Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrexmpl2trifr Structured version   Visualization version   GIF version

Theorem usgrexmpl2trifr 47772
Description: 𝐺 is triangle-free. (Contributed by AV, 10-Aug-2025.)
Hypotheses
Ref Expression
usgrexmpl2.v 𝑉 = (0...5)
usgrexmpl2.e 𝐸 = ⟨“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”⟩
usgrexmpl2.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
usgrexmpl2trifr ¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺)
Distinct variable group:   𝑡,𝐺
Allowed substitution hints:   𝐸(𝑡)   𝑉(𝑡)

Proof of Theorem usgrexmpl2trifr
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgrexmpl2.v . . . . . . . . . 10 𝑉 = (0...5)
2 usgrexmpl2.e . . . . . . . . . 10 𝐸 = ⟨“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”⟩
3 usgrexmpl2.g . . . . . . . . . 10 𝐺 = ⟨𝑉, 𝐸
41, 2, 3usgrexmpl2nb0 47766 . . . . . . . . 9 (𝐺 NeighbVtx 0) = {1, 3, 5}
54eleq2i 2830 . . . . . . . 8 (𝑏 ∈ (𝐺 NeighbVtx 0) ↔ 𝑏 ∈ {1, 3, 5})
6 vex 3486 . . . . . . . . 9 𝑏 ∈ V
76eltp 4712 . . . . . . . 8 (𝑏 ∈ {1, 3, 5} ↔ (𝑏 = 1 ∨ 𝑏 = 3 ∨ 𝑏 = 5))
85, 7bitri 275 . . . . . . 7 (𝑏 ∈ (𝐺 NeighbVtx 0) ↔ (𝑏 = 1 ∨ 𝑏 = 3 ∨ 𝑏 = 5))
94eleq2i 2830 . . . . . . . 8 (𝑐 ∈ (𝐺 NeighbVtx 0) ↔ 𝑐 ∈ {1, 3, 5})
10 vex 3486 . . . . . . . . 9 𝑐 ∈ V
1110eltp 4712 . . . . . . . 8 (𝑐 ∈ {1, 3, 5} ↔ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5))
129, 11bitri 275 . . . . . . 7 (𝑐 ∈ (𝐺 NeighbVtx 0) ↔ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5))
13 eqtr3 2760 . . . . . . . . . 10 ((𝑏 = 1 ∧ 𝑐 = 1) → 𝑏 = 𝑐)
1413orcd 872 . . . . . . . . 9 ((𝑏 = 1 ∧ 𝑐 = 1) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
15 ax-1ne0 11249 . . . . . . . . . . . . . . 15 1 ≠ 0
16 neeq1 3005 . . . . . . . . . . . . . . 15 (𝑏 = 1 → (𝑏 ≠ 0 ↔ 1 ≠ 0))
1715, 16mpbiri 258 . . . . . . . . . . . . . 14 (𝑏 = 1 → 𝑏 ≠ 0)
1817adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑏 ≠ 0)
1918neneqd 2947 . . . . . . . . . . . 12 ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑏 = 0)
2019orcd 872 . . . . . . . . . . 11 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
21 3ne0 12395 . . . . . . . . . . . . . . 15 3 ≠ 0
22 neeq1 3005 . . . . . . . . . . . . . . 15 (𝑐 = 3 → (𝑐 ≠ 0 ↔ 3 ≠ 0))
2321, 22mpbiri 258 . . . . . . . . . . . . . 14 (𝑐 = 3 → 𝑐 ≠ 0)
2423adantl 481 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑐 ≠ 0)
2524neneqd 2947 . . . . . . . . . . . 12 ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑐 = 0)
2625olcd 873 . . . . . . . . . . 11 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
2719orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
2825olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
2927, 28jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
30 2re 12363 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
31 2lt3 12461 . . . . . . . . . . . . . . . . . . 19 2 < 3
3230, 31gtneii 11398 . . . . . . . . . . . . . . . . . 18 3 ≠ 2
33 neeq1 3005 . . . . . . . . . . . . . . . . . 18 (𝑐 = 3 → (𝑐 ≠ 2 ↔ 3 ≠ 2))
3432, 33mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑐 = 3 → 𝑐 ≠ 2)
3534adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑐 ≠ 2)
3635neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑐 = 2)
3736olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
38 1re 11286 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
39 1lt3 12462 . . . . . . . . . . . . . . . . . . 19 1 < 3
4038, 39gtneii 11398 . . . . . . . . . . . . . . . . . 18 3 ≠ 1
41 neeq1 3005 . . . . . . . . . . . . . . . . . 18 (𝑐 = 3 → (𝑐 ≠ 1 ↔ 3 ≠ 1))
4240, 41mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑐 = 3 → 𝑐 ≠ 1)
4342adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑐 ≠ 1)
4443neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑐 = 1)
4544olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
4637, 45jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
47 1ne2 12497 . . . . . . . . . . . . . . . . . 18 1 ≠ 2
48 neeq1 3005 . . . . . . . . . . . . . . . . . 18 (𝑏 = 1 → (𝑏 ≠ 2 ↔ 1 ≠ 2))
4947, 48mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑏 = 1 → 𝑏 ≠ 2)
5049adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑏 ≠ 2)
5150neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑏 = 2)
5251orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
5336olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
5452, 53jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
5529, 46, 543jca 1128 . . . . . . . . . . . 12 ((𝑏 = 1 ∧ 𝑐 = 3) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
5638, 39ltneii 11399 . . . . . . . . . . . . . . . . . 18 1 ≠ 3
57 neeq1 3005 . . . . . . . . . . . . . . . . . 18 (𝑏 = 1 → (𝑏 ≠ 3 ↔ 1 ≠ 3))
5856, 57mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑏 = 1 → 𝑏 ≠ 3)
5958adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑏 ≠ 3)
6059neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑏 = 3)
6160orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
62 1lt4 12465 . . . . . . . . . . . . . . . . . . 19 1 < 4
6338, 62ltneii 11399 . . . . . . . . . . . . . . . . . 18 1 ≠ 4
64 neeq1 3005 . . . . . . . . . . . . . . . . . 18 (𝑏 = 1 → (𝑏 ≠ 4 ↔ 1 ≠ 4))
6563, 64mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑏 = 1 → 𝑏 ≠ 4)
6665adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑏 ≠ 4)
6766neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑏 = 4)
6867orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
6961, 68jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
7067orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
71 1lt5 12469 . . . . . . . . . . . . . . . . . . 19 1 < 5
7238, 71ltneii 11399 . . . . . . . . . . . . . . . . . 18 1 ≠ 5
73 neeq1 3005 . . . . . . . . . . . . . . . . . 18 (𝑏 = 1 → (𝑏 ≠ 5 ↔ 1 ≠ 5))
7472, 73mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑏 = 1 → 𝑏 ≠ 5)
7574adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑏 ≠ 5)
7675neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑏 = 5)
7776orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
7870, 77jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
7919orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
8025olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
8179, 80jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
8269, 78, 813jca 1128 . . . . . . . . . . . 12 ((𝑏 = 1 ∧ 𝑐 = 3) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
8355, 82jca 511 . . . . . . . . . . 11 ((𝑏 = 1 ∧ 𝑐 = 3) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
8420, 26, 83jca31 514 . . . . . . . . . 10 ((𝑏 = 1 ∧ 𝑐 = 3) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
8584olcd 873 . . . . . . . . 9 ((𝑏 = 1 ∧ 𝑐 = 3) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
8617adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑏 ≠ 0)
8786neneqd 2947 . . . . . . . . . . . 12 ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑏 = 0)
8887orcd 872 . . . . . . . . . . 11 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
8958adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑏 ≠ 3)
9089neneqd 2947 . . . . . . . . . . . 12 ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑏 = 3)
9190orcd 872 . . . . . . . . . . 11 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
9287orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
93 0re 11288 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
94 5pos 12398 . . . . . . . . . . . . . . . . . . 19 0 < 5
9593, 94gtneii 11398 . . . . . . . . . . . . . . . . . 18 5 ≠ 0
96 neeq1 3005 . . . . . . . . . . . . . . . . . 18 (𝑐 = 5 → (𝑐 ≠ 0 ↔ 5 ≠ 0))
9795, 96mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑐 = 5 → 𝑐 ≠ 0)
9897adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑐 ≠ 0)
9998neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑐 = 0)
10099olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
10192, 100jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
102 2lt5 12468 . . . . . . . . . . . . . . . . . . 19 2 < 5
10330, 102gtneii 11398 . . . . . . . . . . . . . . . . . 18 5 ≠ 2
104 neeq1 3005 . . . . . . . . . . . . . . . . . 18 (𝑐 = 5 → (𝑐 ≠ 2 ↔ 5 ≠ 2))
105103, 104mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑐 = 5 → 𝑐 ≠ 2)
106105adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑐 ≠ 2)
107106neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑐 = 2)
108107olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
10949adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑏 ≠ 2)
110109neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑏 = 2)
111110orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
112108, 111jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
113110orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
11490orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
115113, 114jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
116101, 112, 1153jca 1128 . . . . . . . . . . . 12 ((𝑏 = 1 ∧ 𝑐 = 5) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
11790orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
11865adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑏 ≠ 4)
119118neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑏 = 4)
120119orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
121117, 120jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
122119orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
12374adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑏 ≠ 5)
124123neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑏 = 5)
125124orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
126122, 125jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
12787orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
12899olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
129127, 128jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
130121, 126, 1293jca 1128 . . . . . . . . . . . 12 ((𝑏 = 1 ∧ 𝑐 = 5) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
131116, 130jca 511 . . . . . . . . . . 11 ((𝑏 = 1 ∧ 𝑐 = 5) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
13288, 91, 131jca31 514 . . . . . . . . . 10 ((𝑏 = 1 ∧ 𝑐 = 5) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
133132olcd 873 . . . . . . . . 9 ((𝑏 = 1 ∧ 𝑐 = 5) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
13414, 85, 1333jaodan 1431 . . . . . . . 8 ((𝑏 = 1 ∧ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
135 neeq1 3005 . . . . . . . . . . . . . . 15 (𝑏 = 3 → (𝑏 ≠ 0 ↔ 3 ≠ 0))
13621, 135mpbiri 258 . . . . . . . . . . . . . 14 (𝑏 = 3 → 𝑏 ≠ 0)
137136adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑏 ≠ 0)
138137neneqd 2947 . . . . . . . . . . . 12 ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑏 = 0)
139138orcd 872 . . . . . . . . . . 11 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
140 neeq1 3005 . . . . . . . . . . . . . . 15 (𝑐 = 1 → (𝑐 ≠ 0 ↔ 1 ≠ 0))
14115, 140mpbiri 258 . . . . . . . . . . . . . 14 (𝑐 = 1 → 𝑐 ≠ 0)
142141adantl 481 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑐 ≠ 0)
143142neneqd 2947 . . . . . . . . . . . 12 ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑐 = 0)
144143olcd 873 . . . . . . . . . . 11 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
145138orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
146143olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
147145, 146jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
14858necon2i 2977 . . . . . . . . . . . . . . . . 17 (𝑏 = 3 → 𝑏 ≠ 1)
149148adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑏 ≠ 1)
150149neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑏 = 1)
151150orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
152 neeq1 3005 . . . . . . . . . . . . . . . . . 18 (𝑏 = 3 → (𝑏 ≠ 2 ↔ 3 ≠ 2))
15332, 152mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑏 = 3 → 𝑏 ≠ 2)
154153adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑏 ≠ 2)
155154neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑏 = 2)
156155orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
157151, 156jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
158155orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
159 neeq1 3005 . . . . . . . . . . . . . . . . . 18 (𝑐 = 1 → (𝑐 ≠ 2 ↔ 1 ≠ 2))
16047, 159mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑐 = 1 → 𝑐 ≠ 2)
161160adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑐 ≠ 2)
162161neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑐 = 2)
163162olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
164158, 163jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
165147, 157, 1643jca 1128 . . . . . . . . . . . 12 ((𝑏 = 3 ∧ 𝑐 = 1) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
166 neeq1 3005 . . . . . . . . . . . . . . . . . 18 (𝑐 = 1 → (𝑐 ≠ 4 ↔ 1 ≠ 4))
16763, 166mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑐 = 1 → 𝑐 ≠ 4)
168167adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑐 ≠ 4)
169168neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑐 = 4)
170169olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
17142necon2i 2977 . . . . . . . . . . . . . . . . 17 (𝑐 = 1 → 𝑐 ≠ 3)
172171adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑐 ≠ 3)
173172neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑐 = 3)
174173olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
175170, 174jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
176 neeq1 3005 . . . . . . . . . . . . . . . . . 18 (𝑐 = 1 → (𝑐 ≠ 5 ↔ 1 ≠ 5))
17772, 176mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑐 = 1 → 𝑐 ≠ 5)
178177adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑐 ≠ 5)
179178neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑐 = 5)
180179olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
181169olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
182180, 181jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
183138orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
184143olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
185183, 184jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
186175, 182, 1853jca 1128 . . . . . . . . . . . 12 ((𝑏 = 3 ∧ 𝑐 = 1) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
187165, 186jca 511 . . . . . . . . . . 11 ((𝑏 = 3 ∧ 𝑐 = 1) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
188139, 144, 187jca31 514 . . . . . . . . . 10 ((𝑏 = 3 ∧ 𝑐 = 1) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
189188olcd 873 . . . . . . . . 9 ((𝑏 = 3 ∧ 𝑐 = 1) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
190 eqtr3 2760 . . . . . . . . . 10 ((𝑏 = 3 ∧ 𝑐 = 3) → 𝑏 = 𝑐)
191190orcd 872 . . . . . . . . 9 ((𝑏 = 3 ∧ 𝑐 = 3) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
192136adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑏 ≠ 0)
193192neneqd 2947 . . . . . . . . . . . 12 ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑏 = 0)
194193orcd 872 . . . . . . . . . . 11 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
19597adantl 481 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑐 ≠ 0)
196195neneqd 2947 . . . . . . . . . . . 12 ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑐 = 0)
197196olcd 873 . . . . . . . . . . 11 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
198193orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
199196olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
200198, 199jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
201148adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑏 ≠ 1)
202201neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑏 = 1)
203202orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
204177necon2i 2977 . . . . . . . . . . . . . . . . 17 (𝑐 = 5 → 𝑐 ≠ 1)
205204adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑐 ≠ 1)
206205neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑐 = 1)
207206olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
208203, 207jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
209153adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑏 ≠ 2)
210209neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑏 = 2)
211210orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
212105adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑐 ≠ 2)
213212neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑐 = 2)
214213olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
215211, 214jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
216200, 208, 2153jca 1128 . . . . . . . . . . . 12 ((𝑏 = 3 ∧ 𝑐 = 5) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
217 4re 12373 . . . . . . . . . . . . . . . . . . 19 4 ∈ ℝ
218 4lt5 12466 . . . . . . . . . . . . . . . . . . 19 4 < 5
219217, 218gtneii 11398 . . . . . . . . . . . . . . . . . 18 5 ≠ 4
220 neeq1 3005 . . . . . . . . . . . . . . . . . 18 (𝑐 = 5 → (𝑐 ≠ 4 ↔ 5 ≠ 4))
221219, 220mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑐 = 5 → 𝑐 ≠ 4)
222221adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑐 ≠ 4)
223222neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑐 = 4)
224223olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
225 3re 12369 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℝ
226 3lt4 12463 . . . . . . . . . . . . . . . . . . 19 3 < 4
227225, 226ltneii 11399 . . . . . . . . . . . . . . . . . 18 3 ≠ 4
228 neeq1 3005 . . . . . . . . . . . . . . . . . 18 (𝑏 = 3 → (𝑏 ≠ 4 ↔ 3 ≠ 4))
229227, 228mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑏 = 3 → 𝑏 ≠ 4)
230229adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑏 ≠ 4)
231230neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑏 = 4)
232231orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
233224, 232jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
234231orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
235223olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
236234, 235jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
237193orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
238196olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
239237, 238jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
240233, 236, 2393jca 1128 . . . . . . . . . . . 12 ((𝑏 = 3 ∧ 𝑐 = 5) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
241216, 240jca 511 . . . . . . . . . . 11 ((𝑏 = 3 ∧ 𝑐 = 5) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
242194, 197, 241jca31 514 . . . . . . . . . 10 ((𝑏 = 3 ∧ 𝑐 = 5) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
243242olcd 873 . . . . . . . . 9 ((𝑏 = 3 ∧ 𝑐 = 5) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
244189, 191, 2433jaodan 1431 . . . . . . . 8 ((𝑏 = 3 ∧ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
245171adantl 481 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑐 ≠ 3)
246245neneqd 2947 . . . . . . . . . . . 12 ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑐 = 3)
247246olcd 873 . . . . . . . . . . 11 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
248141adantl 481 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑐 ≠ 0)
249248neneqd 2947 . . . . . . . . . . . 12 ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑐 = 0)
250249olcd 873 . . . . . . . . . . 11 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
251 neeq1 3005 . . . . . . . . . . . . . . . . . 18 (𝑏 = 5 → (𝑏 ≠ 0 ↔ 5 ≠ 0))
25295, 251mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑏 = 5 → 𝑏 ≠ 0)
253252adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑏 ≠ 0)
254253neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑏 = 0)
255254orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
256249olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
257255, 256jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
25874necon2i 2977 . . . . . . . . . . . . . . . . 17 (𝑏 = 5 → 𝑏 ≠ 1)
259258adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑏 ≠ 1)
260259neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑏 = 1)
261260orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
262 neeq1 3005 . . . . . . . . . . . . . . . . . 18 (𝑏 = 5 → (𝑏 ≠ 2 ↔ 5 ≠ 2))
263103, 262mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑏 = 5 → 𝑏 ≠ 2)
264263adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑏 ≠ 2)
265264neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑏 = 2)
266265orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
267261, 266jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
268246olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
269160adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑐 ≠ 2)
270269neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑐 = 2)
271270olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
272268, 271jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
273257, 267, 2723jca 1128 . . . . . . . . . . . 12 ((𝑏 = 5 ∧ 𝑐 = 1) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
274 3lt5 12467 . . . . . . . . . . . . . . . . . . 19 3 < 5
275225, 274gtneii 11398 . . . . . . . . . . . . . . . . . 18 5 ≠ 3
276 neeq1 3005 . . . . . . . . . . . . . . . . . 18 (𝑏 = 5 → (𝑏 ≠ 3 ↔ 5 ≠ 3))
277275, 276mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑏 = 5 → 𝑏 ≠ 3)
278277adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑏 ≠ 3)
279278neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑏 = 3)
280279orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
281246olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
282280, 281jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
283177adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑐 ≠ 5)
284283neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑐 = 5)
285284olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
286167adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑐 ≠ 4)
287286neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑐 = 4)
288287olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
289285, 288jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
290254orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
291249olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
292290, 291jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
293282, 289, 2923jca 1128 . . . . . . . . . . . 12 ((𝑏 = 5 ∧ 𝑐 = 1) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
294273, 293jca 511 . . . . . . . . . . 11 ((𝑏 = 5 ∧ 𝑐 = 1) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
295247, 250, 294jca31 514 . . . . . . . . . 10 ((𝑏 = 5 ∧ 𝑐 = 1) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
296295olcd 873 . . . . . . . . 9 ((𝑏 = 5 ∧ 𝑐 = 1) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
297252adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑏 ≠ 0)
298297neneqd 2947 . . . . . . . . . . . 12 ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑏 = 0)
299298orcd 872 . . . . . . . . . . 11 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
30023adantl 481 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑐 ≠ 0)
301300neneqd 2947 . . . . . . . . . . . 12 ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑐 = 0)
302301olcd 873 . . . . . . . . . . 11 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
303298orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
304301olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
305303, 304jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
306258adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑏 ≠ 1)
307306neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑏 = 1)
308307orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
30942adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑐 ≠ 1)
310309neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑐 = 1)
311310olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
312308, 311jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
313263adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑏 ≠ 2)
314313neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑏 = 2)
315314orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
316277adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑏 ≠ 3)
317316neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑏 = 3)
318317orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
319315, 318jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
320305, 312, 3193jca 1128 . . . . . . . . . . . 12 ((𝑏 = 5 ∧ 𝑐 = 3) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
321317orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
322 neeq1 3005 . . . . . . . . . . . . . . . . . 18 (𝑏 = 5 → (𝑏 ≠ 4 ↔ 5 ≠ 4))
323219, 322mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑏 = 5 → 𝑏 ≠ 4)
324323adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑏 ≠ 4)
325324neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑏 = 4)
326325orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
327321, 326jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
328325orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
329 neeq1 3005 . . . . . . . . . . . . . . . . . 18 (𝑐 = 3 → (𝑐 ≠ 4 ↔ 3 ≠ 4))
330227, 329mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑐 = 3 → 𝑐 ≠ 4)
331330adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑐 ≠ 4)
332331neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑐 = 4)
333332olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
334328, 333jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
335298orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
336301olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
337335, 336jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
338327, 334, 3373jca 1128 . . . . . . . . . . . 12 ((𝑏 = 5 ∧ 𝑐 = 3) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
339320, 338jca 511 . . . . . . . . . . 11 ((𝑏 = 5 ∧ 𝑐 = 3) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
340299, 302, 339jca31 514 . . . . . . . . . 10 ((𝑏 = 5 ∧ 𝑐 = 3) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
341340olcd 873 . . . . . . . . 9 ((𝑏 = 5 ∧ 𝑐 = 3) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
342 eqtr3 2760 . . . . . . . . . 10 ((𝑏 = 5 ∧ 𝑐 = 5) → 𝑏 = 𝑐)
343342orcd 872 . . . . . . . . 9 ((𝑏 = 5 ∧ 𝑐 = 5) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
344296, 341, 3433jaodan 1431 . . . . . . . 8 ((𝑏 = 5 ∧ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
345134, 244, 3443jaoian 1430 . . . . . . 7 (((𝑏 = 1 ∨ 𝑏 = 3 ∨ 𝑏 = 5) ∧ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
3468, 12, 345syl2anb 597 . . . . . 6 ((𝑏 ∈ (𝐺 NeighbVtx 0) ∧ 𝑐 ∈ (𝐺 NeighbVtx 0)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
347346rgen2 3201 . . . . 5 𝑏 ∈ (𝐺 NeighbVtx 0)∀𝑐 ∈ (𝐺 NeighbVtx 0)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
3481, 2, 3usgrexmpl2nb1 47767 . . . . . . . . 9 (𝐺 NeighbVtx 1) = {0, 2}
349348eleq2i 2830 . . . . . . . 8 (𝑏 ∈ (𝐺 NeighbVtx 1) ↔ 𝑏 ∈ {0, 2})
3506elpr 4672 . . . . . . . 8 (𝑏 ∈ {0, 2} ↔ (𝑏 = 0 ∨ 𝑏 = 2))
351349, 350bitri 275 . . . . . . 7 (𝑏 ∈ (𝐺 NeighbVtx 1) ↔ (𝑏 = 0 ∨ 𝑏 = 2))
352348eleq2i 2830 . . . . . . . 8 (𝑐 ∈ (𝐺 NeighbVtx 1) ↔ 𝑐 ∈ {0, 2})
35310elpr 4672 . . . . . . . 8 (𝑐 ∈ {0, 2} ↔ (𝑐 = 0 ∨ 𝑐 = 2))
354352, 353bitri 275 . . . . . . 7 (𝑐 ∈ (𝐺 NeighbVtx 1) ↔ (𝑐 = 0 ∨ 𝑐 = 2))
355 eqtr3 2760 . . . . . . . . 9 ((𝑏 = 0 ∧ 𝑐 = 0) → 𝑏 = 𝑐)
356355orcd 872 . . . . . . . 8 ((𝑏 = 0 ∧ 𝑐 = 0) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
357 2ne0 12393 . . . . . . . . . . . . . 14 2 ≠ 0
358 neeq1 3005 . . . . . . . . . . . . . 14 (𝑏 = 2 → (𝑏 ≠ 0 ↔ 2 ≠ 0))
359357, 358mpbiri 258 . . . . . . . . . . . . 13 (𝑏 = 2 → 𝑏 ≠ 0)
360359adantr 480 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑏 ≠ 0)
361360neneqd 2947 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑏 = 0)
362361orcd 872 . . . . . . . . . 10 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
363153necon2i 2977 . . . . . . . . . . . . 13 (𝑏 = 2 → 𝑏 ≠ 3)
364363adantr 480 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑏 ≠ 3)
365364neneqd 2947 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑏 = 3)
366365orcd 872 . . . . . . . . . 10 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
367361orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
36849necon2i 2977 . . . . . . . . . . . . . . . 16 (𝑏 = 2 → 𝑏 ≠ 1)
369368adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑏 ≠ 1)
370369neneqd 2947 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑏 = 1)
371370orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
372367, 371jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
373370orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
374141necon2i 2977 . . . . . . . . . . . . . . . 16 (𝑐 = 0 → 𝑐 ≠ 1)
375374adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑐 ≠ 1)
376375neneqd 2947 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑐 = 1)
377376olcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
378373, 377jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
37923necon2i 2977 . . . . . . . . . . . . . . . 16 (𝑐 = 0 → 𝑐 ≠ 3)
380379adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑐 ≠ 3)
381380neneqd 2947 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑐 = 3)
382381olcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
383365orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
384382, 383jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
385372, 378, 3843jca 1128 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 0) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
386365orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
387381olcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
388386, 387jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
38997necon2i 2977 . . . . . . . . . . . . . . . 16 (𝑐 = 0 → 𝑐 ≠ 5)
390389adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑐 ≠ 5)
391390neneqd 2947 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑐 = 5)
392391olcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
393 4pos 12396 . . . . . . . . . . . . . . . . . 18 0 < 4
39493, 393ltneii 11399 . . . . . . . . . . . . . . . . 17 0 ≠ 4
395 neeq1 3005 . . . . . . . . . . . . . . . . 17 (𝑐 = 0 → (𝑐 ≠ 4 ↔ 0 ≠ 4))
396394, 395mpbiri 258 . . . . . . . . . . . . . . . 16 (𝑐 = 0 → 𝑐 ≠ 4)
397396adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑐 ≠ 4)
398397neneqd 2947 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑐 = 4)
399398olcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
400392, 399jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
401361orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
402263necon2i 2977 . . . . . . . . . . . . . . . 16 (𝑏 = 2 → 𝑏 ≠ 5)
403402adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑏 ≠ 5)
404403neneqd 2947 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑏 = 5)
405404orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
406401, 405jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
407388, 400, 4063jca 1128 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 0) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
408385, 407jca 511 . . . . . . . . . 10 ((𝑏 = 2 ∧ 𝑐 = 0) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
409362, 366, 408jca31 514 . . . . . . . . 9 ((𝑏 = 2 ∧ 𝑐 = 0) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
410409olcd 873 . . . . . . . 8 ((𝑏 = 2 ∧ 𝑐 = 0) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
41134necon2i 2977 . . . . . . . . . . . . 13 (𝑐 = 2 → 𝑐 ≠ 3)
412411adantl 481 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑐 ≠ 3)
413412neneqd 2947 . . . . . . . . . . 11 ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑐 = 3)
414413olcd 873 . . . . . . . . . 10 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
415 neeq1 3005 . . . . . . . . . . . . . 14 (𝑐 = 2 → (𝑐 ≠ 0 ↔ 2 ≠ 0))
416357, 415mpbiri 258 . . . . . . . . . . . . 13 (𝑐 = 2 → 𝑐 ≠ 0)
417416adantl 481 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑐 ≠ 0)
418417neneqd 2947 . . . . . . . . . . 11 ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑐 = 0)
419418olcd 873 . . . . . . . . . 10 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
420160necon2i 2977 . . . . . . . . . . . . . . . 16 (𝑐 = 2 → 𝑐 ≠ 1)
421420adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑐 ≠ 1)
422421neneqd 2947 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑐 = 1)
423422olcd 873 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
424418olcd 873 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
425423, 424jca 511 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
42617necon2i 2977 . . . . . . . . . . . . . . . 16 (𝑏 = 0 → 𝑏 ≠ 1)
427426adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑏 ≠ 1)
428427neneqd 2947 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑏 = 1)
429428orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
430359necon2i 2977 . . . . . . . . . . . . . . . 16 (𝑏 = 0 → 𝑏 ≠ 2)
431430adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑏 ≠ 2)
432431neneqd 2947 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑏 = 2)
433432orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
434429, 433jca 511 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
435413olcd 873 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
436136necon2i 2977 . . . . . . . . . . . . . . . 16 (𝑏 = 0 → 𝑏 ≠ 3)
437436adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑏 ≠ 3)
438437neneqd 2947 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑏 = 3)
439438orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
440435, 439jca 511 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
441425, 434, 4403jca 1128 . . . . . . . . . . 11 ((𝑏 = 0 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
442438orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
443413olcd 873 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
444442, 443jca 511 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
445 neeq1 3005 . . . . . . . . . . . . . . . . 17 (𝑏 = 0 → (𝑏 ≠ 4 ↔ 0 ≠ 4))
446394, 445mpbiri 258 . . . . . . . . . . . . . . . 16 (𝑏 = 0 → 𝑏 ≠ 4)
447446adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑏 ≠ 4)
448447neneqd 2947 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑏 = 4)
449448orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
450252necon2i 2977 . . . . . . . . . . . . . . . 16 (𝑏 = 0 → 𝑏 ≠ 5)
451450adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑏 ≠ 5)
452451neneqd 2947 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑏 = 5)
453452orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
454449, 453jca 511 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
455105necon2i 2977 . . . . . . . . . . . . . . . 16 (𝑐 = 2 → 𝑐 ≠ 5)
456455adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑐 ≠ 5)
457456neneqd 2947 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑐 = 5)
458457olcd 873 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
459418olcd 873 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
460458, 459jca 511 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
461444, 454, 4603jca 1128 . . . . . . . . . . 11 ((𝑏 = 0 ∧ 𝑐 = 2) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
462441, 461jca 511 . . . . . . . . . 10 ((𝑏 = 0 ∧ 𝑐 = 2) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
463414, 419, 462jca31 514 . . . . . . . . 9 ((𝑏 = 0 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
464463olcd 873 . . . . . . . 8 ((𝑏 = 0 ∧ 𝑐 = 2) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
465359adantr 480 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑏 ≠ 0)
466465neneqd 2947 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑏 = 0)
467466orcd 872 . . . . . . . . . 10 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
468416adantl 481 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑐 ≠ 0)
469468neneqd 2947 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑐 = 0)
470469olcd 873 . . . . . . . . . 10 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
471466orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
472469olcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
473471, 472jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
474368adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑏 ≠ 1)
475474neneqd 2947 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑏 = 1)
476475orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
477420adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑐 ≠ 1)
478477neneqd 2947 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑐 = 1)
479478olcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
480476, 479jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
481411adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑐 ≠ 3)
482481neneqd 2947 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑐 = 3)
483482olcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
484363adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑏 ≠ 3)
485484neneqd 2947 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑏 = 3)
486485orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
487483, 486jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
488473, 480, 4873jca 1128 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
489485orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
490 2lt4 12464 . . . . . . . . . . . . . . . . . 18 2 < 4
49130, 490ltneii 11399 . . . . . . . . . . . . . . . . 17 2 ≠ 4
492 neeq1 3005 . . . . . . . . . . . . . . . . 17 (𝑏 = 2 → (𝑏 ≠ 4 ↔ 2 ≠ 4))
493491, 492mpbiri 258 . . . . . . . . . . . . . . . 16 (𝑏 = 2 → 𝑏 ≠ 4)
494493adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑏 ≠ 4)
495494neneqd 2947 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑏 = 4)
496495orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
497489, 496jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
498495orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
499402adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑏 ≠ 5)
500499neneqd 2947 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑏 = 5)
501500orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
502498, 501jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
503466orcd 872 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
504469olcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
505503, 504jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
506497, 502, 5053jca 1128 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 2) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
507488, 506jca 511 . . . . . . . . . 10 ((𝑏 = 2 ∧ 𝑐 = 2) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
508467, 470, 507jca31 514 . . . . . . . . 9 ((𝑏 = 2 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
509508olcd 873 . . . . . . . 8 ((𝑏 = 2 ∧ 𝑐 = 2) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
510356, 410, 464, 509ccase 1038 . . . . . . 7 (((𝑏 = 0 ∨ 𝑏 = 2) ∧ (𝑐 = 0 ∨ 𝑐 = 2)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
511351, 354, 510syl2anb 597 . . . . . 6 ((𝑏 ∈ (𝐺 NeighbVtx 1) ∧ 𝑐 ∈ (𝐺 NeighbVtx 1)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
512511rgen2 3201 . . . . 5 𝑏 ∈ (𝐺 NeighbVtx 1)∀𝑐 ∈ (𝐺 NeighbVtx 1)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
5131, 2, 3usgrexmpl2nb2 47768 . . . . . . . . 9 (𝐺 NeighbVtx 2) = {1, 3}
514513eleq2i 2830 . . . . . . . 8 (𝑏 ∈ (𝐺 NeighbVtx 2) ↔ 𝑏 ∈ {1, 3})
5156elpr 4672 . . . . . . . 8 (𝑏 ∈ {1, 3} ↔ (𝑏 = 1 ∨ 𝑏 = 3))
516514, 515bitri 275 . . . . . . 7 (𝑏 ∈ (𝐺 NeighbVtx 2) ↔ (𝑏 = 1 ∨ 𝑏 = 3))
517513eleq2i 2830 . . . . . . . 8 (𝑐 ∈ (𝐺 NeighbVtx 2) ↔ 𝑐 ∈ {1, 3})
51810elpr 4672 . . . . . . . 8 (𝑐 ∈ {1, 3} ↔ (𝑐 = 1 ∨ 𝑐 = 3))
519517, 518bitri 275 . . . . . . 7 (𝑐 ∈ (𝐺 NeighbVtx 2) ↔ (𝑐 = 1 ∨ 𝑐 = 3))
52014, 189, 85, 191ccase 1038 . . . . . . 7 (((𝑏 = 1 ∨ 𝑏 = 3) ∧ (𝑐 = 1 ∨ 𝑐 = 3)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
521516, 519, 520syl2anb 597 . . . . . 6 ((𝑏 ∈ (𝐺 NeighbVtx 2) ∧ 𝑐 ∈ (𝐺 NeighbVtx 2)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
522521rgen2 3201 . . . . 5 𝑏 ∈ (𝐺 NeighbVtx 2)∀𝑐 ∈ (𝐺 NeighbVtx 2)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
523 c0ex 11280 . . . . . 6 0 ∈ V
524 1ex 11282 . . . . . 6 1 ∈ V
525 2ex 12366 . . . . . 6 2 ∈ V
526 oveq2 7453 . . . . . . 7 (𝑎 = 0 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 0))
527526raleqdv 3329 . . . . . . 7 (𝑎 = 0 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 0)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
528526, 527raleqbidv 3349 . . . . . 6 (𝑎 = 0 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 0)∀𝑐 ∈ (𝐺 NeighbVtx 0)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
529 oveq2 7453 . . . . . . 7 (𝑎 = 1 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 1))
530529raleqdv 3329 . . . . . . 7 (𝑎 = 1 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 1)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
531529, 530raleqbidv 3349 . . . . . 6 (𝑎 = 1 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 1)∀𝑐 ∈ (𝐺 NeighbVtx 1)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
532 oveq2 7453 . . . . . . 7 (𝑎 = 2 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 2))
533532raleqdv 3329 . . . . . . 7 (𝑎 = 2 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 2)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
534532, 533raleqbidv 3349 . . . . . 6 (𝑎 = 2 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 2)∀𝑐 ∈ (𝐺 NeighbVtx 2)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
535523, 524, 525, 528, 531, 534raltp 4730 . . . . 5 (∀𝑎 ∈ {0, 1, 2}∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ (∀𝑏 ∈ (𝐺 NeighbVtx 0)∀𝑐 ∈ (𝐺 NeighbVtx 0)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ∧ ∀𝑏 ∈ (𝐺 NeighbVtx 1)∀𝑐 ∈ (𝐺 NeighbVtx 1)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ∧ ∀𝑏 ∈ (𝐺 NeighbVtx 2)∀𝑐 ∈ (𝐺 NeighbVtx 2)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
536347, 512, 522, 535mpbir3an 1341 . . . 4 𝑎 ∈ {0, 1, 2}∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
5371, 2, 3usgrexmpl2nb3 47769 . . . . . . . . 9 (𝐺 NeighbVtx 3) = {0, 2, 4}
538537eleq2i 2830 . . . . . . . 8 (𝑏 ∈ (𝐺 NeighbVtx 3) ↔ 𝑏 ∈ {0, 2, 4})
5396eltp 4712 . . . . . . . 8 (𝑏 ∈ {0, 2, 4} ↔ (𝑏 = 0 ∨ 𝑏 = 2 ∨ 𝑏 = 4))
540538, 539bitri 275 . . . . . . 7 (𝑏 ∈ (𝐺 NeighbVtx 3) ↔ (𝑏 = 0 ∨ 𝑏 = 2 ∨ 𝑏 = 4))
541537eleq2i 2830 . . . . . . . 8 (𝑐 ∈ (𝐺 NeighbVtx 3) ↔ 𝑐 ∈ {0, 2, 4})
54210eltp 4712 . . . . . . . 8 (𝑐 ∈ {0, 2, 4} ↔ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4))
543541, 542bitri 275 . . . . . . 7 (𝑐 ∈ (𝐺 NeighbVtx 3) ↔ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4))
544330necon2i 2977 . . . . . . . . . . . . . 14 (𝑐 = 4 → 𝑐 ≠ 3)
545544adantl 481 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑐 ≠ 3)
546545neneqd 2947 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑐 = 3)
547546olcd 873 . . . . . . . . . . 11 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
548436adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑏 ≠ 3)
549548neneqd 2947 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑏 = 3)
550549orcd 872 . . . . . . . . . . 11 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
551167necon2i 2977 . . . . . . . . . . . . . . . . 17 (𝑐 = 4 → 𝑐 ≠ 1)
552551adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑐 ≠ 1)
553552neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑐 = 1)
554553olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
555426adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑏 ≠ 1)
556555neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑏 = 1)
557556orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
558554, 557jca 511 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
559556orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
560430adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑏 ≠ 2)
561560neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑏 = 2)
562561orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
563559, 562jca 511 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
564546olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
565549orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
566564, 565jca 511 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
567558, 563, 5663jca 1128 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 4) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
568549orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
569546olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
570568, 569jca 511 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
571446adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑏 ≠ 4)
572571neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑏 = 4)
573572orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
574450adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑏 ≠ 5)
575574neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑏 = 5)
576575orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
577573, 576jca 511 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
578221necon2i 2977 . . . . . . . . . . . . . . . . 17 (𝑐 = 4 → 𝑐 ≠ 5)
579578adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑐 ≠ 5)
580579neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑐 = 5)
581580olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
582396necon2i 2977 . . . . . . . . . . . . . . . . 17 (𝑐 = 4 → 𝑐 ≠ 0)
583582adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑐 ≠ 0)
584583neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑐 = 0)
585584olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
586581, 585jca 511 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
587570, 577, 5863jca 1128 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 4) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
588567, 587jca 511 . . . . . . . . . . 11 ((𝑏 = 0 ∧ 𝑐 = 4) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
589547, 550, 588jca31 514 . . . . . . . . . 10 ((𝑏 = 0 ∧ 𝑐 = 4) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
590589olcd 873 . . . . . . . . 9 ((𝑏 = 0 ∧ 𝑐 = 4) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
591356, 464, 5903jaodan 1431 . . . . . . . 8 ((𝑏 = 0 ∧ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
592359adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑏 ≠ 0)
593592neneqd 2947 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑏 = 0)
594593orcd 872 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
595582adantl 481 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑐 ≠ 0)
596595neneqd 2947 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑐 = 0)
597596olcd 873 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
598593orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
599596olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
600598, 599jca 511 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
601368adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑏 ≠ 1)
602601neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑏 = 1)
603602orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
604551adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑐 ≠ 1)
605604neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑐 = 1)
606605olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
607603, 606jca 511 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
608544adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑐 ≠ 3)
609608neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑐 = 3)
610609olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
611363adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑏 ≠ 3)
612611neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑏 = 3)
613612orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
614610, 613jca 511 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
615600, 607, 6143jca 1128 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 4) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
616612orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
617609olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
618616, 617jca 511 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
619493adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑏 ≠ 4)
620619neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑏 = 4)
621620orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
622402adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑏 ≠ 5)
623622neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑏 = 5)
624623orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
625621, 624jca 511 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
626593orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
627596olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
628626, 627jca 511 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
629618, 625, 6283jca 1128 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 4) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
630615, 629jca 511 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 4) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
631594, 597, 630jca31 514 . . . . . . . . . 10 ((𝑏 = 2 ∧ 𝑐 = 4) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
632631olcd 873 . . . . . . . . 9 ((𝑏 = 2 ∧ 𝑐 = 4) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
633410, 509, 6323jaodan 1431 . . . . . . . 8 ((𝑏 = 2 ∧ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
634446necon2i 2977 . . . . . . . . . . . . . 14 (𝑏 = 4 → 𝑏 ≠ 0)
635634adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑏 ≠ 0)
636635neneqd 2947 . . . . . . . . . . . 12 ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑏 = 0)
637636orcd 872 . . . . . . . . . . 11 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
638229necon2i 2977 . . . . . . . . . . . . . 14 (𝑏 = 4 → 𝑏 ≠ 3)
639638adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑏 ≠ 3)
640639neneqd 2947 . . . . . . . . . . . 12 ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑏 = 3)
641640orcd 872 . . . . . . . . . . 11 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
642636orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
64365necon2i 2977 . . . . . . . . . . . . . . . . 17 (𝑏 = 4 → 𝑏 ≠ 1)
644643adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑏 ≠ 1)
645644neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑏 = 1)
646645orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
647642, 646jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
648416necon2i 2977 . . . . . . . . . . . . . . . . 17 (𝑐 = 0 → 𝑐 ≠ 2)
649648adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑐 ≠ 2)
650649neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑐 = 2)
651650olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
652374adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑐 ≠ 1)
653652neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑐 = 1)
654653olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
655651, 654jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
656379adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑐 ≠ 3)
657656neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑐 = 3)
658657olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
659640orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
660658, 659jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
661647, 655, 6603jca 1128 . . . . . . . . . . . 12 ((𝑏 = 4 ∧ 𝑐 = 0) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
662640orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
663657olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
664662, 663jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
665389adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑐 ≠ 5)
666665neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑐 = 5)
667666olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
668396adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑐 ≠ 4)
669668neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑐 = 4)
670669olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
671667, 670jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
672636orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
673323necon2i 2977 . . . . . . . . . . . . . . . . 17 (𝑏 = 4 → 𝑏 ≠ 5)
674673adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑏 ≠ 5)
675674neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑏 = 5)
676675orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
677672, 676jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
678664, 671, 6773jca 1128 . . . . . . . . . . . 12 ((𝑏 = 4 ∧ 𝑐 = 0) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
679661, 678jca 511 . . . . . . . . . . 11 ((𝑏 = 4 ∧ 𝑐 = 0) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
680637, 641, 679jca31 514 . . . . . . . . . 10 ((𝑏 = 4 ∧ 𝑐 = 0) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
681680olcd 873 . . . . . . . . 9 ((𝑏 = 4 ∧ 𝑐 = 0) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
682634adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑏 ≠ 0)
683682neneqd 2947 . . . . . . . . . . . 12 ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑏 = 0)
684683orcd 872 . . . . . . . . . . 11 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
685416adantl 481 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑐 ≠ 0)
686685neneqd 2947 . . . . . . . . . . . 12 ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑐 = 0)
687686olcd 873 . . . . . . . . . . 11 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
688683orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
689686olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
690688, 689jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
691643adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑏 ≠ 1)
692691neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑏 = 1)
693692orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
694420adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑐 ≠ 1)
695694neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑐 = 1)
696695olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
697693, 696jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
698493necon2i 2977 . . . . . . . . . . . . . . . . 17 (𝑏 = 4 → 𝑏 ≠ 2)
699698adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑏 ≠ 2)
700699neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑏 = 2)
701700orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
702638adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑏 ≠ 3)
703702neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑏 = 3)
704703orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
705701, 704jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
706690, 697, 7053jca 1128 . . . . . . . . . . . 12 ((𝑏 = 4 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
707703orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
708411adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑐 ≠ 3)
709708neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑐 = 3)
710709olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
711707, 710jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
712455adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑐 ≠ 5)
713712neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑐 = 5)
714713olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
715 neeq1 3005 . . . . . . . . . . . . . . . . . 18 (𝑐 = 2 → (𝑐 ≠ 4 ↔ 2 ≠ 4))
716491, 715mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑐 = 2 → 𝑐 ≠ 4)
717716adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑐 ≠ 4)
718717neneqd 2947 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑐 = 4)
719718olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
720714, 719jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
721683orcd 872 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
722686olcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
723721, 722jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
724711, 720, 7233jca 1128 . . . . . . . . . . . 12 ((𝑏 = 4 ∧ 𝑐 = 2) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
725706, 724jca 511 . . . . . . . . . . 11 ((𝑏 = 4 ∧ 𝑐 = 2) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
726684, 687, 725jca31 514 . . . . . . . . . 10 ((𝑏 = 4 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
727726olcd 873 . . . . . . . . 9 ((𝑏 = 4 ∧ 𝑐 = 2) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
728 eqtr3 2760 . . . . . . . . . 10 ((𝑏 = 4 ∧ 𝑐 = 4) → 𝑏 = 𝑐)
729728orcd 872 . . . . . . . . 9 ((𝑏 = 4 ∧ 𝑐 = 4) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
730681, 727, 7293jaodan 1431 . . . . . . . 8 ((𝑏 = 4 ∧ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
731591, 633, 7303jaoian 1430 . . . . . . 7 (((𝑏 = 0 ∨ 𝑏 = 2 ∨ 𝑏 = 4) ∧ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
732540, 543, 731syl2anb 597 . . . . . 6 ((𝑏 ∈ (𝐺 NeighbVtx 3) ∧ 𝑐 ∈ (𝐺 NeighbVtx 3)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
733732rgen2 3201 . . . . 5 𝑏 ∈ (𝐺 NeighbVtx 3)∀𝑐 ∈ (𝐺 NeighbVtx 3)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
7341, 2, 3usgrexmpl2nb4 47770 . . . . . . . . 9 (𝐺 NeighbVtx 4) = {3, 5}
735734eleq2i 2830 . . . . . . . 8 (𝑏 ∈ (𝐺 NeighbVtx 4) ↔ 𝑏 ∈ {3, 5})
7366elpr 4672 . . . . . . . 8 (𝑏 ∈ {3, 5} ↔ (𝑏 = 3 ∨ 𝑏 = 5))
737735, 736bitri 275 . . . . . . 7 (𝑏 ∈ (𝐺 NeighbVtx 4) ↔ (𝑏 = 3 ∨ 𝑏 = 5))
738734eleq2i 2830 . . . . . . . 8 (𝑐 ∈ (𝐺 NeighbVtx 4) ↔ 𝑐 ∈ {3, 5})
73910elpr 4672 . . . . . . . 8 (𝑐 ∈ {3, 5} ↔ (𝑐 = 3 ∨ 𝑐 = 5))
740738, 739bitri 275 . . . . . . 7 (𝑐 ∈ (𝐺 NeighbVtx 4) ↔ (𝑐 = 3 ∨ 𝑐 = 5))
741191, 341, 243, 343ccase 1038 . . . . . . 7 (((𝑏 = 3 ∨ 𝑏 = 5) ∧ (𝑐 = 3 ∨ 𝑐 = 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
742737, 740, 741syl2anb 597 . . . . . 6 ((𝑏 ∈ (𝐺 NeighbVtx 4) ∧ 𝑐 ∈ (𝐺 NeighbVtx 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
743742rgen2 3201 . . . . 5 𝑏 ∈ (𝐺 NeighbVtx 4)∀𝑐 ∈ (𝐺 NeighbVtx 4)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
7441, 2, 3usgrexmpl2nb5 47771 . . . . . . . . 9 (𝐺 NeighbVtx 5) = {0, 4}
745744eleq2i 2830 . . . . . . . 8 (𝑏 ∈ (𝐺 NeighbVtx 5) ↔ 𝑏 ∈ {0, 4})
7466elpr 4672 . . . . . . . 8 (𝑏 ∈ {0, 4} ↔ (𝑏 = 0 ∨ 𝑏 = 4))
747745, 746bitri 275 . . . . . . 7 (𝑏 ∈ (𝐺 NeighbVtx 5) ↔ (𝑏 = 0 ∨ 𝑏 = 4))
748744eleq2i 2830 . . . . . . . 8 (𝑐 ∈ (𝐺 NeighbVtx 5) ↔ 𝑐 ∈ {0, 4})
74910elpr 4672 . . . . . . . 8 (𝑐 ∈ {0, 4} ↔ (𝑐 = 0 ∨ 𝑐 = 4))
750748, 749bitri 275 . . . . . . 7 (𝑐 ∈ (𝐺 NeighbVtx 5) ↔ (𝑐 = 0 ∨ 𝑐 = 4))
751356, 681, 590, 729ccase 1038 . . . . . . 7 (((𝑏 = 0 ∨ 𝑏 = 4) ∧ (𝑐 = 0 ∨ 𝑐 = 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
752747, 750, 751syl2anb 597 . . . . . 6 ((𝑏 ∈ (𝐺 NeighbVtx 5) ∧ 𝑐 ∈ (𝐺 NeighbVtx 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
753752rgen2 3201 . . . . 5 𝑏 ∈ (𝐺 NeighbVtx 5)∀𝑐 ∈ (𝐺 NeighbVtx 5)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
754 3ex 12371 . . . . . 6 3 ∈ V
755 4nn0 12568 . . . . . . 7 4 ∈ ℕ0
756755elexi 3506 . . . . . 6 4 ∈ V
757 5nn0 12569 . . . . . . 7 5 ∈ ℕ0
758757elexi 3506 . . . . . 6 5 ∈ V
759 oveq2 7453 . . . . . . 7 (𝑎 = 3 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 3))
760759raleqdv 3329 . . . . . . 7 (𝑎 = 3 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 3)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
761759, 760raleqbidv 3349 . . . . . 6 (𝑎 = 3 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 3)∀𝑐 ∈ (𝐺 NeighbVtx 3)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
762 oveq2 7453 . . . . . . 7 (𝑎 = 4 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 4))
763762raleqdv 3329 . . . . . . 7 (𝑎 = 4 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 4)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
764762, 763raleqbidv 3349 . . . . . 6 (𝑎 = 4 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 4)∀𝑐 ∈ (𝐺 NeighbVtx 4)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
765 oveq2 7453 . . . . . . 7 (𝑎 = 5 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 5))
766765raleqdv 3329 . . . . . . 7 (𝑎 = 5 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 5)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
767765, 766raleqbidv 3349 . . . . . 6 (𝑎 = 5 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 5)∀𝑐 ∈ (𝐺 NeighbVtx 5)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
768754, 756, 758, 761, 764, 767raltp 4730 . . . . 5 (∀𝑎 ∈ {3, 4, 5}∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ (∀𝑏 ∈ (𝐺 NeighbVtx 3)∀𝑐 ∈ (𝐺 NeighbVtx 3)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ∧ ∀𝑏 ∈ (𝐺 NeighbVtx 4)∀𝑐 ∈ (𝐺 NeighbVtx 4)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ∧ ∀𝑏 ∈ (𝐺 NeighbVtx 5)∀𝑐 ∈ (𝐺 NeighbVtx 5)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
769733, 743, 753, 768mpbir3an 1341 . . . 4 𝑎 ∈ {3, 4, 5}∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
770 ralunb 4214 . . . 4 (∀𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ (∀𝑎 ∈ {0, 1, 2}∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ∧ ∀𝑎 ∈ {3, 4, 5}∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
771536, 769, 770mpbir2an 710 . . 3 𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
772 ianor 982 . . . . . 6 (¬ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))) ↔ (¬ 𝑏𝑐 ∨ ¬ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))))
773 nne 2946 . . . . . . 7 𝑏𝑐𝑏 = 𝑐)
774 ioran 984 . . . . . . . . . 10 (¬ (((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))) ↔ (¬ ((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∧ ¬ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))))
775 ioran 984 . . . . . . . . . . . 12 (¬ ((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ↔ (¬ (𝑏 = 0 ∧ 𝑐 = 3) ∧ ¬ (𝑏 = 3 ∧ 𝑐 = 0)))
776 ianor 982 . . . . . . . . . . . . 13 (¬ (𝑏 = 0 ∧ 𝑐 = 3) ↔ (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
777 ianor 982 . . . . . . . . . . . . 13 (¬ (𝑏 = 3 ∧ 𝑐 = 0) ↔ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
778776, 777anbi12i 627 . . . . . . . . . . . 12 ((¬ (𝑏 = 0 ∧ 𝑐 = 3) ∧ ¬ (𝑏 = 3 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)))
779775, 778bitri 275 . . . . . . . . . . 11 (¬ ((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)))
780 ioran 984 . . . . . . . . . . . 12 (¬ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))) ↔ (¬ (((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∧ ¬ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))))
781 3ioran 1106 . . . . . . . . . . . . . 14 (¬ (((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ↔ (¬ ((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∧ ¬ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∧ ¬ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))))
782 ioran 984 . . . . . . . . . . . . . . . 16 (¬ ((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ↔ (¬ (𝑏 = 0 ∧ 𝑐 = 1) ∧ ¬ (𝑏 = 1 ∧ 𝑐 = 0)))
783 ianor 982 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 0 ∧ 𝑐 = 1) ↔ (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
784 ianor 982 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 1 ∧ 𝑐 = 0) ↔ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
785783, 784anbi12i 627 . . . . . . . . . . . . . . . 16 ((¬ (𝑏 = 0 ∧ 𝑐 = 1) ∧ ¬ (𝑏 = 1 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
786782, 785bitri 275 . . . . . . . . . . . . . . 15 (¬ ((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
787 ioran 984 . . . . . . . . . . . . . . . 16 (¬ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ↔ (¬ (𝑏 = 1 ∧ 𝑐 = 2) ∧ ¬ (𝑏 = 2 ∧ 𝑐 = 1)))
788 ianor 982 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 1 ∧ 𝑐 = 2) ↔ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
789 ianor 982 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 2 ∧ 𝑐 = 1) ↔ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
790788, 789anbi12i 627 . . . . . . . . . . . . . . . 16 ((¬ (𝑏 = 1 ∧ 𝑐 = 2) ∧ ¬ (𝑏 = 2 ∧ 𝑐 = 1)) ↔ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
791787, 790bitri 275 . . . . . . . . . . . . . . 15 (¬ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ↔ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
792 ioran 984 . . . . . . . . . . . . . . . 16 (¬ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2)) ↔ (¬ (𝑏 = 2 ∧ 𝑐 = 3) ∧ ¬ (𝑏 = 3 ∧ 𝑐 = 2)))
793 ianor 982 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 2 ∧ 𝑐 = 3) ↔ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
794 ianor 982 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 3 ∧ 𝑐 = 2) ↔ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
795793, 794anbi12i 627 . . . . . . . . . . . . . . . 16 ((¬ (𝑏 = 2 ∧ 𝑐 = 3) ∧ ¬ (𝑏 = 3 ∧ 𝑐 = 2)) ↔ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
796792, 795bitri 275 . . . . . . . . . . . . . . 15 (¬ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2)) ↔ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
797786, 791, 7963anbi123i 1155 . . . . . . . . . . . . . 14 ((¬ ((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∧ ¬ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∧ ¬ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
798781, 797bitri 275 . . . . . . . . . . . . 13 (¬ (((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
799 3ioran 1106 . . . . . . . . . . . . . 14 (¬ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))) ↔ (¬ ((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∧ ¬ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∧ ¬ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))
800 ioran 984 . . . . . . . . . . . . . . . 16 (¬ ((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ↔ (¬ (𝑏 = 3 ∧ 𝑐 = 4) ∧ ¬ (𝑏 = 4 ∧ 𝑐 = 3)))
801 ianor 982 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 3 ∧ 𝑐 = 4) ↔ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
802 ianor 982 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 4 ∧ 𝑐 = 3) ↔ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
803801, 802anbi12i 627 . . . . . . . . . . . . . . . 16 ((¬ (𝑏 = 3 ∧ 𝑐 = 4) ∧ ¬ (𝑏 = 4 ∧ 𝑐 = 3)) ↔ ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
804800, 803bitri 275 . . . . . . . . . . . . . . 15 (¬ ((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ↔ ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
805 ioran 984 . . . . . . . . . . . . . . . 16 (¬ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ↔ (¬ (𝑏 = 4 ∧ 𝑐 = 5) ∧ ¬ (𝑏 = 5 ∧ 𝑐 = 4)))
806 ianor 982 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 4 ∧ 𝑐 = 5) ↔ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
807 ianor 982 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 5 ∧ 𝑐 = 4) ↔ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
808806, 807anbi12i 627 . . . . . . . . . . . . . . . 16 ((¬ (𝑏 = 4 ∧ 𝑐 = 5) ∧ ¬ (𝑏 = 5 ∧ 𝑐 = 4)) ↔ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
809805, 808bitri 275 . . . . . . . . . . . . . . 15 (¬ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ↔ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
810 ioran 984 . . . . . . . . . . . . . . . 16 (¬ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)) ↔ (¬ (𝑏 = 0 ∧ 𝑐 = 5) ∧ ¬ (𝑏 = 5 ∧ 𝑐 = 0)))
811 ianor 982 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 0 ∧ 𝑐 = 5) ↔ (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
812 ianor 982 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 5 ∧ 𝑐 = 0) ↔ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
813811, 812anbi12i 627 . . . . . . . . . . . . . . . 16 ((¬ (𝑏 = 0 ∧ 𝑐 = 5) ∧ ¬ (𝑏 = 5 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
814810, 813bitri 275 . . . . . . . . . . . . . . 15 (¬ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
815804, 809, 8143anbi123i 1155 . . . . . . . . . . . . . 14 ((¬ ((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∧ ¬ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∧ ¬ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))) ↔ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
816799, 815bitri 275 . . . . . . . . . . . . 13 (¬ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))) ↔ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
817798, 816anbi12i 627 . . . . . . . . . . . 12 ((¬ (((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∧ ¬ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))) ↔ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
818780, 817bitri 275 . . . . . . . . . . 11 (¬ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))) ↔ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
819779, 818anbi12i 627 . . . . . . . . . 10 ((¬ ((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∧ ¬ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
820774, 819bitri 275 . . . . . . . . 9 (¬ (((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
8216, 10, 523, 524preq12b 4875 . . . . . . . . . . . 12 ({𝑏, 𝑐} = {0, 1} ↔ ((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)))
8226, 10, 524, 525preq12b 4875 . . . . . . . . . . . 12 ({𝑏, 𝑐} = {1, 2} ↔ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)))
8236, 10, 525, 754preq12b 4875 . . . . . . . . . . . 12 ({𝑏, 𝑐} = {2, 3} ↔ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2)))
824821, 822, 8233orbi123i 1156 . . . . . . . . . . 11 (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ↔ (((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))))
8256, 10, 754, 756preq12b 4875 . . . . . . . . . . . 12 ({𝑏, 𝑐} = {3, 4} ↔ ((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)))
8266, 10, 756, 758preq12b 4875 . . . . . . . . . . . 12 ({𝑏, 𝑐} = {4, 5} ↔ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)))
8276, 10, 523, 758preq12b 4875 . . . . . . . . . . . 12 ({𝑏, 𝑐} = {0, 5} ↔ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))
828825, 826, 8273orbi123i 1156 . . . . . . . . . . 11 (({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}) ↔ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))
829824, 828orbi12i 913 . . . . . . . . . 10 ((({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5})) ↔ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))))
830829orbi2i 911 . . . . . . . . 9 ((((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}))) ↔ (((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))))
831820, 830xchnxbir 333 . . . . . . . 8 (¬ (((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}))) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
832 elun 4170 . . . . . . . . 9 ({𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({𝑏, 𝑐} ∈ {{0, 3}} ∨ {𝑏, 𝑐} ∈ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))
833 prex 5455 . . . . . . . . . . . 12 {𝑏, 𝑐} ∈ V
834833elsn 4663 . . . . . . . . . . 11 ({𝑏, 𝑐} ∈ {{0, 3}} ↔ {𝑏, 𝑐} = {0, 3})
8356, 10, 523, 754preq12b 4875 . . . . . . . . . . 11 ({𝑏, 𝑐} = {0, 3} ↔ ((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)))
836834, 835bitri 275 . . . . . . . . . 10 ({𝑏, 𝑐} ∈ {{0, 3}} ↔ ((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)))
837 elun 4170 . . . . . . . . . . 11 ({𝑏, 𝑐} ∈ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}) ↔ ({𝑏, 𝑐} ∈ {{0, 1}, {1, 2}, {2, 3}} ∨ {𝑏, 𝑐} ∈ {{3, 4}, {4, 5}, {0, 5}}))
838833eltp 4712 . . . . . . . . . . . 12 ({𝑏, 𝑐} ∈ {{0, 1}, {1, 2}, {2, 3}} ↔ ({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}))
839833eltp 4712 . . . . . . . . . . . 12 ({𝑏, 𝑐} ∈ {{3, 4}, {4, 5}, {0, 5}} ↔ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}))
840838, 839orbi12i 913 . . . . . . . . . . 11 (({𝑏, 𝑐} ∈ {{0, 1}, {1, 2}, {2, 3}} ∨ {𝑏, 𝑐} ∈ {{3, 4}, {4, 5}, {0, 5}}) ↔ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5})))
841837, 840bitri 275 . . . . . . . . . 10 ({𝑏, 𝑐} ∈ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}) ↔ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5})))
842836, 841orbi12i 913 . . . . . . . . 9 (({𝑏, 𝑐} ∈ {{0, 3}} ∨ {𝑏, 𝑐} ∈ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ (((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}))))
843832, 842bitri 275 . . . . . . . 8 ({𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ (((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}))))
844831, 843xchnxbir 333 . . . . . . 7 (¬ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
845773, 844orbi12i 913 . . . . . 6 ((¬ 𝑏𝑐 ∨ ¬ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))) ↔ (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
846772, 845bitr2i 276 . . . . 5 ((𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ¬ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))))
8478463ralbii 3132 . . . 4 (∀𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎) ¬ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))))
848 ralnex3 3136 . . . 4 (∀𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎) ¬ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))) ↔ ¬ ∃𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))))
849847, 848bitri 275 . . 3 (∀𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ¬ ∃𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))))
850771, 849mpbi 230 . 2 ¬ ∃𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))
8511, 2, 3usgrexmpl2 47762 . . 3 𝐺 ∈ USGraph
8521, 2, 3usgrexmpl2vtx 47763 . . . . 5 (Vtx‘𝐺) = ({0, 1, 2} ∪ {3, 4, 5})
853852eqcomi 2743 . . . 4 ({0, 1, 2} ∪ {3, 4, 5}) = (Vtx‘𝐺)
8541, 2, 3usgrexmpl2edg 47764 . . . . 5 (Edg‘𝐺) = ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))
855854eqcomi 2743 . . . 4 ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) = (Edg‘𝐺)
856 eqid 2734 . . . 4 (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 𝑎)
857853, 855, 856usgrgrtrirex 47728 . . 3 (𝐺 ∈ USGraph → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))))
858851, 857ax-mp 5 . 2 (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))))
859850, 858mtbir 323 1 ¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 846  w3o 1086  w3a 1087   = wceq 1537  wex 1777  wcel 2103  wne 2942  wral 3063  wrex 3072  cun 3968  {csn 4648  {cpr 4650  {ctp 4652  cop 4654  cfv 6572  (class class class)co 7445  0cc0 11180  1c1 11181  2c2 12344  3c3 12345  4c4 12346  5c5 12347  0cn0 12549  ...cfz 13563  ⟨“cs7 14891  Vtxcvtx 29022  Edgcedg 29073  USGraphcusgr 29175   NeighbVtx cnbgr 29358  GrTrianglescgrtri 47718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-2o 8519  df-3o 8520  df-oadd 8522  df-er 8759  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-dju 9966  df-card 10004  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-nn 12290  df-2 12352  df-3 12353  df-4 12354  df-5 12355  df-6 12356  df-7 12357  df-n0 12550  df-xnn0 12622  df-z 12636  df-uz 12900  df-fz 13564  df-fzo 13708  df-hash 14376  df-word 14559  df-concat 14615  df-s1 14640  df-s2 14893  df-s3 14894  df-s4 14895  df-s5 14896  df-s6 14897  df-s7 14898  df-vtx 29024  df-iedg 29025  df-edg 29074  df-uhgr 29084  df-upgr 29108  df-umgr 29109  df-uspgr 29176  df-usgr 29177  df-nbgr 29359  df-grtri 47719
This theorem is referenced by:  usgrexmpl12ngric  47773
  Copyright terms: Public domain W3C validator