𝑥 = 1 → (abs‘𝑥) = 1) |
| 24 | 23 | breq1d 5120 | . . . 4 ⊢ (𝑥 = 1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1)) |
| 25 | 24, 10 | elrab2 3665 | . . 3 ⊢ (1 ∈ 𝑍 ↔ (1 ∈ ℤ ∧ 1 ≤ 1)) |
| 26 | 21, 2, 25 | mpbir2an 711 | . 2 ⊢ 1 ∈ 𝑍 |
| 27 | 12, 20, 26 | 3pm3.2i 1340 | 1 ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3408 class class class wbr 5110 ‘cfv 6514 0cc0 11075 1c1 11076 ≤ cle 11216 -cneg 11413 ℤcz 12536 abscabs 15207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 |
| This theorem is referenced by: lgslem4 27218 lgscllem 27222 |
| Copyright terms: Public domain | W3C validator |