Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrexmpl2trifr Structured version   Visualization version   GIF version

Theorem usgrexmpl2trifr 48012
Description: 𝐺 is triangle-free. (Contributed by AV, 10-Aug-2025.)
Hypotheses
Ref Expression
usgrexmpl2.v 𝑉 = (0...5)
usgrexmpl2.e 𝐸 = ⟨“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”⟩
usgrexmpl2.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
usgrexmpl2trifr ¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺)
Distinct variable group:   𝑡,𝐺
Allowed substitution hints:   𝐸(𝑡)   𝑉(𝑡)

Proof of Theorem usgrexmpl2trifr
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgrexmpl2.v . . . . . . . . . 10 𝑉 = (0...5)
2 usgrexmpl2.e . . . . . . . . . 10 𝐸 = ⟨“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”⟩
3 usgrexmpl2.g . . . . . . . . . 10 𝐺 = ⟨𝑉, 𝐸
41, 2, 3usgrexmpl2nb0 48006 . . . . . . . . 9 (𝐺 NeighbVtx 0) = {1, 3, 5}
54eleq2i 2820 . . . . . . . 8 (𝑏 ∈ (𝐺 NeighbVtx 0) ↔ 𝑏 ∈ {1, 3, 5})
6 vex 3442 . . . . . . . . 9 𝑏 ∈ V
76eltp 4643 . . . . . . . 8 (𝑏 ∈ {1, 3, 5} ↔ (𝑏 = 1 ∨ 𝑏 = 3 ∨ 𝑏 = 5))
85, 7bitri 275 . . . . . . 7 (𝑏 ∈ (𝐺 NeighbVtx 0) ↔ (𝑏 = 1 ∨ 𝑏 = 3 ∨ 𝑏 = 5))
94eleq2i 2820 . . . . . . . 8 (𝑐 ∈ (𝐺 NeighbVtx 0) ↔ 𝑐 ∈ {1, 3, 5})
10 vex 3442 . . . . . . . . 9 𝑐 ∈ V
1110eltp 4643 . . . . . . . 8 (𝑐 ∈ {1, 3, 5} ↔ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5))
129, 11bitri 275 . . . . . . 7 (𝑐 ∈ (𝐺 NeighbVtx 0) ↔ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5))
13 eqtr3 2751 . . . . . . . . . 10 ((𝑏 = 1 ∧ 𝑐 = 1) → 𝑏 = 𝑐)
1413orcd 873 . . . . . . . . 9 ((𝑏 = 1 ∧ 𝑐 = 1) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
15 ax-1ne0 11097 . . . . . . . . . . . . . . 15 1 ≠ 0
16 neeq1 2987 . . . . . . . . . . . . . . 15 (𝑏 = 1 → (𝑏 ≠ 0 ↔ 1 ≠ 0))
1715, 16mpbiri 258 . . . . . . . . . . . . . 14 (𝑏 = 1 → 𝑏 ≠ 0)
1817adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑏 ≠ 0)
1918neneqd 2930 . . . . . . . . . . . 12 ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑏 = 0)
2019orcd 873 . . . . . . . . . . 11 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
21 3ne0 12252 . . . . . . . . . . . . . . 15 3 ≠ 0
22 neeq1 2987 . . . . . . . . . . . . . . 15 (𝑐 = 3 → (𝑐 ≠ 0 ↔ 3 ≠ 0))
2321, 22mpbiri 258 . . . . . . . . . . . . . 14 (𝑐 = 3 → 𝑐 ≠ 0)
2423adantl 481 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑐 ≠ 0)
2524neneqd 2930 . . . . . . . . . . . 12 ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑐 = 0)
2625olcd 874 . . . . . . . . . . 11 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
2719orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
2825olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
2927, 28jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
30 2re 12220 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
31 2lt3 12313 . . . . . . . . . . . . . . . . . . 19 2 < 3
3230, 31gtneii 11246 . . . . . . . . . . . . . . . . . 18 3 ≠ 2
33 neeq1 2987 . . . . . . . . . . . . . . . . . 18 (𝑐 = 3 → (𝑐 ≠ 2 ↔ 3 ≠ 2))
3432, 33mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑐 = 3 → 𝑐 ≠ 2)
3534adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑐 ≠ 2)
3635neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑐 = 2)
3736olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
38 1re 11134 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
39 1lt3 12314 . . . . . . . . . . . . . . . . . . 19 1 < 3
4038, 39gtneii 11246 . . . . . . . . . . . . . . . . . 18 3 ≠ 1
41 neeq1 2987 . . . . . . . . . . . . . . . . . 18 (𝑐 = 3 → (𝑐 ≠ 1 ↔ 3 ≠ 1))
4240, 41mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑐 = 3 → 𝑐 ≠ 1)
4342adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑐 ≠ 1)
4443neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑐 = 1)
4544olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
4637, 45jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
47 1ne2 12349 . . . . . . . . . . . . . . . . . 18 1 ≠ 2
48 neeq1 2987 . . . . . . . . . . . . . . . . . 18 (𝑏 = 1 → (𝑏 ≠ 2 ↔ 1 ≠ 2))
4947, 48mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑏 = 1 → 𝑏 ≠ 2)
5049adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑏 ≠ 2)
5150neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑏 = 2)
5251orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
5336olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
5452, 53jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
5529, 46, 543jca 1128 . . . . . . . . . . . 12 ((𝑏 = 1 ∧ 𝑐 = 3) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
5638, 39ltneii 11247 . . . . . . . . . . . . . . . . . 18 1 ≠ 3
57 neeq1 2987 . . . . . . . . . . . . . . . . . 18 (𝑏 = 1 → (𝑏 ≠ 3 ↔ 1 ≠ 3))
5856, 57mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑏 = 1 → 𝑏 ≠ 3)
5958adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑏 ≠ 3)
6059neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑏 = 3)
6160orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
62 1lt4 12317 . . . . . . . . . . . . . . . . . . 19 1 < 4
6338, 62ltneii 11247 . . . . . . . . . . . . . . . . . 18 1 ≠ 4
64 neeq1 2987 . . . . . . . . . . . . . . . . . 18 (𝑏 = 1 → (𝑏 ≠ 4 ↔ 1 ≠ 4))
6563, 64mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑏 = 1 → 𝑏 ≠ 4)
6665adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑏 ≠ 4)
6766neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑏 = 4)
6867orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
6961, 68jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
7067orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
71 1lt5 12321 . . . . . . . . . . . . . . . . . . 19 1 < 5
7238, 71ltneii 11247 . . . . . . . . . . . . . . . . . 18 1 ≠ 5
73 neeq1 2987 . . . . . . . . . . . . . . . . . 18 (𝑏 = 1 → (𝑏 ≠ 5 ↔ 1 ≠ 5))
7472, 73mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑏 = 1 → 𝑏 ≠ 5)
7574adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑏 ≠ 5)
7675neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑏 = 5)
7776orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
7870, 77jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
7919orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
8025olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
8179, 80jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
8269, 78, 813jca 1128 . . . . . . . . . . . 12 ((𝑏 = 1 ∧ 𝑐 = 3) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
8355, 82jca 511 . . . . . . . . . . 11 ((𝑏 = 1 ∧ 𝑐 = 3) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
8420, 26, 83jca31 514 . . . . . . . . . 10 ((𝑏 = 1 ∧ 𝑐 = 3) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
8584olcd 874 . . . . . . . . 9 ((𝑏 = 1 ∧ 𝑐 = 3) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
8617adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑏 ≠ 0)
8786neneqd 2930 . . . . . . . . . . . 12 ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑏 = 0)
8887orcd 873 . . . . . . . . . . 11 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
8958adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑏 ≠ 3)
9089neneqd 2930 . . . . . . . . . . . 12 ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑏 = 3)
9190orcd 873 . . . . . . . . . . 11 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
9287orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
93 0re 11136 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
94 5pos 12255 . . . . . . . . . . . . . . . . . . 19 0 < 5
9593, 94gtneii 11246 . . . . . . . . . . . . . . . . . 18 5 ≠ 0
96 neeq1 2987 . . . . . . . . . . . . . . . . . 18 (𝑐 = 5 → (𝑐 ≠ 0 ↔ 5 ≠ 0))
9795, 96mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑐 = 5 → 𝑐 ≠ 0)
9897adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑐 ≠ 0)
9998neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑐 = 0)
10099olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
10192, 100jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
102 2lt5 12320 . . . . . . . . . . . . . . . . . . 19 2 < 5
10330, 102gtneii 11246 . . . . . . . . . . . . . . . . . 18 5 ≠ 2
104 neeq1 2987 . . . . . . . . . . . . . . . . . 18 (𝑐 = 5 → (𝑐 ≠ 2 ↔ 5 ≠ 2))
105103, 104mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑐 = 5 → 𝑐 ≠ 2)
106105adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑐 ≠ 2)
107106neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑐 = 2)
108107olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
10949adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑏 ≠ 2)
110109neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑏 = 2)
111110orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
112108, 111jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
113110orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
11490orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
115113, 114jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
116101, 112, 1153jca 1128 . . . . . . . . . . . 12 ((𝑏 = 1 ∧ 𝑐 = 5) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
11790orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
11865adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑏 ≠ 4)
119118neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑏 = 4)
120119orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
121117, 120jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
122119orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
12374adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑏 ≠ 5)
124123neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑏 = 5)
125124orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
126122, 125jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
12787orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
12899olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
129127, 128jca 511 . . . . . . . . . . . . 13 ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
130121, 126, 1293jca 1128 . . . . . . . . . . . 12 ((𝑏 = 1 ∧ 𝑐 = 5) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
131116, 130jca 511 . . . . . . . . . . 11 ((𝑏 = 1 ∧ 𝑐 = 5) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
13288, 91, 131jca31 514 . . . . . . . . . 10 ((𝑏 = 1 ∧ 𝑐 = 5) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
133132olcd 874 . . . . . . . . 9 ((𝑏 = 1 ∧ 𝑐 = 5) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
13414, 85, 1333jaodan 1433 . . . . . . . 8 ((𝑏 = 1 ∧ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
135 neeq1 2987 . . . . . . . . . . . . . . 15 (𝑏 = 3 → (𝑏 ≠ 0 ↔ 3 ≠ 0))
13621, 135mpbiri 258 . . . . . . . . . . . . . 14 (𝑏 = 3 → 𝑏 ≠ 0)
137136adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑏 ≠ 0)
138137neneqd 2930 . . . . . . . . . . . 12 ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑏 = 0)
139138orcd 873 . . . . . . . . . . 11 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
140 neeq1 2987 . . . . . . . . . . . . . . 15 (𝑐 = 1 → (𝑐 ≠ 0 ↔ 1 ≠ 0))
14115, 140mpbiri 258 . . . . . . . . . . . . . 14 (𝑐 = 1 → 𝑐 ≠ 0)
142141adantl 481 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑐 ≠ 0)
143142neneqd 2930 . . . . . . . . . . . 12 ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑐 = 0)
144143olcd 874 . . . . . . . . . . 11 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
145138orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
146143olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
147145, 146jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
14858necon2i 2959 . . . . . . . . . . . . . . . . 17 (𝑏 = 3 → 𝑏 ≠ 1)
149148adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑏 ≠ 1)
150149neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑏 = 1)
151150orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
152 neeq1 2987 . . . . . . . . . . . . . . . . . 18 (𝑏 = 3 → (𝑏 ≠ 2 ↔ 3 ≠ 2))
15332, 152mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑏 = 3 → 𝑏 ≠ 2)
154153adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑏 ≠ 2)
155154neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑏 = 2)
156155orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
157151, 156jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
158155orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
159 neeq1 2987 . . . . . . . . . . . . . . . . . 18 (𝑐 = 1 → (𝑐 ≠ 2 ↔ 1 ≠ 2))
16047, 159mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑐 = 1 → 𝑐 ≠ 2)
161160adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑐 ≠ 2)
162161neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑐 = 2)
163162olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
164158, 163jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
165147, 157, 1643jca 1128 . . . . . . . . . . . 12 ((𝑏 = 3 ∧ 𝑐 = 1) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
166 neeq1 2987 . . . . . . . . . . . . . . . . . 18 (𝑐 = 1 → (𝑐 ≠ 4 ↔ 1 ≠ 4))
16763, 166mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑐 = 1 → 𝑐 ≠ 4)
168167adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑐 ≠ 4)
169168neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑐 = 4)
170169olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
17142necon2i 2959 . . . . . . . . . . . . . . . . 17 (𝑐 = 1 → 𝑐 ≠ 3)
172171adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑐 ≠ 3)
173172neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑐 = 3)
174173olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
175170, 174jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
176 neeq1 2987 . . . . . . . . . . . . . . . . . 18 (𝑐 = 1 → (𝑐 ≠ 5 ↔ 1 ≠ 5))
17772, 176mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑐 = 1 → 𝑐 ≠ 5)
178177adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑐 ≠ 5)
179178neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑐 = 5)
180179olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
181169olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
182180, 181jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
183138orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
184143olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
185183, 184jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
186175, 182, 1853jca 1128 . . . . . . . . . . . 12 ((𝑏 = 3 ∧ 𝑐 = 1) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
187165, 186jca 511 . . . . . . . . . . 11 ((𝑏 = 3 ∧ 𝑐 = 1) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
188139, 144, 187jca31 514 . . . . . . . . . 10 ((𝑏 = 3 ∧ 𝑐 = 1) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
189188olcd 874 . . . . . . . . 9 ((𝑏 = 3 ∧ 𝑐 = 1) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
190 eqtr3 2751 . . . . . . . . . 10 ((𝑏 = 3 ∧ 𝑐 = 3) → 𝑏 = 𝑐)
191190orcd 873 . . . . . . . . 9 ((𝑏 = 3 ∧ 𝑐 = 3) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
192136adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑏 ≠ 0)
193192neneqd 2930 . . . . . . . . . . . 12 ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑏 = 0)
194193orcd 873 . . . . . . . . . . 11 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
19597adantl 481 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑐 ≠ 0)
196195neneqd 2930 . . . . . . . . . . . 12 ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑐 = 0)
197196olcd 874 . . . . . . . . . . 11 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
198193orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
199196olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
200198, 199jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
201148adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑏 ≠ 1)
202201neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑏 = 1)
203202orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
204177necon2i 2959 . . . . . . . . . . . . . . . . 17 (𝑐 = 5 → 𝑐 ≠ 1)
205204adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑐 ≠ 1)
206205neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑐 = 1)
207206olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
208203, 207jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
209153adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑏 ≠ 2)
210209neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑏 = 2)
211210orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
212105adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑐 ≠ 2)
213212neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑐 = 2)
214213olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
215211, 214jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
216200, 208, 2153jca 1128 . . . . . . . . . . . 12 ((𝑏 = 3 ∧ 𝑐 = 5) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
217 4re 12230 . . . . . . . . . . . . . . . . . . 19 4 ∈ ℝ
218 4lt5 12318 . . . . . . . . . . . . . . . . . . 19 4 < 5
219217, 218gtneii 11246 . . . . . . . . . . . . . . . . . 18 5 ≠ 4
220 neeq1 2987 . . . . . . . . . . . . . . . . . 18 (𝑐 = 5 → (𝑐 ≠ 4 ↔ 5 ≠ 4))
221219, 220mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑐 = 5 → 𝑐 ≠ 4)
222221adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑐 ≠ 4)
223222neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑐 = 4)
224223olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
225 3re 12226 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℝ
226 3lt4 12315 . . . . . . . . . . . . . . . . . . 19 3 < 4
227225, 226ltneii 11247 . . . . . . . . . . . . . . . . . 18 3 ≠ 4
228 neeq1 2987 . . . . . . . . . . . . . . . . . 18 (𝑏 = 3 → (𝑏 ≠ 4 ↔ 3 ≠ 4))
229227, 228mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑏 = 3 → 𝑏 ≠ 4)
230229adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑏 ≠ 4)
231230neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑏 = 4)
232231orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
233224, 232jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
234231orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
235223olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
236234, 235jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
237193orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
238196olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
239237, 238jca 511 . . . . . . . . . . . . 13 ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
240233, 236, 2393jca 1128 . . . . . . . . . . . 12 ((𝑏 = 3 ∧ 𝑐 = 5) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
241216, 240jca 511 . . . . . . . . . . 11 ((𝑏 = 3 ∧ 𝑐 = 5) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
242194, 197, 241jca31 514 . . . . . . . . . 10 ((𝑏 = 3 ∧ 𝑐 = 5) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
243242olcd 874 . . . . . . . . 9 ((𝑏 = 3 ∧ 𝑐 = 5) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
244189, 191, 2433jaodan 1433 . . . . . . . 8 ((𝑏 = 3 ∧ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
245171adantl 481 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑐 ≠ 3)
246245neneqd 2930 . . . . . . . . . . . 12 ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑐 = 3)
247246olcd 874 . . . . . . . . . . 11 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
248141adantl 481 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑐 ≠ 0)
249248neneqd 2930 . . . . . . . . . . . 12 ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑐 = 0)
250249olcd 874 . . . . . . . . . . 11 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
251 neeq1 2987 . . . . . . . . . . . . . . . . . 18 (𝑏 = 5 → (𝑏 ≠ 0 ↔ 5 ≠ 0))
25295, 251mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑏 = 5 → 𝑏 ≠ 0)
253252adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑏 ≠ 0)
254253neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑏 = 0)
255254orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
256249olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
257255, 256jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
25874necon2i 2959 . . . . . . . . . . . . . . . . 17 (𝑏 = 5 → 𝑏 ≠ 1)
259258adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑏 ≠ 1)
260259neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑏 = 1)
261260orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
262 neeq1 2987 . . . . . . . . . . . . . . . . . 18 (𝑏 = 5 → (𝑏 ≠ 2 ↔ 5 ≠ 2))
263103, 262mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑏 = 5 → 𝑏 ≠ 2)
264263adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑏 ≠ 2)
265264neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑏 = 2)
266265orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
267261, 266jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
268246olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
269160adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑐 ≠ 2)
270269neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑐 = 2)
271270olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
272268, 271jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
273257, 267, 2723jca 1128 . . . . . . . . . . . 12 ((𝑏 = 5 ∧ 𝑐 = 1) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
274 3lt5 12319 . . . . . . . . . . . . . . . . . . 19 3 < 5
275225, 274gtneii 11246 . . . . . . . . . . . . . . . . . 18 5 ≠ 3
276 neeq1 2987 . . . . . . . . . . . . . . . . . 18 (𝑏 = 5 → (𝑏 ≠ 3 ↔ 5 ≠ 3))
277275, 276mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑏 = 5 → 𝑏 ≠ 3)
278277adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑏 ≠ 3)
279278neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑏 = 3)
280279orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
281246olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
282280, 281jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
283177adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑐 ≠ 5)
284283neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑐 = 5)
285284olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
286167adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑐 ≠ 4)
287286neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑐 = 4)
288287olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
289285, 288jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
290254orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
291249olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
292290, 291jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
293282, 289, 2923jca 1128 . . . . . . . . . . . 12 ((𝑏 = 5 ∧ 𝑐 = 1) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
294273, 293jca 511 . . . . . . . . . . 11 ((𝑏 = 5 ∧ 𝑐 = 1) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
295247, 250, 294jca31 514 . . . . . . . . . 10 ((𝑏 = 5 ∧ 𝑐 = 1) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
296295olcd 874 . . . . . . . . 9 ((𝑏 = 5 ∧ 𝑐 = 1) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
297252adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑏 ≠ 0)
298297neneqd 2930 . . . . . . . . . . . 12 ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑏 = 0)
299298orcd 873 . . . . . . . . . . 11 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
30023adantl 481 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑐 ≠ 0)
301300neneqd 2930 . . . . . . . . . . . 12 ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑐 = 0)
302301olcd 874 . . . . . . . . . . 11 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
303298orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
304301olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
305303, 304jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
306258adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑏 ≠ 1)
307306neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑏 = 1)
308307orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
30942adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑐 ≠ 1)
310309neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑐 = 1)
311310olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
312308, 311jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
313263adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑏 ≠ 2)
314313neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑏 = 2)
315314orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
316277adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑏 ≠ 3)
317316neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑏 = 3)
318317orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
319315, 318jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
320305, 312, 3193jca 1128 . . . . . . . . . . . 12 ((𝑏 = 5 ∧ 𝑐 = 3) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
321317orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
322 neeq1 2987 . . . . . . . . . . . . . . . . . 18 (𝑏 = 5 → (𝑏 ≠ 4 ↔ 5 ≠ 4))
323219, 322mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑏 = 5 → 𝑏 ≠ 4)
324323adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑏 ≠ 4)
325324neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑏 = 4)
326325orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
327321, 326jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
328325orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
329 neeq1 2987 . . . . . . . . . . . . . . . . . 18 (𝑐 = 3 → (𝑐 ≠ 4 ↔ 3 ≠ 4))
330227, 329mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑐 = 3 → 𝑐 ≠ 4)
331330adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑐 ≠ 4)
332331neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑐 = 4)
333332olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
334328, 333jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
335298orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
336301olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
337335, 336jca 511 . . . . . . . . . . . . 13 ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
338327, 334, 3373jca 1128 . . . . . . . . . . . 12 ((𝑏 = 5 ∧ 𝑐 = 3) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
339320, 338jca 511 . . . . . . . . . . 11 ((𝑏 = 5 ∧ 𝑐 = 3) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
340299, 302, 339jca31 514 . . . . . . . . . 10 ((𝑏 = 5 ∧ 𝑐 = 3) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
341340olcd 874 . . . . . . . . 9 ((𝑏 = 5 ∧ 𝑐 = 3) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
342 eqtr3 2751 . . . . . . . . . 10 ((𝑏 = 5 ∧ 𝑐 = 5) → 𝑏 = 𝑐)
343342orcd 873 . . . . . . . . 9 ((𝑏 = 5 ∧ 𝑐 = 5) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
344296, 341, 3433jaodan 1433 . . . . . . . 8 ((𝑏 = 5 ∧ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
345134, 244, 3443jaoian 1432 . . . . . . 7 (((𝑏 = 1 ∨ 𝑏 = 3 ∨ 𝑏 = 5) ∧ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
3468, 12, 345syl2anb 598 . . . . . 6 ((𝑏 ∈ (𝐺 NeighbVtx 0) ∧ 𝑐 ∈ (𝐺 NeighbVtx 0)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
347346rgen2 3169 . . . . 5 𝑏 ∈ (𝐺 NeighbVtx 0)∀𝑐 ∈ (𝐺 NeighbVtx 0)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
3481, 2, 3usgrexmpl2nb1 48007 . . . . . . . . 9 (𝐺 NeighbVtx 1) = {0, 2}
349348eleq2i 2820 . . . . . . . 8 (𝑏 ∈ (𝐺 NeighbVtx 1) ↔ 𝑏 ∈ {0, 2})
3506elpr 4604 . . . . . . . 8 (𝑏 ∈ {0, 2} ↔ (𝑏 = 0 ∨ 𝑏 = 2))
351349, 350bitri 275 . . . . . . 7 (𝑏 ∈ (𝐺 NeighbVtx 1) ↔ (𝑏 = 0 ∨ 𝑏 = 2))
352348eleq2i 2820 . . . . . . . 8 (𝑐 ∈ (𝐺 NeighbVtx 1) ↔ 𝑐 ∈ {0, 2})
35310elpr 4604 . . . . . . . 8 (𝑐 ∈ {0, 2} ↔ (𝑐 = 0 ∨ 𝑐 = 2))
354352, 353bitri 275 . . . . . . 7 (𝑐 ∈ (𝐺 NeighbVtx 1) ↔ (𝑐 = 0 ∨ 𝑐 = 2))
355 eqtr3 2751 . . . . . . . . 9 ((𝑏 = 0 ∧ 𝑐 = 0) → 𝑏 = 𝑐)
356355orcd 873 . . . . . . . 8 ((𝑏 = 0 ∧ 𝑐 = 0) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
357 2ne0 12250 . . . . . . . . . . . . . 14 2 ≠ 0
358 neeq1 2987 . . . . . . . . . . . . . 14 (𝑏 = 2 → (𝑏 ≠ 0 ↔ 2 ≠ 0))
359357, 358mpbiri 258 . . . . . . . . . . . . 13 (𝑏 = 2 → 𝑏 ≠ 0)
360359adantr 480 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑏 ≠ 0)
361360neneqd 2930 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑏 = 0)
362361orcd 873 . . . . . . . . . 10 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
363153necon2i 2959 . . . . . . . . . . . . 13 (𝑏 = 2 → 𝑏 ≠ 3)
364363adantr 480 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑏 ≠ 3)
365364neneqd 2930 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑏 = 3)
366365orcd 873 . . . . . . . . . 10 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
367361orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
36849necon2i 2959 . . . . . . . . . . . . . . . 16 (𝑏 = 2 → 𝑏 ≠ 1)
369368adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑏 ≠ 1)
370369neneqd 2930 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑏 = 1)
371370orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
372367, 371jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
373370orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
374141necon2i 2959 . . . . . . . . . . . . . . . 16 (𝑐 = 0 → 𝑐 ≠ 1)
375374adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑐 ≠ 1)
376375neneqd 2930 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑐 = 1)
377376olcd 874 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
378373, 377jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
37923necon2i 2959 . . . . . . . . . . . . . . . 16 (𝑐 = 0 → 𝑐 ≠ 3)
380379adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑐 ≠ 3)
381380neneqd 2930 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑐 = 3)
382381olcd 874 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
383365orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
384382, 383jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
385372, 378, 3843jca 1128 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 0) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
386365orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
387381olcd 874 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
388386, 387jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
38997necon2i 2959 . . . . . . . . . . . . . . . 16 (𝑐 = 0 → 𝑐 ≠ 5)
390389adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑐 ≠ 5)
391390neneqd 2930 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑐 = 5)
392391olcd 874 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
393 4pos 12253 . . . . . . . . . . . . . . . . . 18 0 < 4
39493, 393ltneii 11247 . . . . . . . . . . . . . . . . 17 0 ≠ 4
395 neeq1 2987 . . . . . . . . . . . . . . . . 17 (𝑐 = 0 → (𝑐 ≠ 4 ↔ 0 ≠ 4))
396394, 395mpbiri 258 . . . . . . . . . . . . . . . 16 (𝑐 = 0 → 𝑐 ≠ 4)
397396adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑐 ≠ 4)
398397neneqd 2930 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑐 = 4)
399398olcd 874 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
400392, 399jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
401361orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
402263necon2i 2959 . . . . . . . . . . . . . . . 16 (𝑏 = 2 → 𝑏 ≠ 5)
403402adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑏 ≠ 5)
404403neneqd 2930 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑏 = 5)
405404orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
406401, 405jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
407388, 400, 4063jca 1128 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 0) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
408385, 407jca 511 . . . . . . . . . 10 ((𝑏 = 2 ∧ 𝑐 = 0) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
409362, 366, 408jca31 514 . . . . . . . . 9 ((𝑏 = 2 ∧ 𝑐 = 0) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
410409olcd 874 . . . . . . . 8 ((𝑏 = 2 ∧ 𝑐 = 0) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
41134necon2i 2959 . . . . . . . . . . . . 13 (𝑐 = 2 → 𝑐 ≠ 3)
412411adantl 481 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑐 ≠ 3)
413412neneqd 2930 . . . . . . . . . . 11 ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑐 = 3)
414413olcd 874 . . . . . . . . . 10 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
415 neeq1 2987 . . . . . . . . . . . . . 14 (𝑐 = 2 → (𝑐 ≠ 0 ↔ 2 ≠ 0))
416357, 415mpbiri 258 . . . . . . . . . . . . 13 (𝑐 = 2 → 𝑐 ≠ 0)
417416adantl 481 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑐 ≠ 0)
418417neneqd 2930 . . . . . . . . . . 11 ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑐 = 0)
419418olcd 874 . . . . . . . . . 10 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
420160necon2i 2959 . . . . . . . . . . . . . . . 16 (𝑐 = 2 → 𝑐 ≠ 1)
421420adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑐 ≠ 1)
422421neneqd 2930 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑐 = 1)
423422olcd 874 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
424418olcd 874 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
425423, 424jca 511 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
42617necon2i 2959 . . . . . . . . . . . . . . . 16 (𝑏 = 0 → 𝑏 ≠ 1)
427426adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑏 ≠ 1)
428427neneqd 2930 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑏 = 1)
429428orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
430359necon2i 2959 . . . . . . . . . . . . . . . 16 (𝑏 = 0 → 𝑏 ≠ 2)
431430adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑏 ≠ 2)
432431neneqd 2930 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑏 = 2)
433432orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
434429, 433jca 511 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
435413olcd 874 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
436136necon2i 2959 . . . . . . . . . . . . . . . 16 (𝑏 = 0 → 𝑏 ≠ 3)
437436adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑏 ≠ 3)
438437neneqd 2930 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑏 = 3)
439438orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
440435, 439jca 511 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
441425, 434, 4403jca 1128 . . . . . . . . . . 11 ((𝑏 = 0 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
442438orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
443413olcd 874 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
444442, 443jca 511 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
445 neeq1 2987 . . . . . . . . . . . . . . . . 17 (𝑏 = 0 → (𝑏 ≠ 4 ↔ 0 ≠ 4))
446394, 445mpbiri 258 . . . . . . . . . . . . . . . 16 (𝑏 = 0 → 𝑏 ≠ 4)
447446adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑏 ≠ 4)
448447neneqd 2930 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑏 = 4)
449448orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
450252necon2i 2959 . . . . . . . . . . . . . . . 16 (𝑏 = 0 → 𝑏 ≠ 5)
451450adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑏 ≠ 5)
452451neneqd 2930 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑏 = 5)
453452orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
454449, 453jca 511 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
455105necon2i 2959 . . . . . . . . . . . . . . . 16 (𝑐 = 2 → 𝑐 ≠ 5)
456455adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑐 ≠ 5)
457456neneqd 2930 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑐 = 5)
458457olcd 874 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
459418olcd 874 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
460458, 459jca 511 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
461444, 454, 4603jca 1128 . . . . . . . . . . 11 ((𝑏 = 0 ∧ 𝑐 = 2) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
462441, 461jca 511 . . . . . . . . . 10 ((𝑏 = 0 ∧ 𝑐 = 2) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
463414, 419, 462jca31 514 . . . . . . . . 9 ((𝑏 = 0 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
464463olcd 874 . . . . . . . 8 ((𝑏 = 0 ∧ 𝑐 = 2) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
465359adantr 480 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑏 ≠ 0)
466465neneqd 2930 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑏 = 0)
467466orcd 873 . . . . . . . . . 10 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
468416adantl 481 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑐 ≠ 0)
469468neneqd 2930 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑐 = 0)
470469olcd 874 . . . . . . . . . 10 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
471466orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
472469olcd 874 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
473471, 472jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
474368adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑏 ≠ 1)
475474neneqd 2930 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑏 = 1)
476475orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
477420adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑐 ≠ 1)
478477neneqd 2930 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑐 = 1)
479478olcd 874 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
480476, 479jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
481411adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑐 ≠ 3)
482481neneqd 2930 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑐 = 3)
483482olcd 874 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
484363adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑏 ≠ 3)
485484neneqd 2930 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑏 = 3)
486485orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
487483, 486jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
488473, 480, 4873jca 1128 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
489485orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
490 2lt4 12316 . . . . . . . . . . . . . . . . . 18 2 < 4
49130, 490ltneii 11247 . . . . . . . . . . . . . . . . 17 2 ≠ 4
492 neeq1 2987 . . . . . . . . . . . . . . . . 17 (𝑏 = 2 → (𝑏 ≠ 4 ↔ 2 ≠ 4))
493491, 492mpbiri 258 . . . . . . . . . . . . . . . 16 (𝑏 = 2 → 𝑏 ≠ 4)
494493adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑏 ≠ 4)
495494neneqd 2930 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑏 = 4)
496495orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
497489, 496jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
498495orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
499402adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑏 ≠ 5)
500499neneqd 2930 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑏 = 5)
501500orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
502498, 501jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
503466orcd 873 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
504469olcd 874 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
505503, 504jca 511 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
506497, 502, 5053jca 1128 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 2) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
507488, 506jca 511 . . . . . . . . . 10 ((𝑏 = 2 ∧ 𝑐 = 2) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
508467, 470, 507jca31 514 . . . . . . . . 9 ((𝑏 = 2 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
509508olcd 874 . . . . . . . 8 ((𝑏 = 2 ∧ 𝑐 = 2) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
510356, 410, 464, 509ccase 1037 . . . . . . 7 (((𝑏 = 0 ∨ 𝑏 = 2) ∧ (𝑐 = 0 ∨ 𝑐 = 2)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
511351, 354, 510syl2anb 598 . . . . . 6 ((𝑏 ∈ (𝐺 NeighbVtx 1) ∧ 𝑐 ∈ (𝐺 NeighbVtx 1)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
512511rgen2 3169 . . . . 5 𝑏 ∈ (𝐺 NeighbVtx 1)∀𝑐 ∈ (𝐺 NeighbVtx 1)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
5131, 2, 3usgrexmpl2nb2 48008 . . . . . . . . 9 (𝐺 NeighbVtx 2) = {1, 3}
514513eleq2i 2820 . . . . . . . 8 (𝑏 ∈ (𝐺 NeighbVtx 2) ↔ 𝑏 ∈ {1, 3})
5156elpr 4604 . . . . . . . 8 (𝑏 ∈ {1, 3} ↔ (𝑏 = 1 ∨ 𝑏 = 3))
516514, 515bitri 275 . . . . . . 7 (𝑏 ∈ (𝐺 NeighbVtx 2) ↔ (𝑏 = 1 ∨ 𝑏 = 3))
517513eleq2i 2820 . . . . . . . 8 (𝑐 ∈ (𝐺 NeighbVtx 2) ↔ 𝑐 ∈ {1, 3})
51810elpr 4604 . . . . . . . 8 (𝑐 ∈ {1, 3} ↔ (𝑐 = 1 ∨ 𝑐 = 3))
519517, 518bitri 275 . . . . . . 7 (𝑐 ∈ (𝐺 NeighbVtx 2) ↔ (𝑐 = 1 ∨ 𝑐 = 3))
52014, 189, 85, 191ccase 1037 . . . . . . 7 (((𝑏 = 1 ∨ 𝑏 = 3) ∧ (𝑐 = 1 ∨ 𝑐 = 3)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
521516, 519, 520syl2anb 598 . . . . . 6 ((𝑏 ∈ (𝐺 NeighbVtx 2) ∧ 𝑐 ∈ (𝐺 NeighbVtx 2)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
522521rgen2 3169 . . . . 5 𝑏 ∈ (𝐺 NeighbVtx 2)∀𝑐 ∈ (𝐺 NeighbVtx 2)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
523 c0ex 11128 . . . . . 6 0 ∈ V
524 1ex 11130 . . . . . 6 1 ∈ V
525 2ex 12223 . . . . . 6 2 ∈ V
526 oveq2 7361 . . . . . . 7 (𝑎 = 0 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 0))
527526raleqdv 3290 . . . . . . 7 (𝑎 = 0 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 0)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
528526, 527raleqbidv 3310 . . . . . 6 (𝑎 = 0 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 0)∀𝑐 ∈ (𝐺 NeighbVtx 0)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
529 oveq2 7361 . . . . . . 7 (𝑎 = 1 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 1))
530529raleqdv 3290 . . . . . . 7 (𝑎 = 1 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 1)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
531529, 530raleqbidv 3310 . . . . . 6 (𝑎 = 1 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 1)∀𝑐 ∈ (𝐺 NeighbVtx 1)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
532 oveq2 7361 . . . . . . 7 (𝑎 = 2 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 2))
533532raleqdv 3290 . . . . . . 7 (𝑎 = 2 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 2)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
534532, 533raleqbidv 3310 . . . . . 6 (𝑎 = 2 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 2)∀𝑐 ∈ (𝐺 NeighbVtx 2)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
535523, 524, 525, 528, 531, 534raltp 4659 . . . . 5 (∀𝑎 ∈ {0, 1, 2}∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ (∀𝑏 ∈ (𝐺 NeighbVtx 0)∀𝑐 ∈ (𝐺 NeighbVtx 0)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ∧ ∀𝑏 ∈ (𝐺 NeighbVtx 1)∀𝑐 ∈ (𝐺 NeighbVtx 1)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ∧ ∀𝑏 ∈ (𝐺 NeighbVtx 2)∀𝑐 ∈ (𝐺 NeighbVtx 2)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
536347, 512, 522, 535mpbir3an 1342 . . . 4 𝑎 ∈ {0, 1, 2}∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
5371, 2, 3usgrexmpl2nb3 48009 . . . . . . . . 9 (𝐺 NeighbVtx 3) = {0, 2, 4}
538537eleq2i 2820 . . . . . . . 8 (𝑏 ∈ (𝐺 NeighbVtx 3) ↔ 𝑏 ∈ {0, 2, 4})
5396eltp 4643 . . . . . . . 8 (𝑏 ∈ {0, 2, 4} ↔ (𝑏 = 0 ∨ 𝑏 = 2 ∨ 𝑏 = 4))
540538, 539bitri 275 . . . . . . 7 (𝑏 ∈ (𝐺 NeighbVtx 3) ↔ (𝑏 = 0 ∨ 𝑏 = 2 ∨ 𝑏 = 4))
541537eleq2i 2820 . . . . . . . 8 (𝑐 ∈ (𝐺 NeighbVtx 3) ↔ 𝑐 ∈ {0, 2, 4})
54210eltp 4643 . . . . . . . 8 (𝑐 ∈ {0, 2, 4} ↔ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4))
543541, 542bitri 275 . . . . . . 7 (𝑐 ∈ (𝐺 NeighbVtx 3) ↔ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4))
544330necon2i 2959 . . . . . . . . . . . . . 14 (𝑐 = 4 → 𝑐 ≠ 3)
545544adantl 481 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑐 ≠ 3)
546545neneqd 2930 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑐 = 3)
547546olcd 874 . . . . . . . . . . 11 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
548436adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑏 ≠ 3)
549548neneqd 2930 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑏 = 3)
550549orcd 873 . . . . . . . . . . 11 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
551167necon2i 2959 . . . . . . . . . . . . . . . . 17 (𝑐 = 4 → 𝑐 ≠ 1)
552551adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑐 ≠ 1)
553552neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑐 = 1)
554553olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
555426adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑏 ≠ 1)
556555neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑏 = 1)
557556orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
558554, 557jca 511 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
559556orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
560430adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑏 ≠ 2)
561560neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑏 = 2)
562561orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
563559, 562jca 511 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
564546olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
565549orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
566564, 565jca 511 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
567558, 563, 5663jca 1128 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 4) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
568549orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
569546olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
570568, 569jca 511 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
571446adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑏 ≠ 4)
572571neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑏 = 4)
573572orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
574450adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑏 ≠ 5)
575574neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑏 = 5)
576575orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
577573, 576jca 511 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
578221necon2i 2959 . . . . . . . . . . . . . . . . 17 (𝑐 = 4 → 𝑐 ≠ 5)
579578adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑐 ≠ 5)
580579neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑐 = 5)
581580olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
582396necon2i 2959 . . . . . . . . . . . . . . . . 17 (𝑐 = 4 → 𝑐 ≠ 0)
583582adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑐 ≠ 0)
584583neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑐 = 0)
585584olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
586581, 585jca 511 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
587570, 577, 5863jca 1128 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑐 = 4) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
588567, 587jca 511 . . . . . . . . . . 11 ((𝑏 = 0 ∧ 𝑐 = 4) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
589547, 550, 588jca31 514 . . . . . . . . . 10 ((𝑏 = 0 ∧ 𝑐 = 4) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
590589olcd 874 . . . . . . . . 9 ((𝑏 = 0 ∧ 𝑐 = 4) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
591356, 464, 5903jaodan 1433 . . . . . . . 8 ((𝑏 = 0 ∧ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
592359adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑏 ≠ 0)
593592neneqd 2930 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑏 = 0)
594593orcd 873 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
595582adantl 481 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑐 ≠ 0)
596595neneqd 2930 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑐 = 0)
597596olcd 874 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
598593orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
599596olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
600598, 599jca 511 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
601368adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑏 ≠ 1)
602601neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑏 = 1)
603602orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
604551adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑐 ≠ 1)
605604neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑐 = 1)
606605olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
607603, 606jca 511 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
608544adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑐 ≠ 3)
609608neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑐 = 3)
610609olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
611363adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑏 ≠ 3)
612611neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑏 = 3)
613612orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
614610, 613jca 511 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
615600, 607, 6143jca 1128 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 4) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
616612orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
617609olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
618616, 617jca 511 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
619493adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑏 ≠ 4)
620619neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑏 = 4)
621620orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
622402adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑏 ≠ 5)
623622neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑏 = 5)
624623orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
625621, 624jca 511 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
626593orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
627596olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
628626, 627jca 511 . . . . . . . . . . . . 13 ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
629618, 625, 6283jca 1128 . . . . . . . . . . . 12 ((𝑏 = 2 ∧ 𝑐 = 4) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
630615, 629jca 511 . . . . . . . . . . 11 ((𝑏 = 2 ∧ 𝑐 = 4) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
631594, 597, 630jca31 514 . . . . . . . . . 10 ((𝑏 = 2 ∧ 𝑐 = 4) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
632631olcd 874 . . . . . . . . 9 ((𝑏 = 2 ∧ 𝑐 = 4) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
633410, 509, 6323jaodan 1433 . . . . . . . 8 ((𝑏 = 2 ∧ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
634446necon2i 2959 . . . . . . . . . . . . . 14 (𝑏 = 4 → 𝑏 ≠ 0)
635634adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑏 ≠ 0)
636635neneqd 2930 . . . . . . . . . . . 12 ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑏 = 0)
637636orcd 873 . . . . . . . . . . 11 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
638229necon2i 2959 . . . . . . . . . . . . . 14 (𝑏 = 4 → 𝑏 ≠ 3)
639638adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑏 ≠ 3)
640639neneqd 2930 . . . . . . . . . . . 12 ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑏 = 3)
641640orcd 873 . . . . . . . . . . 11 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
642636orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
64365necon2i 2959 . . . . . . . . . . . . . . . . 17 (𝑏 = 4 → 𝑏 ≠ 1)
644643adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑏 ≠ 1)
645644neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑏 = 1)
646645orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
647642, 646jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
648416necon2i 2959 . . . . . . . . . . . . . . . . 17 (𝑐 = 0 → 𝑐 ≠ 2)
649648adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑐 ≠ 2)
650649neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑐 = 2)
651650olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
652374adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑐 ≠ 1)
653652neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑐 = 1)
654653olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
655651, 654jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
656379adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑐 ≠ 3)
657656neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑐 = 3)
658657olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
659640orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
660658, 659jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
661647, 655, 6603jca 1128 . . . . . . . . . . . 12 ((𝑏 = 4 ∧ 𝑐 = 0) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
662640orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
663657olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
664662, 663jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
665389adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑐 ≠ 5)
666665neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑐 = 5)
667666olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
668396adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑐 ≠ 4)
669668neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑐 = 4)
670669olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
671667, 670jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
672636orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
673323necon2i 2959 . . . . . . . . . . . . . . . . 17 (𝑏 = 4 → 𝑏 ≠ 5)
674673adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑏 ≠ 5)
675674neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑏 = 5)
676675orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
677672, 676jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
678664, 671, 6773jca 1128 . . . . . . . . . . . 12 ((𝑏 = 4 ∧ 𝑐 = 0) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
679661, 678jca 511 . . . . . . . . . . 11 ((𝑏 = 4 ∧ 𝑐 = 0) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
680637, 641, 679jca31 514 . . . . . . . . . 10 ((𝑏 = 4 ∧ 𝑐 = 0) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
681680olcd 874 . . . . . . . . 9 ((𝑏 = 4 ∧ 𝑐 = 0) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
682634adantr 480 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑏 ≠ 0)
683682neneqd 2930 . . . . . . . . . . . 12 ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑏 = 0)
684683orcd 873 . . . . . . . . . . 11 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
685416adantl 481 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑐 ≠ 0)
686685neneqd 2930 . . . . . . . . . . . 12 ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑐 = 0)
687686olcd 874 . . . . . . . . . . 11 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
688683orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
689686olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
690688, 689jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
691643adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑏 ≠ 1)
692691neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑏 = 1)
693692orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
694420adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑐 ≠ 1)
695694neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑐 = 1)
696695olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
697693, 696jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
698493necon2i 2959 . . . . . . . . . . . . . . . . 17 (𝑏 = 4 → 𝑏 ≠ 2)
699698adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑏 ≠ 2)
700699neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑏 = 2)
701700orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
702638adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑏 ≠ 3)
703702neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑏 = 3)
704703orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
705701, 704jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
706690, 697, 7053jca 1128 . . . . . . . . . . . 12 ((𝑏 = 4 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
707703orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
708411adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑐 ≠ 3)
709708neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑐 = 3)
710709olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
711707, 710jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
712455adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑐 ≠ 5)
713712neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑐 = 5)
714713olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
715 neeq1 2987 . . . . . . . . . . . . . . . . . 18 (𝑐 = 2 → (𝑐 ≠ 4 ↔ 2 ≠ 4))
716491, 715mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑐 = 2 → 𝑐 ≠ 4)
717716adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑐 ≠ 4)
718717neneqd 2930 . . . . . . . . . . . . . . 15 ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑐 = 4)
719718olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
720714, 719jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
721683orcd 873 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
722686olcd 874 . . . . . . . . . . . . . 14 ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
723721, 722jca 511 . . . . . . . . . . . . 13 ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
724711, 720, 7233jca 1128 . . . . . . . . . . . 12 ((𝑏 = 4 ∧ 𝑐 = 2) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
725706, 724jca 511 . . . . . . . . . . 11 ((𝑏 = 4 ∧ 𝑐 = 2) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
726684, 687, 725jca31 514 . . . . . . . . . 10 ((𝑏 = 4 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
727726olcd 874 . . . . . . . . 9 ((𝑏 = 4 ∧ 𝑐 = 2) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
728 eqtr3 2751 . . . . . . . . . 10 ((𝑏 = 4 ∧ 𝑐 = 4) → 𝑏 = 𝑐)
729728orcd 873 . . . . . . . . 9 ((𝑏 = 4 ∧ 𝑐 = 4) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
730681, 727, 7293jaodan 1433 . . . . . . . 8 ((𝑏 = 4 ∧ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
731591, 633, 7303jaoian 1432 . . . . . . 7 (((𝑏 = 0 ∨ 𝑏 = 2 ∨ 𝑏 = 4) ∧ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
732540, 543, 731syl2anb 598 . . . . . 6 ((𝑏 ∈ (𝐺 NeighbVtx 3) ∧ 𝑐 ∈ (𝐺 NeighbVtx 3)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
733732rgen2 3169 . . . . 5 𝑏 ∈ (𝐺 NeighbVtx 3)∀𝑐 ∈ (𝐺 NeighbVtx 3)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
7341, 2, 3usgrexmpl2nb4 48010 . . . . . . . . 9 (𝐺 NeighbVtx 4) = {3, 5}
735734eleq2i 2820 . . . . . . . 8 (𝑏 ∈ (𝐺 NeighbVtx 4) ↔ 𝑏 ∈ {3, 5})
7366elpr 4604 . . . . . . . 8 (𝑏 ∈ {3, 5} ↔ (𝑏 = 3 ∨ 𝑏 = 5))
737735, 736bitri 275 . . . . . . 7 (𝑏 ∈ (𝐺 NeighbVtx 4) ↔ (𝑏 = 3 ∨ 𝑏 = 5))
738734eleq2i 2820 . . . . . . . 8 (𝑐 ∈ (𝐺 NeighbVtx 4) ↔ 𝑐 ∈ {3, 5})
73910elpr 4604 . . . . . . . 8 (𝑐 ∈ {3, 5} ↔ (𝑐 = 3 ∨ 𝑐 = 5))
740738, 739bitri 275 . . . . . . 7 (𝑐 ∈ (𝐺 NeighbVtx 4) ↔ (𝑐 = 3 ∨ 𝑐 = 5))
741191, 341, 243, 343ccase 1037 . . . . . . 7 (((𝑏 = 3 ∨ 𝑏 = 5) ∧ (𝑐 = 3 ∨ 𝑐 = 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
742737, 740, 741syl2anb 598 . . . . . 6 ((𝑏 ∈ (𝐺 NeighbVtx 4) ∧ 𝑐 ∈ (𝐺 NeighbVtx 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
743742rgen2 3169 . . . . 5 𝑏 ∈ (𝐺 NeighbVtx 4)∀𝑐 ∈ (𝐺 NeighbVtx 4)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
7441, 2, 3usgrexmpl2nb5 48011 . . . . . . . . 9 (𝐺 NeighbVtx 5) = {0, 4}
745744eleq2i 2820 . . . . . . . 8 (𝑏 ∈ (𝐺 NeighbVtx 5) ↔ 𝑏 ∈ {0, 4})
7466elpr 4604 . . . . . . . 8 (𝑏 ∈ {0, 4} ↔ (𝑏 = 0 ∨ 𝑏 = 4))
747745, 746bitri 275 . . . . . . 7 (𝑏 ∈ (𝐺 NeighbVtx 5) ↔ (𝑏 = 0 ∨ 𝑏 = 4))
748744eleq2i 2820 . . . . . . . 8 (𝑐 ∈ (𝐺 NeighbVtx 5) ↔ 𝑐 ∈ {0, 4})
74910elpr 4604 . . . . . . . 8 (𝑐 ∈ {0, 4} ↔ (𝑐 = 0 ∨ 𝑐 = 4))
750748, 749bitri 275 . . . . . . 7 (𝑐 ∈ (𝐺 NeighbVtx 5) ↔ (𝑐 = 0 ∨ 𝑐 = 4))
751356, 681, 590, 729ccase 1037 . . . . . . 7 (((𝑏 = 0 ∨ 𝑏 = 4) ∧ (𝑐 = 0 ∨ 𝑐 = 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
752747, 750, 751syl2anb 598 . . . . . 6 ((𝑏 ∈ (𝐺 NeighbVtx 5) ∧ 𝑐 ∈ (𝐺 NeighbVtx 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
753752rgen2 3169 . . . . 5 𝑏 ∈ (𝐺 NeighbVtx 5)∀𝑐 ∈ (𝐺 NeighbVtx 5)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
754 3ex 12228 . . . . . 6 3 ∈ V
755 4nn0 12421 . . . . . . 7 4 ∈ ℕ0
756755elexi 3461 . . . . . 6 4 ∈ V
757 5nn0 12422 . . . . . . 7 5 ∈ ℕ0
758757elexi 3461 . . . . . 6 5 ∈ V
759 oveq2 7361 . . . . . . 7 (𝑎 = 3 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 3))
760759raleqdv 3290 . . . . . . 7 (𝑎 = 3 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 3)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
761759, 760raleqbidv 3310 . . . . . 6 (𝑎 = 3 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 3)∀𝑐 ∈ (𝐺 NeighbVtx 3)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
762 oveq2 7361 . . . . . . 7 (𝑎 = 4 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 4))
763762raleqdv 3290 . . . . . . 7 (𝑎 = 4 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 4)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
764762, 763raleqbidv 3310 . . . . . 6 (𝑎 = 4 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 4)∀𝑐 ∈ (𝐺 NeighbVtx 4)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
765 oveq2 7361 . . . . . . 7 (𝑎 = 5 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 5))
766765raleqdv 3290 . . . . . . 7 (𝑎 = 5 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 5)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
767765, 766raleqbidv 3310 . . . . . 6 (𝑎 = 5 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 5)∀𝑐 ∈ (𝐺 NeighbVtx 5)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
768754, 756, 758, 761, 764, 767raltp 4659 . . . . 5 (∀𝑎 ∈ {3, 4, 5}∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ (∀𝑏 ∈ (𝐺 NeighbVtx 3)∀𝑐 ∈ (𝐺 NeighbVtx 3)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ∧ ∀𝑏 ∈ (𝐺 NeighbVtx 4)∀𝑐 ∈ (𝐺 NeighbVtx 4)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ∧ ∀𝑏 ∈ (𝐺 NeighbVtx 5)∀𝑐 ∈ (𝐺 NeighbVtx 5)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
769733, 743, 753, 768mpbir3an 1342 . . . 4 𝑎 ∈ {3, 4, 5}∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
770 ralunb 4150 . . . 4 (∀𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ (∀𝑎 ∈ {0, 1, 2}∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ∧ ∀𝑎 ∈ {3, 4, 5}∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))))
771536, 769, 770mpbir2an 711 . . 3 𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
772 ianor 983 . . . . . 6 (¬ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))) ↔ (¬ 𝑏𝑐 ∨ ¬ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))))
773 nne 2929 . . . . . . 7 𝑏𝑐𝑏 = 𝑐)
774 ioran 985 . . . . . . . . . 10 (¬ (((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))) ↔ (¬ ((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∧ ¬ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))))
775 ioran 985 . . . . . . . . . . . 12 (¬ ((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ↔ (¬ (𝑏 = 0 ∧ 𝑐 = 3) ∧ ¬ (𝑏 = 3 ∧ 𝑐 = 0)))
776 ianor 983 . . . . . . . . . . . . 13 (¬ (𝑏 = 0 ∧ 𝑐 = 3) ↔ (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3))
777 ianor 983 . . . . . . . . . . . . 13 (¬ (𝑏 = 3 ∧ 𝑐 = 0) ↔ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))
778776, 777anbi12i 628 . . . . . . . . . . . 12 ((¬ (𝑏 = 0 ∧ 𝑐 = 3) ∧ ¬ (𝑏 = 3 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)))
779775, 778bitri 275 . . . . . . . . . . 11 (¬ ((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)))
780 ioran 985 . . . . . . . . . . . 12 (¬ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))) ↔ (¬ (((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∧ ¬ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))))
781 3ioran 1105 . . . . . . . . . . . . . 14 (¬ (((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ↔ (¬ ((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∧ ¬ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∧ ¬ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))))
782 ioran 985 . . . . . . . . . . . . . . . 16 (¬ ((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ↔ (¬ (𝑏 = 0 ∧ 𝑐 = 1) ∧ ¬ (𝑏 = 1 ∧ 𝑐 = 0)))
783 ianor 983 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 0 ∧ 𝑐 = 1) ↔ (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1))
784 ianor 983 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 1 ∧ 𝑐 = 0) ↔ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))
785783, 784anbi12i 628 . . . . . . . . . . . . . . . 16 ((¬ (𝑏 = 0 ∧ 𝑐 = 1) ∧ ¬ (𝑏 = 1 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
786782, 785bitri 275 . . . . . . . . . . . . . . 15 (¬ ((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)))
787 ioran 985 . . . . . . . . . . . . . . . 16 (¬ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ↔ (¬ (𝑏 = 1 ∧ 𝑐 = 2) ∧ ¬ (𝑏 = 2 ∧ 𝑐 = 1)))
788 ianor 983 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 1 ∧ 𝑐 = 2) ↔ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2))
789 ianor 983 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 2 ∧ 𝑐 = 1) ↔ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))
790788, 789anbi12i 628 . . . . . . . . . . . . . . . 16 ((¬ (𝑏 = 1 ∧ 𝑐 = 2) ∧ ¬ (𝑏 = 2 ∧ 𝑐 = 1)) ↔ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
791787, 790bitri 275 . . . . . . . . . . . . . . 15 (¬ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ↔ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)))
792 ioran 985 . . . . . . . . . . . . . . . 16 (¬ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2)) ↔ (¬ (𝑏 = 2 ∧ 𝑐 = 3) ∧ ¬ (𝑏 = 3 ∧ 𝑐 = 2)))
793 ianor 983 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 2 ∧ 𝑐 = 3) ↔ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3))
794 ianor 983 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 3 ∧ 𝑐 = 2) ↔ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))
795793, 794anbi12i 628 . . . . . . . . . . . . . . . 16 ((¬ (𝑏 = 2 ∧ 𝑐 = 3) ∧ ¬ (𝑏 = 3 ∧ 𝑐 = 2)) ↔ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
796792, 795bitri 275 . . . . . . . . . . . . . . 15 (¬ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2)) ↔ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))
797786, 791, 7963anbi123i 1155 . . . . . . . . . . . . . 14 ((¬ ((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∧ ¬ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∧ ¬ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
798781, 797bitri 275 . . . . . . . . . . . . 13 (¬ (((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))))
799 3ioran 1105 . . . . . . . . . . . . . 14 (¬ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))) ↔ (¬ ((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∧ ¬ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∧ ¬ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))
800 ioran 985 . . . . . . . . . . . . . . . 16 (¬ ((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ↔ (¬ (𝑏 = 3 ∧ 𝑐 = 4) ∧ ¬ (𝑏 = 4 ∧ 𝑐 = 3)))
801 ianor 983 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 3 ∧ 𝑐 = 4) ↔ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4))
802 ianor 983 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 4 ∧ 𝑐 = 3) ↔ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))
803801, 802anbi12i 628 . . . . . . . . . . . . . . . 16 ((¬ (𝑏 = 3 ∧ 𝑐 = 4) ∧ ¬ (𝑏 = 4 ∧ 𝑐 = 3)) ↔ ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
804800, 803bitri 275 . . . . . . . . . . . . . . 15 (¬ ((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ↔ ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)))
805 ioran 985 . . . . . . . . . . . . . . . 16 (¬ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ↔ (¬ (𝑏 = 4 ∧ 𝑐 = 5) ∧ ¬ (𝑏 = 5 ∧ 𝑐 = 4)))
806 ianor 983 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 4 ∧ 𝑐 = 5) ↔ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5))
807 ianor 983 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 5 ∧ 𝑐 = 4) ↔ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))
808806, 807anbi12i 628 . . . . . . . . . . . . . . . 16 ((¬ (𝑏 = 4 ∧ 𝑐 = 5) ∧ ¬ (𝑏 = 5 ∧ 𝑐 = 4)) ↔ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
809805, 808bitri 275 . . . . . . . . . . . . . . 15 (¬ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ↔ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)))
810 ioran 985 . . . . . . . . . . . . . . . 16 (¬ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)) ↔ (¬ (𝑏 = 0 ∧ 𝑐 = 5) ∧ ¬ (𝑏 = 5 ∧ 𝑐 = 0)))
811 ianor 983 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 0 ∧ 𝑐 = 5) ↔ (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5))
812 ianor 983 . . . . . . . . . . . . . . . . 17 (¬ (𝑏 = 5 ∧ 𝑐 = 0) ↔ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))
813811, 812anbi12i 628 . . . . . . . . . . . . . . . 16 ((¬ (𝑏 = 0 ∧ 𝑐 = 5) ∧ ¬ (𝑏 = 5 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
814810, 813bitri 275 . . . . . . . . . . . . . . 15 (¬ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))
815804, 809, 8143anbi123i 1155 . . . . . . . . . . . . . 14 ((¬ ((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∧ ¬ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∧ ¬ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))) ↔ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
816799, 815bitri 275 . . . . . . . . . . . . 13 (¬ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))) ↔ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))
817798, 816anbi12i 628 . . . . . . . . . . . 12 ((¬ (((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∧ ¬ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))) ↔ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
818780, 817bitri 275 . . . . . . . . . . 11 (¬ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))) ↔ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))
819779, 818anbi12i 628 . . . . . . . . . 10 ((¬ ((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∧ ¬ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
820774, 819bitri 275 . . . . . . . . 9 (¬ (((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
8216, 10, 523, 524preq12b 4804 . . . . . . . . . . . 12 ({𝑏, 𝑐} = {0, 1} ↔ ((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)))
8226, 10, 524, 525preq12b 4804 . . . . . . . . . . . 12 ({𝑏, 𝑐} = {1, 2} ↔ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)))
8236, 10, 525, 754preq12b 4804 . . . . . . . . . . . 12 ({𝑏, 𝑐} = {2, 3} ↔ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2)))
824821, 822, 8233orbi123i 1156 . . . . . . . . . . 11 (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ↔ (((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))))
8256, 10, 754, 756preq12b 4804 . . . . . . . . . . . 12 ({𝑏, 𝑐} = {3, 4} ↔ ((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)))
8266, 10, 756, 758preq12b 4804 . . . . . . . . . . . 12 ({𝑏, 𝑐} = {4, 5} ↔ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)))
8276, 10, 523, 758preq12b 4804 . . . . . . . . . . . 12 ({𝑏, 𝑐} = {0, 5} ↔ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))
828825, 826, 8273orbi123i 1156 . . . . . . . . . . 11 (({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}) ↔ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))
829824, 828orbi12i 914 . . . . . . . . . 10 ((({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5})) ↔ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))))
830829orbi2i 912 . . . . . . . . 9 ((((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}))) ↔ (((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))))
831820, 830xchnxbir 333 . . . . . . . 8 (¬ (((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}))) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
832 elun 4106 . . . . . . . . 9 ({𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({𝑏, 𝑐} ∈ {{0, 3}} ∨ {𝑏, 𝑐} ∈ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))
833 prex 5379 . . . . . . . . . . . 12 {𝑏, 𝑐} ∈ V
834833elsn 4594 . . . . . . . . . . 11 ({𝑏, 𝑐} ∈ {{0, 3}} ↔ {𝑏, 𝑐} = {0, 3})
8356, 10, 523, 754preq12b 4804 . . . . . . . . . . 11 ({𝑏, 𝑐} = {0, 3} ↔ ((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)))
836834, 835bitri 275 . . . . . . . . . 10 ({𝑏, 𝑐} ∈ {{0, 3}} ↔ ((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)))
837 elun 4106 . . . . . . . . . . 11 ({𝑏, 𝑐} ∈ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}) ↔ ({𝑏, 𝑐} ∈ {{0, 1}, {1, 2}, {2, 3}} ∨ {𝑏, 𝑐} ∈ {{3, 4}, {4, 5}, {0, 5}}))
838833eltp 4643 . . . . . . . . . . . 12 ({𝑏, 𝑐} ∈ {{0, 1}, {1, 2}, {2, 3}} ↔ ({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}))
839833eltp 4643 . . . . . . . . . . . 12 ({𝑏, 𝑐} ∈ {{3, 4}, {4, 5}, {0, 5}} ↔ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}))
840838, 839orbi12i 914 . . . . . . . . . . 11 (({𝑏, 𝑐} ∈ {{0, 1}, {1, 2}, {2, 3}} ∨ {𝑏, 𝑐} ∈ {{3, 4}, {4, 5}, {0, 5}}) ↔ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5})))
841837, 840bitri 275 . . . . . . . . . 10 ({𝑏, 𝑐} ∈ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}) ↔ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5})))
842836, 841orbi12i 914 . . . . . . . . 9 (({𝑏, 𝑐} ∈ {{0, 3}} ∨ {𝑏, 𝑐} ∈ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ (((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}))))
843832, 842bitri 275 . . . . . . . 8 ({𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ (((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}))))
844831, 843xchnxbir 333 . . . . . . 7 (¬ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))
845773, 844orbi12i 914 . . . . . 6 ((¬ 𝑏𝑐 ∨ ¬ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))) ↔ (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))
846772, 845bitr2i 276 . . . . 5 ((𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ¬ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))))
8478463ralbii 3106 . . . 4 (∀𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎) ¬ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))))
848 ralnex3 3110 . . . 4 (∀𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎) ¬ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))) ↔ ¬ ∃𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))))
849847, 848bitri 275 . . 3 (∀𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ¬ ∃𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))))
850771, 849mpbi 230 . 2 ¬ ∃𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))
8511, 2, 3usgrexmpl2 48002 . . 3 𝐺 ∈ USGraph
8521, 2, 3usgrexmpl2vtx 48003 . . . . 5 (Vtx‘𝐺) = ({0, 1, 2} ∪ {3, 4, 5})
853852eqcomi 2738 . . . 4 ({0, 1, 2} ∪ {3, 4, 5}) = (Vtx‘𝐺)
8541, 2, 3usgrexmpl2edg 48004 . . . . 5 (Edg‘𝐺) = ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))
855854eqcomi 2738 . . . 4 ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) = (Edg‘𝐺)
856 eqid 2729 . . . 4 (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 𝑎)
857853, 855, 856usgrgrtrirex 47933 . . 3 (𝐺 ∈ USGraph → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))))
858851, 857ax-mp 5 . 2 (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ ({0, 1, 2} ∪ {3, 4, 5})∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))))
859850, 858mtbir 323 1 ¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  cun 3903  {csn 4579  {cpr 4581  {ctp 4583  cop 4585  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029  2c2 12201  3c3 12202  4c4 12203  5c5 12204  0cn0 12402  ...cfz 13428  ⟨“cs7 14771  Vtxcvtx 28959  Edgcedg 29010  USGraphcusgr 29112   NeighbVtx cnbgr 29295  GrTrianglescgrtri 47920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-3o 8397  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-concat 14496  df-s1 14521  df-s2 14773  df-s3 14774  df-s4 14775  df-s5 14776  df-s6 14777  df-s7 14778  df-vtx 28961  df-iedg 28962  df-edg 29011  df-uhgr 29021  df-upgr 29045  df-umgr 29046  df-uspgr 29113  df-usgr 29114  df-nbgr 29296  df-grtri 47921
This theorem is referenced by:  usgrexmpl12ngric  48013  usgrexmpl12ngrlic  48014
  Copyright terms: Public domain W3C validator