| Step | Hyp | Ref
| Expression |
| 1 | | usgrexmpl2.v |
. . . . . . . . . 10
⊢ 𝑉 = (0...5) |
| 2 | | usgrexmpl2.e |
. . . . . . . . . 10
⊢ 𝐸 = 〈“{0, 1} {1, 2}
{2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 |
| 3 | | usgrexmpl2.g |
. . . . . . . . . 10
⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| 4 | 1, 2, 3 | usgrexmpl2nb0 47936 |
. . . . . . . . 9
⊢ (𝐺 NeighbVtx 0) = {1, 3,
5} |
| 5 | 4 | eleq2i 2825 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝐺 NeighbVtx 0) ↔ 𝑏 ∈ {1, 3, 5}) |
| 6 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑏 ∈ V |
| 7 | 6 | eltp 4671 |
. . . . . . . 8
⊢ (𝑏 ∈ {1, 3, 5} ↔ (𝑏 = 1 ∨ 𝑏 = 3 ∨ 𝑏 = 5)) |
| 8 | 5, 7 | bitri 275 |
. . . . . . 7
⊢ (𝑏 ∈ (𝐺 NeighbVtx 0) ↔ (𝑏 = 1 ∨ 𝑏 = 3 ∨ 𝑏 = 5)) |
| 9 | 4 | eleq2i 2825 |
. . . . . . . 8
⊢ (𝑐 ∈ (𝐺 NeighbVtx 0) ↔ 𝑐 ∈ {1, 3, 5}) |
| 10 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑐 ∈ V |
| 11 | 10 | eltp 4671 |
. . . . . . . 8
⊢ (𝑐 ∈ {1, 3, 5} ↔ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5)) |
| 12 | 9, 11 | bitri 275 |
. . . . . . 7
⊢ (𝑐 ∈ (𝐺 NeighbVtx 0) ↔ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5)) |
| 13 | | eqtr3 2756 |
. . . . . . . . . 10
⊢ ((𝑏 = 1 ∧ 𝑐 = 1) → 𝑏 = 𝑐) |
| 14 | 13 | orcd 873 |
. . . . . . . . 9
⊢ ((𝑏 = 1 ∧ 𝑐 = 1) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 15 | | ax-1ne0 11207 |
. . . . . . . . . . . . . . 15
⊢ 1 ≠
0 |
| 16 | | neeq1 2993 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 1 → (𝑏 ≠ 0 ↔ 1 ≠ 0)) |
| 17 | 15, 16 | mpbiri 258 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 1 → 𝑏 ≠ 0) |
| 18 | 17 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑏 ≠ 0) |
| 19 | 18 | neneqd 2936 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑏 = 0) |
| 20 | 19 | orcd 873 |
. . . . . . . . . . 11
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
| 21 | | 3ne0 12355 |
. . . . . . . . . . . . . . 15
⊢ 3 ≠
0 |
| 22 | | neeq1 2993 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 3 → (𝑐 ≠ 0 ↔ 3 ≠ 0)) |
| 23 | 21, 22 | mpbiri 258 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 3 → 𝑐 ≠ 0) |
| 24 | 23 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑐 ≠ 0) |
| 25 | 24 | neneqd 2936 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑐 = 0) |
| 26 | 25 | olcd 874 |
. . . . . . . . . . 11
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
| 27 | 19 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
| 28 | 25 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
| 29 | 27, 28 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
| 30 | | 2re 12323 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℝ |
| 31 | | 2lt3 12421 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 <
3 |
| 32 | 30, 31 | gtneii 11356 |
. . . . . . . . . . . . . . . . . 18
⊢ 3 ≠
2 |
| 33 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 3 → (𝑐 ≠ 2 ↔ 3 ≠ 2)) |
| 34 | 32, 33 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 3 → 𝑐 ≠ 2) |
| 35 | 34 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑐 ≠ 2) |
| 36 | 35 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑐 = 2) |
| 37 | 36 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
| 38 | | 1re 11244 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℝ |
| 39 | | 1lt3 12422 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 <
3 |
| 40 | 38, 39 | gtneii 11356 |
. . . . . . . . . . . . . . . . . 18
⊢ 3 ≠
1 |
| 41 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 3 → (𝑐 ≠ 1 ↔ 3 ≠ 1)) |
| 42 | 40, 41 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 3 → 𝑐 ≠ 1) |
| 43 | 42 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑐 ≠ 1) |
| 44 | 43 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑐 = 1) |
| 45 | 44 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
| 46 | 37, 45 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
| 47 | | 1ne2 12457 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ≠
2 |
| 48 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 1 → (𝑏 ≠ 2 ↔ 1 ≠ 2)) |
| 49 | 47, 48 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 1 → 𝑏 ≠ 2) |
| 50 | 49 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑏 ≠ 2) |
| 51 | 50 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑏 = 2) |
| 52 | 51 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
| 53 | 36 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
| 54 | 52, 53 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
| 55 | 29, 46, 54 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
| 56 | 38, 39 | ltneii 11357 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ≠
3 |
| 57 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 1 → (𝑏 ≠ 3 ↔ 1 ≠ 3)) |
| 58 | 56, 57 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 1 → 𝑏 ≠ 3) |
| 59 | 58 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑏 ≠ 3) |
| 60 | 59 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑏 = 3) |
| 61 | 60 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
| 62 | | 1lt4 12425 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 <
4 |
| 63 | 38, 62 | ltneii 11357 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ≠
4 |
| 64 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 1 → (𝑏 ≠ 4 ↔ 1 ≠ 4)) |
| 65 | 63, 64 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 1 → 𝑏 ≠ 4) |
| 66 | 65 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑏 ≠ 4) |
| 67 | 66 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑏 = 4) |
| 68 | 67 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
| 69 | 61, 68 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
| 70 | 67 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
| 71 | | 1lt5 12429 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 <
5 |
| 72 | 38, 71 | ltneii 11357 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ≠
5 |
| 73 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 1 → (𝑏 ≠ 5 ↔ 1 ≠ 5)) |
| 74 | 72, 73 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 1 → 𝑏 ≠ 5) |
| 75 | 74 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑏 ≠ 5) |
| 76 | 75 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑏 = 5) |
| 77 | 76 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
| 78 | 70, 77 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
| 79 | 19 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
| 80 | 25 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
| 81 | 79, 80 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
| 82 | 69, 78, 81 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
| 83 | 55, 82 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
| 84 | 20, 26, 83 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 85 | 84 | olcd 874 |
. . . . . . . . 9
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 86 | 17 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑏 ≠ 0) |
| 87 | 86 | neneqd 2936 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑏 = 0) |
| 88 | 87 | orcd 873 |
. . . . . . . . . . 11
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
| 89 | 58 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑏 ≠ 3) |
| 90 | 89 | neneqd 2936 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑏 = 3) |
| 91 | 90 | orcd 873 |
. . . . . . . . . . 11
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
| 92 | 87 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
| 93 | | 0re 11246 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℝ |
| 94 | | 5pos 12358 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 <
5 |
| 95 | 93, 94 | gtneii 11356 |
. . . . . . . . . . . . . . . . . 18
⊢ 5 ≠
0 |
| 96 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 5 → (𝑐 ≠ 0 ↔ 5 ≠ 0)) |
| 97 | 95, 96 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 5 → 𝑐 ≠ 0) |
| 98 | 97 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑐 ≠ 0) |
| 99 | 98 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑐 = 0) |
| 100 | 99 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
| 101 | 92, 100 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
| 102 | | 2lt5 12428 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 <
5 |
| 103 | 30, 102 | gtneii 11356 |
. . . . . . . . . . . . . . . . . 18
⊢ 5 ≠
2 |
| 104 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 5 → (𝑐 ≠ 2 ↔ 5 ≠ 2)) |
| 105 | 103, 104 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 5 → 𝑐 ≠ 2) |
| 106 | 105 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑐 ≠ 2) |
| 107 | 106 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑐 = 2) |
| 108 | 107 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
| 109 | 49 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑏 ≠ 2) |
| 110 | 109 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑏 = 2) |
| 111 | 110 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
| 112 | 108, 111 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
| 113 | 110 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
| 114 | 90 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
| 115 | 113, 114 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
| 116 | 101, 112,
115 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
| 117 | 90 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
| 118 | 65 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑏 ≠ 4) |
| 119 | 118 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑏 = 4) |
| 120 | 119 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
| 121 | 117, 120 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
| 122 | 119 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
| 123 | 74 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑏 ≠ 5) |
| 124 | 123 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑏 = 5) |
| 125 | 124 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
| 126 | 122, 125 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
| 127 | 87 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
| 128 | 99 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
| 129 | 127, 128 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
| 130 | 121, 126,
129 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
| 131 | 116, 130 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
| 132 | 88, 91, 131 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 133 | 132 | olcd 874 |
. . . . . . . . 9
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 134 | 14, 85, 133 | 3jaodan 1432 |
. . . . . . . 8
⊢ ((𝑏 = 1 ∧ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 135 | | neeq1 2993 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 3 → (𝑏 ≠ 0 ↔ 3 ≠ 0)) |
| 136 | 21, 135 | mpbiri 258 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 3 → 𝑏 ≠ 0) |
| 137 | 136 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑏 ≠ 0) |
| 138 | 137 | neneqd 2936 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑏 = 0) |
| 139 | 138 | orcd 873 |
. . . . . . . . . . 11
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
| 140 | | neeq1 2993 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 1 → (𝑐 ≠ 0 ↔ 1 ≠ 0)) |
| 141 | 15, 140 | mpbiri 258 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 1 → 𝑐 ≠ 0) |
| 142 | 141 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑐 ≠ 0) |
| 143 | 142 | neneqd 2936 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑐 = 0) |
| 144 | 143 | olcd 874 |
. . . . . . . . . . 11
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
| 145 | 138 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
| 146 | 143 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
| 147 | 145, 146 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
| 148 | 58 | necon2i 2965 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 3 → 𝑏 ≠ 1) |
| 149 | 148 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑏 ≠ 1) |
| 150 | 149 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑏 = 1) |
| 151 | 150 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
| 152 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 3 → (𝑏 ≠ 2 ↔ 3 ≠ 2)) |
| 153 | 32, 152 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 3 → 𝑏 ≠ 2) |
| 154 | 153 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑏 ≠ 2) |
| 155 | 154 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑏 = 2) |
| 156 | 155 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
| 157 | 151, 156 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
| 158 | 155 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
| 159 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 1 → (𝑐 ≠ 2 ↔ 1 ≠ 2)) |
| 160 | 47, 159 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 1 → 𝑐 ≠ 2) |
| 161 | 160 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑐 ≠ 2) |
| 162 | 161 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑐 = 2) |
| 163 | 162 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
| 164 | 158, 163 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
| 165 | 147, 157,
164 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
| 166 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 1 → (𝑐 ≠ 4 ↔ 1 ≠ 4)) |
| 167 | 63, 166 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 1 → 𝑐 ≠ 4) |
| 168 | 167 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑐 ≠ 4) |
| 169 | 168 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑐 = 4) |
| 170 | 169 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
| 171 | 42 | necon2i 2965 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 1 → 𝑐 ≠ 3) |
| 172 | 171 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑐 ≠ 3) |
| 173 | 172 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑐 = 3) |
| 174 | 173 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
| 175 | 170, 174 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
| 176 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 1 → (𝑐 ≠ 5 ↔ 1 ≠ 5)) |
| 177 | 72, 176 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 1 → 𝑐 ≠ 5) |
| 178 | 177 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑐 ≠ 5) |
| 179 | 178 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑐 = 5) |
| 180 | 179 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
| 181 | 169 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
| 182 | 180, 181 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
| 183 | 138 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
| 184 | 143 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
| 185 | 183, 184 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
| 186 | 175, 182,
185 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
| 187 | 165, 186 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
| 188 | 139, 144,
187 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 189 | 188 | olcd 874 |
. . . . . . . . 9
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 190 | | eqtr3 2756 |
. . . . . . . . . 10
⊢ ((𝑏 = 3 ∧ 𝑐 = 3) → 𝑏 = 𝑐) |
| 191 | 190 | orcd 873 |
. . . . . . . . 9
⊢ ((𝑏 = 3 ∧ 𝑐 = 3) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 192 | 136 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑏 ≠ 0) |
| 193 | 192 | neneqd 2936 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑏 = 0) |
| 194 | 193 | orcd 873 |
. . . . . . . . . . 11
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
| 195 | 97 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑐 ≠ 0) |
| 196 | 195 | neneqd 2936 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑐 = 0) |
| 197 | 196 | olcd 874 |
. . . . . . . . . . 11
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
| 198 | 193 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
| 199 | 196 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
| 200 | 198, 199 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
| 201 | 148 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑏 ≠ 1) |
| 202 | 201 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑏 = 1) |
| 203 | 202 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
| 204 | 177 | necon2i 2965 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 5 → 𝑐 ≠ 1) |
| 205 | 204 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑐 ≠ 1) |
| 206 | 205 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑐 = 1) |
| 207 | 206 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
| 208 | 203, 207 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
| 209 | 153 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑏 ≠ 2) |
| 210 | 209 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑏 = 2) |
| 211 | 210 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
| 212 | 105 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑐 ≠ 2) |
| 213 | 212 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑐 = 2) |
| 214 | 213 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
| 215 | 211, 214 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
| 216 | 200, 208,
215 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
| 217 | | 4re 12333 |
. . . . . . . . . . . . . . . . . . 19
⊢ 4 ∈
ℝ |
| 218 | | 4lt5 12426 |
. . . . . . . . . . . . . . . . . . 19
⊢ 4 <
5 |
| 219 | 217, 218 | gtneii 11356 |
. . . . . . . . . . . . . . . . . 18
⊢ 5 ≠
4 |
| 220 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 5 → (𝑐 ≠ 4 ↔ 5 ≠ 4)) |
| 221 | 219, 220 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 5 → 𝑐 ≠ 4) |
| 222 | 221 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑐 ≠ 4) |
| 223 | 222 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑐 = 4) |
| 224 | 223 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
| 225 | | 3re 12329 |
. . . . . . . . . . . . . . . . . . 19
⊢ 3 ∈
ℝ |
| 226 | | 3lt4 12423 |
. . . . . . . . . . . . . . . . . . 19
⊢ 3 <
4 |
| 227 | 225, 226 | ltneii 11357 |
. . . . . . . . . . . . . . . . . 18
⊢ 3 ≠
4 |
| 228 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 3 → (𝑏 ≠ 4 ↔ 3 ≠ 4)) |
| 229 | 227, 228 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 3 → 𝑏 ≠ 4) |
| 230 | 229 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑏 ≠ 4) |
| 231 | 230 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑏 = 4) |
| 232 | 231 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
| 233 | 224, 232 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
| 234 | 231 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
| 235 | 223 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
| 236 | 234, 235 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
| 237 | 193 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
| 238 | 196 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
| 239 | 237, 238 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
| 240 | 233, 236,
239 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
| 241 | 216, 240 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
| 242 | 194, 197,
241 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 243 | 242 | olcd 874 |
. . . . . . . . 9
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 244 | 189, 191,
243 | 3jaodan 1432 |
. . . . . . . 8
⊢ ((𝑏 = 3 ∧ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 245 | 171 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑐 ≠ 3) |
| 246 | 245 | neneqd 2936 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑐 = 3) |
| 247 | 246 | olcd 874 |
. . . . . . . . . . 11
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
| 248 | 141 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑐 ≠ 0) |
| 249 | 248 | neneqd 2936 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑐 = 0) |
| 250 | 249 | olcd 874 |
. . . . . . . . . . 11
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
| 251 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 5 → (𝑏 ≠ 0 ↔ 5 ≠ 0)) |
| 252 | 95, 251 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 5 → 𝑏 ≠ 0) |
| 253 | 252 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑏 ≠ 0) |
| 254 | 253 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑏 = 0) |
| 255 | 254 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
| 256 | 249 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
| 257 | 255, 256 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
| 258 | 74 | necon2i 2965 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 5 → 𝑏 ≠ 1) |
| 259 | 258 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑏 ≠ 1) |
| 260 | 259 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑏 = 1) |
| 261 | 260 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
| 262 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 5 → (𝑏 ≠ 2 ↔ 5 ≠ 2)) |
| 263 | 103, 262 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 5 → 𝑏 ≠ 2) |
| 264 | 263 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑏 ≠ 2) |
| 265 | 264 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑏 = 2) |
| 266 | 265 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
| 267 | 261, 266 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
| 268 | 246 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
| 269 | 160 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑐 ≠ 2) |
| 270 | 269 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑐 = 2) |
| 271 | 270 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
| 272 | 268, 271 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
| 273 | 257, 267,
272 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
| 274 | | 3lt5 12427 |
. . . . . . . . . . . . . . . . . . 19
⊢ 3 <
5 |
| 275 | 225, 274 | gtneii 11356 |
. . . . . . . . . . . . . . . . . 18
⊢ 5 ≠
3 |
| 276 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 5 → (𝑏 ≠ 3 ↔ 5 ≠ 3)) |
| 277 | 275, 276 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 5 → 𝑏 ≠ 3) |
| 278 | 277 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑏 ≠ 3) |
| 279 | 278 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑏 = 3) |
| 280 | 279 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
| 281 | 246 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
| 282 | 280, 281 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
| 283 | 177 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑐 ≠ 5) |
| 284 | 283 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑐 = 5) |
| 285 | 284 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
| 286 | 167 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑐 ≠ 4) |
| 287 | 286 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑐 = 4) |
| 288 | 287 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
| 289 | 285, 288 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
| 290 | 254 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
| 291 | 249 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
| 292 | 290, 291 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
| 293 | 282, 289,
292 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
| 294 | 273, 293 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
| 295 | 247, 250,
294 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 296 | 295 | olcd 874 |
. . . . . . . . 9
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 297 | 252 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑏 ≠ 0) |
| 298 | 297 | neneqd 2936 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑏 = 0) |
| 299 | 298 | orcd 873 |
. . . . . . . . . . 11
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
| 300 | 23 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑐 ≠ 0) |
| 301 | 300 | neneqd 2936 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑐 = 0) |
| 302 | 301 | olcd 874 |
. . . . . . . . . . 11
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
| 303 | 298 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
| 304 | 301 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
| 305 | 303, 304 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
| 306 | 258 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑏 ≠ 1) |
| 307 | 306 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑏 = 1) |
| 308 | 307 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
| 309 | 42 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑐 ≠ 1) |
| 310 | 309 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑐 = 1) |
| 311 | 310 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
| 312 | 308, 311 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
| 313 | 263 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑏 ≠ 2) |
| 314 | 313 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑏 = 2) |
| 315 | 314 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
| 316 | 277 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑏 ≠ 3) |
| 317 | 316 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑏 = 3) |
| 318 | 317 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
| 319 | 315, 318 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
| 320 | 305, 312,
319 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
| 321 | 317 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
| 322 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 5 → (𝑏 ≠ 4 ↔ 5 ≠ 4)) |
| 323 | 219, 322 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 5 → 𝑏 ≠ 4) |
| 324 | 323 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑏 ≠ 4) |
| 325 | 324 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑏 = 4) |
| 326 | 325 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
| 327 | 321, 326 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
| 328 | 325 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
| 329 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 3 → (𝑐 ≠ 4 ↔ 3 ≠ 4)) |
| 330 | 227, 329 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 3 → 𝑐 ≠ 4) |
| 331 | 330 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑐 ≠ 4) |
| 332 | 331 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑐 = 4) |
| 333 | 332 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
| 334 | 328, 333 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
| 335 | 298 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
| 336 | 301 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
| 337 | 335, 336 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
| 338 | 327, 334,
337 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
| 339 | 320, 338 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
| 340 | 299, 302,
339 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 341 | 340 | olcd 874 |
. . . . . . . . 9
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 342 | | eqtr3 2756 |
. . . . . . . . . 10
⊢ ((𝑏 = 5 ∧ 𝑐 = 5) → 𝑏 = 𝑐) |
| 343 | 342 | orcd 873 |
. . . . . . . . 9
⊢ ((𝑏 = 5 ∧ 𝑐 = 5) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 344 | 296, 341,
343 | 3jaodan 1432 |
. . . . . . . 8
⊢ ((𝑏 = 5 ∧ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 345 | 134, 244,
344 | 3jaoian 1431 |
. . . . . . 7
⊢ (((𝑏 = 1 ∨ 𝑏 = 3 ∨ 𝑏 = 5) ∧ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 346 | 8, 12, 345 | syl2anb 598 |
. . . . . 6
⊢ ((𝑏 ∈ (𝐺 NeighbVtx 0) ∧ 𝑐 ∈ (𝐺 NeighbVtx 0)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 347 | 346 | rgen2 3186 |
. . . . 5
⊢
∀𝑏 ∈
(𝐺 NeighbVtx
0)∀𝑐 ∈ (𝐺 NeighbVtx 0)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 348 | 1, 2, 3 | usgrexmpl2nb1 47937 |
. . . . . . . . 9
⊢ (𝐺 NeighbVtx 1) = {0,
2} |
| 349 | 348 | eleq2i 2825 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝐺 NeighbVtx 1) ↔ 𝑏 ∈ {0, 2}) |
| 350 | 6 | elpr 4632 |
. . . . . . . 8
⊢ (𝑏 ∈ {0, 2} ↔ (𝑏 = 0 ∨ 𝑏 = 2)) |
| 351 | 349, 350 | bitri 275 |
. . . . . . 7
⊢ (𝑏 ∈ (𝐺 NeighbVtx 1) ↔ (𝑏 = 0 ∨ 𝑏 = 2)) |
| 352 | 348 | eleq2i 2825 |
. . . . . . . 8
⊢ (𝑐 ∈ (𝐺 NeighbVtx 1) ↔ 𝑐 ∈ {0, 2}) |
| 353 | 10 | elpr 4632 |
. . . . . . . 8
⊢ (𝑐 ∈ {0, 2} ↔ (𝑐 = 0 ∨ 𝑐 = 2)) |
| 354 | 352, 353 | bitri 275 |
. . . . . . 7
⊢ (𝑐 ∈ (𝐺 NeighbVtx 1) ↔ (𝑐 = 0 ∨ 𝑐 = 2)) |
| 355 | | eqtr3 2756 |
. . . . . . . . 9
⊢ ((𝑏 = 0 ∧ 𝑐 = 0) → 𝑏 = 𝑐) |
| 356 | 355 | orcd 873 |
. . . . . . . 8
⊢ ((𝑏 = 0 ∧ 𝑐 = 0) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 357 | | 2ne0 12353 |
. . . . . . . . . . . . . 14
⊢ 2 ≠
0 |
| 358 | | neeq1 2993 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 2 → (𝑏 ≠ 0 ↔ 2 ≠ 0)) |
| 359 | 357, 358 | mpbiri 258 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 2 → 𝑏 ≠ 0) |
| 360 | 359 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑏 ≠ 0) |
| 361 | 360 | neneqd 2936 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑏 = 0) |
| 362 | 361 | orcd 873 |
. . . . . . . . . 10
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
| 363 | 153 | necon2i 2965 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 2 → 𝑏 ≠ 3) |
| 364 | 363 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑏 ≠ 3) |
| 365 | 364 | neneqd 2936 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑏 = 3) |
| 366 | 365 | orcd 873 |
. . . . . . . . . 10
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
| 367 | 361 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
| 368 | 49 | necon2i 2965 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 2 → 𝑏 ≠ 1) |
| 369 | 368 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑏 ≠ 1) |
| 370 | 369 | neneqd 2936 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑏 = 1) |
| 371 | 370 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
| 372 | 367, 371 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
| 373 | 370 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
| 374 | 141 | necon2i 2965 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 0 → 𝑐 ≠ 1) |
| 375 | 374 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑐 ≠ 1) |
| 376 | 375 | neneqd 2936 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑐 = 1) |
| 377 | 376 | olcd 874 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
| 378 | 373, 377 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
| 379 | 23 | necon2i 2965 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 0 → 𝑐 ≠ 3) |
| 380 | 379 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑐 ≠ 3) |
| 381 | 380 | neneqd 2936 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑐 = 3) |
| 382 | 381 | olcd 874 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
| 383 | 365 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
| 384 | 382, 383 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
| 385 | 372, 378,
384 | 3jca 1128 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
| 386 | 365 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
| 387 | 381 | olcd 874 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
| 388 | 386, 387 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
| 389 | 97 | necon2i 2965 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 0 → 𝑐 ≠ 5) |
| 390 | 389 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑐 ≠ 5) |
| 391 | 390 | neneqd 2936 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑐 = 5) |
| 392 | 391 | olcd 874 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
| 393 | | 4pos 12356 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 <
4 |
| 394 | 93, 393 | ltneii 11357 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ≠
4 |
| 395 | | neeq1 2993 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 0 → (𝑐 ≠ 4 ↔ 0 ≠ 4)) |
| 396 | 394, 395 | mpbiri 258 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 0 → 𝑐 ≠ 4) |
| 397 | 396 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑐 ≠ 4) |
| 398 | 397 | neneqd 2936 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑐 = 4) |
| 399 | 398 | olcd 874 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
| 400 | 392, 399 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
| 401 | 361 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
| 402 | 263 | necon2i 2965 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 2 → 𝑏 ≠ 5) |
| 403 | 402 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑏 ≠ 5) |
| 404 | 403 | neneqd 2936 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑏 = 5) |
| 405 | 404 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
| 406 | 401, 405 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
| 407 | 388, 400,
406 | 3jca 1128 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
| 408 | 385, 407 | jca 511 |
. . . . . . . . . 10
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
| 409 | 362, 366,
408 | jca31 514 |
. . . . . . . . 9
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 410 | 409 | olcd 874 |
. . . . . . . 8
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 411 | 34 | necon2i 2965 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 2 → 𝑐 ≠ 3) |
| 412 | 411 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑐 ≠ 3) |
| 413 | 412 | neneqd 2936 |
. . . . . . . . . . 11
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑐 = 3) |
| 414 | 413 | olcd 874 |
. . . . . . . . . 10
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
| 415 | | neeq1 2993 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 2 → (𝑐 ≠ 0 ↔ 2 ≠ 0)) |
| 416 | 357, 415 | mpbiri 258 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 2 → 𝑐 ≠ 0) |
| 417 | 416 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑐 ≠ 0) |
| 418 | 417 | neneqd 2936 |
. . . . . . . . . . 11
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑐 = 0) |
| 419 | 418 | olcd 874 |
. . . . . . . . . 10
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
| 420 | 160 | necon2i 2965 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 2 → 𝑐 ≠ 1) |
| 421 | 420 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑐 ≠ 1) |
| 422 | 421 | neneqd 2936 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑐 = 1) |
| 423 | 422 | olcd 874 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
| 424 | 418 | olcd 874 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
| 425 | 423, 424 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
| 426 | 17 | necon2i 2965 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 0 → 𝑏 ≠ 1) |
| 427 | 426 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑏 ≠ 1) |
| 428 | 427 | neneqd 2936 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑏 = 1) |
| 429 | 428 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
| 430 | 359 | necon2i 2965 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 0 → 𝑏 ≠ 2) |
| 431 | 430 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑏 ≠ 2) |
| 432 | 431 | neneqd 2936 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑏 = 2) |
| 433 | 432 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
| 434 | 429, 433 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
| 435 | 413 | olcd 874 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
| 436 | 136 | necon2i 2965 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 0 → 𝑏 ≠ 3) |
| 437 | 436 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑏 ≠ 3) |
| 438 | 437 | neneqd 2936 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑏 = 3) |
| 439 | 438 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
| 440 | 435, 439 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
| 441 | 425, 434,
440 | 3jca 1128 |
. . . . . . . . . . 11
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
| 442 | 438 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
| 443 | 413 | olcd 874 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
| 444 | 442, 443 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
| 445 | | neeq1 2993 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 0 → (𝑏 ≠ 4 ↔ 0 ≠ 4)) |
| 446 | 394, 445 | mpbiri 258 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 0 → 𝑏 ≠ 4) |
| 447 | 446 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑏 ≠ 4) |
| 448 | 447 | neneqd 2936 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑏 = 4) |
| 449 | 448 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
| 450 | 252 | necon2i 2965 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 0 → 𝑏 ≠ 5) |
| 451 | 450 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑏 ≠ 5) |
| 452 | 451 | neneqd 2936 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑏 = 5) |
| 453 | 452 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
| 454 | 449, 453 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
| 455 | 105 | necon2i 2965 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 2 → 𝑐 ≠ 5) |
| 456 | 455 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑐 ≠ 5) |
| 457 | 456 | neneqd 2936 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑐 = 5) |
| 458 | 457 | olcd 874 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
| 459 | 418 | olcd 874 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
| 460 | 458, 459 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
| 461 | 444, 454,
460 | 3jca 1128 |
. . . . . . . . . . 11
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
| 462 | 441, 461 | jca 511 |
. . . . . . . . . 10
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
| 463 | 414, 419,
462 | jca31 514 |
. . . . . . . . 9
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 464 | 463 | olcd 874 |
. . . . . . . 8
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 465 | 359 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑏 ≠ 0) |
| 466 | 465 | neneqd 2936 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑏 = 0) |
| 467 | 466 | orcd 873 |
. . . . . . . . . 10
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
| 468 | 416 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑐 ≠ 0) |
| 469 | 468 | neneqd 2936 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑐 = 0) |
| 470 | 469 | olcd 874 |
. . . . . . . . . 10
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
| 471 | 466 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
| 472 | 469 | olcd 874 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
| 473 | 471, 472 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
| 474 | 368 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑏 ≠ 1) |
| 475 | 474 | neneqd 2936 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑏 = 1) |
| 476 | 475 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
| 477 | 420 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑐 ≠ 1) |
| 478 | 477 | neneqd 2936 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑐 = 1) |
| 479 | 478 | olcd 874 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
| 480 | 476, 479 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
| 481 | 411 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑐 ≠ 3) |
| 482 | 481 | neneqd 2936 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑐 = 3) |
| 483 | 482 | olcd 874 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
| 484 | 363 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑏 ≠ 3) |
| 485 | 484 | neneqd 2936 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑏 = 3) |
| 486 | 485 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
| 487 | 483, 486 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
| 488 | 473, 480,
487 | 3jca 1128 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
| 489 | 485 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
| 490 | | 2lt4 12424 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 <
4 |
| 491 | 30, 490 | ltneii 11357 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ≠
4 |
| 492 | | neeq1 2993 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 2 → (𝑏 ≠ 4 ↔ 2 ≠ 4)) |
| 493 | 491, 492 | mpbiri 258 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 2 → 𝑏 ≠ 4) |
| 494 | 493 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑏 ≠ 4) |
| 495 | 494 | neneqd 2936 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑏 = 4) |
| 496 | 495 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
| 497 | 489, 496 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
| 498 | 495 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
| 499 | 402 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑏 ≠ 5) |
| 500 | 499 | neneqd 2936 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑏 = 5) |
| 501 | 500 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
| 502 | 498, 501 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
| 503 | 466 | orcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
| 504 | 469 | olcd 874 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
| 505 | 503, 504 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
| 506 | 497, 502,
505 | 3jca 1128 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
| 507 | 488, 506 | jca 511 |
. . . . . . . . . 10
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
| 508 | 467, 470,
507 | jca31 514 |
. . . . . . . . 9
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 509 | 508 | olcd 874 |
. . . . . . . 8
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 510 | 356, 410,
464, 509 | ccase 1037 |
. . . . . . 7
⊢ (((𝑏 = 0 ∨ 𝑏 = 2) ∧ (𝑐 = 0 ∨ 𝑐 = 2)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 511 | 351, 354,
510 | syl2anb 598 |
. . . . . 6
⊢ ((𝑏 ∈ (𝐺 NeighbVtx 1) ∧ 𝑐 ∈ (𝐺 NeighbVtx 1)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 512 | 511 | rgen2 3186 |
. . . . 5
⊢
∀𝑏 ∈
(𝐺 NeighbVtx
1)∀𝑐 ∈ (𝐺 NeighbVtx 1)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 513 | 1, 2, 3 | usgrexmpl2nb2 47938 |
. . . . . . . . 9
⊢ (𝐺 NeighbVtx 2) = {1,
3} |
| 514 | 513 | eleq2i 2825 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝐺 NeighbVtx 2) ↔ 𝑏 ∈ {1, 3}) |
| 515 | 6 | elpr 4632 |
. . . . . . . 8
⊢ (𝑏 ∈ {1, 3} ↔ (𝑏 = 1 ∨ 𝑏 = 3)) |
| 516 | 514, 515 | bitri 275 |
. . . . . . 7
⊢ (𝑏 ∈ (𝐺 NeighbVtx 2) ↔ (𝑏 = 1 ∨ 𝑏 = 3)) |
| 517 | 513 | eleq2i 2825 |
. . . . . . . 8
⊢ (𝑐 ∈ (𝐺 NeighbVtx 2) ↔ 𝑐 ∈ {1, 3}) |
| 518 | 10 | elpr 4632 |
. . . . . . . 8
⊢ (𝑐 ∈ {1, 3} ↔ (𝑐 = 1 ∨ 𝑐 = 3)) |
| 519 | 517, 518 | bitri 275 |
. . . . . . 7
⊢ (𝑐 ∈ (𝐺 NeighbVtx 2) ↔ (𝑐 = 1 ∨ 𝑐 = 3)) |
| 520 | 14, 189, 85, 191 | ccase 1037 |
. . . . . . 7
⊢ (((𝑏 = 1 ∨ 𝑏 = 3) ∧ (𝑐 = 1 ∨ 𝑐 = 3)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 521 | 516, 519,
520 | syl2anb 598 |
. . . . . 6
⊢ ((𝑏 ∈ (𝐺 NeighbVtx 2) ∧ 𝑐 ∈ (𝐺 NeighbVtx 2)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 522 | 521 | rgen2 3186 |
. . . . 5
⊢
∀𝑏 ∈
(𝐺 NeighbVtx
2)∀𝑐 ∈ (𝐺 NeighbVtx 2)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 523 | | c0ex 11238 |
. . . . . 6
⊢ 0 ∈
V |
| 524 | | 1ex 11240 |
. . . . . 6
⊢ 1 ∈
V |
| 525 | | 2ex 12326 |
. . . . . 6
⊢ 2 ∈
V |
| 526 | | oveq2 7422 |
. . . . . . 7
⊢ (𝑎 = 0 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 0)) |
| 527 | 526 | raleqdv 3310 |
. . . . . . 7
⊢ (𝑎 = 0 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 0)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
| 528 | 526, 527 | raleqbidv 3330 |
. . . . . 6
⊢ (𝑎 = 0 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 0)∀𝑐 ∈ (𝐺 NeighbVtx 0)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
| 529 | | oveq2 7422 |
. . . . . . 7
⊢ (𝑎 = 1 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 1)) |
| 530 | 529 | raleqdv 3310 |
. . . . . . 7
⊢ (𝑎 = 1 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 1)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
| 531 | 529, 530 | raleqbidv 3330 |
. . . . . 6
⊢ (𝑎 = 1 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 1)∀𝑐 ∈ (𝐺 NeighbVtx 1)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
| 532 | | oveq2 7422 |
. . . . . . 7
⊢ (𝑎 = 2 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 2)) |
| 533 | 532 | raleqdv 3310 |
. . . . . . 7
⊢ (𝑎 = 2 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 2)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
| 534 | 532, 533 | raleqbidv 3330 |
. . . . . 6
⊢ (𝑎 = 2 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 2)∀𝑐 ∈ (𝐺 NeighbVtx 2)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
| 535 | 523, 524,
525, 528, 531, 534 | raltp 4687 |
. . . . 5
⊢
(∀𝑎 ∈
{0, 1, 2}∀𝑏 ∈
(𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ (∀𝑏 ∈ (𝐺 NeighbVtx 0)∀𝑐 ∈ (𝐺 NeighbVtx 0)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ∧ ∀𝑏 ∈ (𝐺 NeighbVtx 1)∀𝑐 ∈ (𝐺 NeighbVtx 1)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ∧ ∀𝑏 ∈ (𝐺 NeighbVtx 2)∀𝑐 ∈ (𝐺 NeighbVtx 2)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
| 536 | 347, 512,
522, 535 | mpbir3an 1341 |
. . . 4
⊢
∀𝑎 ∈ {0,
1, 2}∀𝑏 ∈
(𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 537 | 1, 2, 3 | usgrexmpl2nb3 47939 |
. . . . . . . . 9
⊢ (𝐺 NeighbVtx 3) = {0, 2,
4} |
| 538 | 537 | eleq2i 2825 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝐺 NeighbVtx 3) ↔ 𝑏 ∈ {0, 2, 4}) |
| 539 | 6 | eltp 4671 |
. . . . . . . 8
⊢ (𝑏 ∈ {0, 2, 4} ↔ (𝑏 = 0 ∨ 𝑏 = 2 ∨ 𝑏 = 4)) |
| 540 | 538, 539 | bitri 275 |
. . . . . . 7
⊢ (𝑏 ∈ (𝐺 NeighbVtx 3) ↔ (𝑏 = 0 ∨ 𝑏 = 2 ∨ 𝑏 = 4)) |
| 541 | 537 | eleq2i 2825 |
. . . . . . . 8
⊢ (𝑐 ∈ (𝐺 NeighbVtx 3) ↔ 𝑐 ∈ {0, 2, 4}) |
| 542 | 10 | eltp 4671 |
. . . . . . . 8
⊢ (𝑐 ∈ {0, 2, 4} ↔ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4)) |
| 543 | 541, 542 | bitri 275 |
. . . . . . 7
⊢ (𝑐 ∈ (𝐺 NeighbVtx 3) ↔ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4)) |
| 544 | 330 | necon2i 2965 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 4 → 𝑐 ≠ 3) |
| 545 | 544 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑐 ≠ 3) |
| 546 | 545 | neneqd 2936 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑐 = 3) |
| 547 | 546 | olcd 874 |
. . . . . . . . . . 11
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
| 548 | 436 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑏 ≠ 3) |
| 549 | 548 | neneqd 2936 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑏 = 3) |
| 550 | 549 | orcd 873 |
. . . . . . . . . . 11
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
| 551 | 167 | necon2i 2965 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 4 → 𝑐 ≠ 1) |
| 552 | 551 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑐 ≠ 1) |
| 553 | 552 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑐 = 1) |
| 554 | 553 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
| 555 | 426 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑏 ≠ 1) |
| 556 | 555 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑏 = 1) |
| 557 | 556 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
| 558 | 554, 557 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
| 559 | 556 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
| 560 | 430 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑏 ≠ 2) |
| 561 | 560 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑏 = 2) |
| 562 | 561 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
| 563 | 559, 562 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
| 564 | 546 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
| 565 | 549 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
| 566 | 564, 565 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
| 567 | 558, 563,
566 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
| 568 | 549 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
| 569 | 546 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
| 570 | 568, 569 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
| 571 | 446 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑏 ≠ 4) |
| 572 | 571 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑏 = 4) |
| 573 | 572 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
| 574 | 450 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑏 ≠ 5) |
| 575 | 574 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑏 = 5) |
| 576 | 575 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
| 577 | 573, 576 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
| 578 | 221 | necon2i 2965 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 4 → 𝑐 ≠ 5) |
| 579 | 578 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑐 ≠ 5) |
| 580 | 579 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑐 = 5) |
| 581 | 580 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
| 582 | 396 | necon2i 2965 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 4 → 𝑐 ≠ 0) |
| 583 | 582 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑐 ≠ 0) |
| 584 | 583 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑐 = 0) |
| 585 | 584 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
| 586 | 581, 585 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
| 587 | 570, 577,
586 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
| 588 | 567, 587 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
| 589 | 547, 550,
588 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 590 | 589 | olcd 874 |
. . . . . . . . 9
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 591 | 356, 464,
590 | 3jaodan 1432 |
. . . . . . . 8
⊢ ((𝑏 = 0 ∧ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 592 | 359 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑏 ≠ 0) |
| 593 | 592 | neneqd 2936 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑏 = 0) |
| 594 | 593 | orcd 873 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
| 595 | 582 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑐 ≠ 0) |
| 596 | 595 | neneqd 2936 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑐 = 0) |
| 597 | 596 | olcd 874 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
| 598 | 593 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
| 599 | 596 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
| 600 | 598, 599 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
| 601 | 368 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑏 ≠ 1) |
| 602 | 601 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑏 = 1) |
| 603 | 602 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
| 604 | 551 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑐 ≠ 1) |
| 605 | 604 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑐 = 1) |
| 606 | 605 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
| 607 | 603, 606 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
| 608 | 544 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑐 ≠ 3) |
| 609 | 608 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑐 = 3) |
| 610 | 609 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
| 611 | 363 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑏 ≠ 3) |
| 612 | 611 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑏 = 3) |
| 613 | 612 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
| 614 | 610, 613 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
| 615 | 600, 607,
614 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
| 616 | 612 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
| 617 | 609 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
| 618 | 616, 617 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
| 619 | 493 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑏 ≠ 4) |
| 620 | 619 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑏 = 4) |
| 621 | 620 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
| 622 | 402 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑏 ≠ 5) |
| 623 | 622 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑏 = 5) |
| 624 | 623 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
| 625 | 621, 624 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
| 626 | 593 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
| 627 | 596 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
| 628 | 626, 627 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
| 629 | 618, 625,
628 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
| 630 | 615, 629 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
| 631 | 594, 597,
630 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 632 | 631 | olcd 874 |
. . . . . . . . 9
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 633 | 410, 509,
632 | 3jaodan 1432 |
. . . . . . . 8
⊢ ((𝑏 = 2 ∧ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 634 | 446 | necon2i 2965 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 4 → 𝑏 ≠ 0) |
| 635 | 634 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑏 ≠ 0) |
| 636 | 635 | neneqd 2936 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑏 = 0) |
| 637 | 636 | orcd 873 |
. . . . . . . . . . 11
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
| 638 | 229 | necon2i 2965 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 4 → 𝑏 ≠ 3) |
| 639 | 638 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑏 ≠ 3) |
| 640 | 639 | neneqd 2936 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑏 = 3) |
| 641 | 640 | orcd 873 |
. . . . . . . . . . 11
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
| 642 | 636 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
| 643 | 65 | necon2i 2965 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 4 → 𝑏 ≠ 1) |
| 644 | 643 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑏 ≠ 1) |
| 645 | 644 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑏 = 1) |
| 646 | 645 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
| 647 | 642, 646 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
| 648 | 416 | necon2i 2965 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 0 → 𝑐 ≠ 2) |
| 649 | 648 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑐 ≠ 2) |
| 650 | 649 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑐 = 2) |
| 651 | 650 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
| 652 | 374 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑐 ≠ 1) |
| 653 | 652 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑐 = 1) |
| 654 | 653 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
| 655 | 651, 654 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
| 656 | 379 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑐 ≠ 3) |
| 657 | 656 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑐 = 3) |
| 658 | 657 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
| 659 | 640 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
| 660 | 658, 659 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
| 661 | 647, 655,
660 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
| 662 | 640 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
| 663 | 657 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
| 664 | 662, 663 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
| 665 | 389 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑐 ≠ 5) |
| 666 | 665 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑐 = 5) |
| 667 | 666 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
| 668 | 396 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑐 ≠ 4) |
| 669 | 668 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑐 = 4) |
| 670 | 669 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
| 671 | 667, 670 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
| 672 | 636 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
| 673 | 323 | necon2i 2965 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 4 → 𝑏 ≠ 5) |
| 674 | 673 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑏 ≠ 5) |
| 675 | 674 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑏 = 5) |
| 676 | 675 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
| 677 | 672, 676 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
| 678 | 664, 671,
677 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
| 679 | 661, 678 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
| 680 | 637, 641,
679 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 681 | 680 | olcd 874 |
. . . . . . . . 9
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 682 | 634 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑏 ≠ 0) |
| 683 | 682 | neneqd 2936 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑏 = 0) |
| 684 | 683 | orcd 873 |
. . . . . . . . . . 11
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
| 685 | 416 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑐 ≠ 0) |
| 686 | 685 | neneqd 2936 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑐 = 0) |
| 687 | 686 | olcd 874 |
. . . . . . . . . . 11
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
| 688 | 683 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
| 689 | 686 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
| 690 | 688, 689 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
| 691 | 643 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑏 ≠ 1) |
| 692 | 691 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑏 = 1) |
| 693 | 692 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
| 694 | 420 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑐 ≠ 1) |
| 695 | 694 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑐 = 1) |
| 696 | 695 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
| 697 | 693, 696 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
| 698 | 493 | necon2i 2965 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 4 → 𝑏 ≠ 2) |
| 699 | 698 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑏 ≠ 2) |
| 700 | 699 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑏 = 2) |
| 701 | 700 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
| 702 | 638 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑏 ≠ 3) |
| 703 | 702 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑏 = 3) |
| 704 | 703 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
| 705 | 701, 704 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
| 706 | 690, 697,
705 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
| 707 | 703 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
| 708 | 411 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑐 ≠ 3) |
| 709 | 708 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑐 = 3) |
| 710 | 709 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
| 711 | 707, 710 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
| 712 | 455 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑐 ≠ 5) |
| 713 | 712 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑐 = 5) |
| 714 | 713 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
| 715 | | neeq1 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 2 → (𝑐 ≠ 4 ↔ 2 ≠ 4)) |
| 716 | 491, 715 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 2 → 𝑐 ≠ 4) |
| 717 | 716 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑐 ≠ 4) |
| 718 | 717 | neneqd 2936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑐 = 4) |
| 719 | 718 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
| 720 | 714, 719 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
| 721 | 683 | orcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
| 722 | 686 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
| 723 | 721, 722 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
| 724 | 711, 720,
723 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
| 725 | 706, 724 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
| 726 | 684, 687,
725 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 727 | 726 | olcd 874 |
. . . . . . . . 9
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 728 | | eqtr3 2756 |
. . . . . . . . . 10
⊢ ((𝑏 = 4 ∧ 𝑐 = 4) → 𝑏 = 𝑐) |
| 729 | 728 | orcd 873 |
. . . . . . . . 9
⊢ ((𝑏 = 4 ∧ 𝑐 = 4) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 730 | 681, 727,
729 | 3jaodan 1432 |
. . . . . . . 8
⊢ ((𝑏 = 4 ∧ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 731 | 591, 633,
730 | 3jaoian 1431 |
. . . . . . 7
⊢ (((𝑏 = 0 ∨ 𝑏 = 2 ∨ 𝑏 = 4) ∧ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 732 | 540, 543,
731 | syl2anb 598 |
. . . . . 6
⊢ ((𝑏 ∈ (𝐺 NeighbVtx 3) ∧ 𝑐 ∈ (𝐺 NeighbVtx 3)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 733 | 732 | rgen2 3186 |
. . . . 5
⊢
∀𝑏 ∈
(𝐺 NeighbVtx
3)∀𝑐 ∈ (𝐺 NeighbVtx 3)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 734 | 1, 2, 3 | usgrexmpl2nb4 47940 |
. . . . . . . . 9
⊢ (𝐺 NeighbVtx 4) = {3,
5} |
| 735 | 734 | eleq2i 2825 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝐺 NeighbVtx 4) ↔ 𝑏 ∈ {3, 5}) |
| 736 | 6 | elpr 4632 |
. . . . . . . 8
⊢ (𝑏 ∈ {3, 5} ↔ (𝑏 = 3 ∨ 𝑏 = 5)) |
| 737 | 735, 736 | bitri 275 |
. . . . . . 7
⊢ (𝑏 ∈ (𝐺 NeighbVtx 4) ↔ (𝑏 = 3 ∨ 𝑏 = 5)) |
| 738 | 734 | eleq2i 2825 |
. . . . . . . 8
⊢ (𝑐 ∈ (𝐺 NeighbVtx 4) ↔ 𝑐 ∈ {3, 5}) |
| 739 | 10 | elpr 4632 |
. . . . . . . 8
⊢ (𝑐 ∈ {3, 5} ↔ (𝑐 = 3 ∨ 𝑐 = 5)) |
| 740 | 738, 739 | bitri 275 |
. . . . . . 7
⊢ (𝑐 ∈ (𝐺 NeighbVtx 4) ↔ (𝑐 = 3 ∨ 𝑐 = 5)) |
| 741 | 191, 341,
243, 343 | ccase 1037 |
. . . . . . 7
⊢ (((𝑏 = 3 ∨ 𝑏 = 5) ∧ (𝑐 = 3 ∨ 𝑐 = 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 742 | 737, 740,
741 | syl2anb 598 |
. . . . . 6
⊢ ((𝑏 ∈ (𝐺 NeighbVtx 4) ∧ 𝑐 ∈ (𝐺 NeighbVtx 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 743 | 742 | rgen2 3186 |
. . . . 5
⊢
∀𝑏 ∈
(𝐺 NeighbVtx
4)∀𝑐 ∈ (𝐺 NeighbVtx 4)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 744 | 1, 2, 3 | usgrexmpl2nb5 47941 |
. . . . . . . . 9
⊢ (𝐺 NeighbVtx 5) = {0,
4} |
| 745 | 744 | eleq2i 2825 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝐺 NeighbVtx 5) ↔ 𝑏 ∈ {0, 4}) |
| 746 | 6 | elpr 4632 |
. . . . . . . 8
⊢ (𝑏 ∈ {0, 4} ↔ (𝑏 = 0 ∨ 𝑏 = 4)) |
| 747 | 745, 746 | bitri 275 |
. . . . . . 7
⊢ (𝑏 ∈ (𝐺 NeighbVtx 5) ↔ (𝑏 = 0 ∨ 𝑏 = 4)) |
| 748 | 744 | eleq2i 2825 |
. . . . . . . 8
⊢ (𝑐 ∈ (𝐺 NeighbVtx 5) ↔ 𝑐 ∈ {0, 4}) |
| 749 | 10 | elpr 4632 |
. . . . . . . 8
⊢ (𝑐 ∈ {0, 4} ↔ (𝑐 = 0 ∨ 𝑐 = 4)) |
| 750 | 748, 749 | bitri 275 |
. . . . . . 7
⊢ (𝑐 ∈ (𝐺 NeighbVtx 5) ↔ (𝑐 = 0 ∨ 𝑐 = 4)) |
| 751 | 356, 681,
590, 729 | ccase 1037 |
. . . . . . 7
⊢ (((𝑏 = 0 ∨ 𝑏 = 4) ∧ (𝑐 = 0 ∨ 𝑐 = 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 752 | 747, 750,
751 | syl2anb 598 |
. . . . . 6
⊢ ((𝑏 ∈ (𝐺 NeighbVtx 5) ∧ 𝑐 ∈ (𝐺 NeighbVtx 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 753 | 752 | rgen2 3186 |
. . . . 5
⊢
∀𝑏 ∈
(𝐺 NeighbVtx
5)∀𝑐 ∈ (𝐺 NeighbVtx 5)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 754 | | 3ex 12331 |
. . . . . 6
⊢ 3 ∈
V |
| 755 | | 4nn0 12529 |
. . . . . . 7
⊢ 4 ∈
ℕ0 |
| 756 | 755 | elexi 3487 |
. . . . . 6
⊢ 4 ∈
V |
| 757 | | 5nn0 12530 |
. . . . . . 7
⊢ 5 ∈
ℕ0 |
| 758 | 757 | elexi 3487 |
. . . . . 6
⊢ 5 ∈
V |
| 759 | | oveq2 7422 |
. . . . . . 7
⊢ (𝑎 = 3 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 3)) |
| 760 | 759 | raleqdv 3310 |
. . . . . . 7
⊢ (𝑎 = 3 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 3)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
| 761 | 759, 760 | raleqbidv 3330 |
. . . . . 6
⊢ (𝑎 = 3 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 3)∀𝑐 ∈ (𝐺 NeighbVtx 3)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
| 762 | | oveq2 7422 |
. . . . . . 7
⊢ (𝑎 = 4 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 4)) |
| 763 | 762 | raleqdv 3310 |
. . . . . . 7
⊢ (𝑎 = 4 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 4)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
| 764 | 762, 763 | raleqbidv 3330 |
. . . . . 6
⊢ (𝑎 = 4 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 4)∀𝑐 ∈ (𝐺 NeighbVtx 4)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
| 765 | | oveq2 7422 |
. . . . . . 7
⊢ (𝑎 = 5 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 5)) |
| 766 | 765 | raleqdv 3310 |
. . . . . . 7
⊢ (𝑎 = 5 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 5)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
| 767 | 765, 766 | raleqbidv 3330 |
. . . . . 6
⊢ (𝑎 = 5 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 5)∀𝑐 ∈ (𝐺 NeighbVtx 5)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
| 768 | 754, 756,
758, 761, 764, 767 | raltp 4687 |
. . . . 5
⊢
(∀𝑎 ∈
{3, 4, 5}∀𝑏 ∈
(𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ (∀𝑏 ∈ (𝐺 NeighbVtx 3)∀𝑐 ∈ (𝐺 NeighbVtx 3)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ∧ ∀𝑏 ∈ (𝐺 NeighbVtx 4)∀𝑐 ∈ (𝐺 NeighbVtx 4)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ∧ ∀𝑏 ∈ (𝐺 NeighbVtx 5)∀𝑐 ∈ (𝐺 NeighbVtx 5)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
| 769 | 733, 743,
753, 768 | mpbir3an 1341 |
. . . 4
⊢
∀𝑎 ∈ {3,
4, 5}∀𝑏 ∈
(𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 770 | | ralunb 4179 |
. . . 4
⊢
(∀𝑎 ∈
({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ (∀𝑎 ∈ {0, 1, 2}∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ∧ ∀𝑎 ∈ {3, 4, 5}∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
| 771 | 536, 769,
770 | mpbir2an 711 |
. . 3
⊢
∀𝑎 ∈
({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 772 | | ianor 983 |
. . . . . 6
⊢ (¬
(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))) ↔ (¬ 𝑏 ≠ 𝑐 ∨ ¬ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))) |
| 773 | | nne 2935 |
. . . . . . 7
⊢ (¬
𝑏 ≠ 𝑐 ↔ 𝑏 = 𝑐) |
| 774 | | ioran 985 |
. . . . . . . . . 10
⊢ (¬
(((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))) ↔ (¬ ((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∧ ¬ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))))) |
| 775 | | ioran 985 |
. . . . . . . . . . . 12
⊢ (¬
((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ↔ (¬ (𝑏 = 0 ∧ 𝑐 = 3) ∧ ¬ (𝑏 = 3 ∧ 𝑐 = 0))) |
| 776 | | ianor 983 |
. . . . . . . . . . . . 13
⊢ (¬
(𝑏 = 0 ∧ 𝑐 = 3) ↔ (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
| 777 | | ianor 983 |
. . . . . . . . . . . . 13
⊢ (¬
(𝑏 = 3 ∧ 𝑐 = 0) ↔ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
| 778 | 776, 777 | anbi12i 628 |
. . . . . . . . . . . 12
⊢ ((¬
(𝑏 = 0 ∧ 𝑐 = 3) ∧ ¬ (𝑏 = 3 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))) |
| 779 | 775, 778 | bitri 275 |
. . . . . . . . . . 11
⊢ (¬
((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))) |
| 780 | | ioran 985 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))) ↔ (¬ (((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∧ ¬ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))) |
| 781 | | 3ioran 1105 |
. . . . . . . . . . . . . 14
⊢ (¬
(((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ↔ (¬ ((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∧ ¬ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∧ ¬ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2)))) |
| 782 | | ioran 985 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ↔ (¬ (𝑏 = 0 ∧ 𝑐 = 1) ∧ ¬ (𝑏 = 1 ∧ 𝑐 = 0))) |
| 783 | | ianor 983 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 0 ∧ 𝑐 = 1) ↔ (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
| 784 | | ianor 983 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 1 ∧ 𝑐 = 0) ↔ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
| 785 | 783, 784 | anbi12i 628 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
(𝑏 = 0 ∧ 𝑐 = 1) ∧ ¬ (𝑏 = 1 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
| 786 | 782, 785 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
| 787 | | ioran 985 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ↔ (¬ (𝑏 = 1 ∧ 𝑐 = 2) ∧ ¬ (𝑏 = 2 ∧ 𝑐 = 1))) |
| 788 | | ianor 983 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 1 ∧ 𝑐 = 2) ↔ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
| 789 | | ianor 983 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 2 ∧ 𝑐 = 1) ↔ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
| 790 | 788, 789 | anbi12i 628 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
(𝑏 = 1 ∧ 𝑐 = 2) ∧ ¬ (𝑏 = 2 ∧ 𝑐 = 1)) ↔ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
| 791 | 787, 790 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ↔ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
| 792 | | ioran 985 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2)) ↔ (¬ (𝑏 = 2 ∧ 𝑐 = 3) ∧ ¬ (𝑏 = 3 ∧ 𝑐 = 2))) |
| 793 | | ianor 983 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 2 ∧ 𝑐 = 3) ↔ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
| 794 | | ianor 983 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 3 ∧ 𝑐 = 2) ↔ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
| 795 | 793, 794 | anbi12i 628 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
(𝑏 = 2 ∧ 𝑐 = 3) ∧ ¬ (𝑏 = 3 ∧ 𝑐 = 2)) ↔ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
| 796 | 792, 795 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2)) ↔ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
| 797 | 786, 791,
796 | 3anbi123i 1155 |
. . . . . . . . . . . . . 14
⊢ ((¬
((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∧ ¬ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∧ ¬ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
| 798 | 781, 797 | bitri 275 |
. . . . . . . . . . . . 13
⊢ (¬
(((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
| 799 | | 3ioran 1105 |
. . . . . . . . . . . . . 14
⊢ (¬
(((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))) ↔ (¬ ((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∧ ¬ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∧ ¬ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))) |
| 800 | | ioran 985 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ↔ (¬ (𝑏 = 3 ∧ 𝑐 = 4) ∧ ¬ (𝑏 = 4 ∧ 𝑐 = 3))) |
| 801 | | ianor 983 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 3 ∧ 𝑐 = 4) ↔ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
| 802 | | ianor 983 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 4 ∧ 𝑐 = 3) ↔ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
| 803 | 801, 802 | anbi12i 628 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
(𝑏 = 3 ∧ 𝑐 = 4) ∧ ¬ (𝑏 = 4 ∧ 𝑐 = 3)) ↔ ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
| 804 | 800, 803 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ↔ ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
| 805 | | ioran 985 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ↔ (¬ (𝑏 = 4 ∧ 𝑐 = 5) ∧ ¬ (𝑏 = 5 ∧ 𝑐 = 4))) |
| 806 | | ianor 983 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 4 ∧ 𝑐 = 5) ↔ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
| 807 | | ianor 983 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 5 ∧ 𝑐 = 4) ↔ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
| 808 | 806, 807 | anbi12i 628 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
(𝑏 = 4 ∧ 𝑐 = 5) ∧ ¬ (𝑏 = 5 ∧ 𝑐 = 4)) ↔ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
| 809 | 805, 808 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ↔ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
| 810 | | ioran 985 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)) ↔ (¬ (𝑏 = 0 ∧ 𝑐 = 5) ∧ ¬ (𝑏 = 5 ∧ 𝑐 = 0))) |
| 811 | | ianor 983 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 0 ∧ 𝑐 = 5) ↔ (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
| 812 | | ianor 983 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 5 ∧ 𝑐 = 0) ↔ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
| 813 | 811, 812 | anbi12i 628 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
(𝑏 = 0 ∧ 𝑐 = 5) ∧ ¬ (𝑏 = 5 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
| 814 | 810, 813 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
| 815 | 804, 809,
814 | 3anbi123i 1155 |
. . . . . . . . . . . . . 14
⊢ ((¬
((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∧ ¬ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∧ ¬ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))) ↔ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
| 816 | 799, 815 | bitri 275 |
. . . . . . . . . . . . 13
⊢ (¬
(((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))) ↔ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
| 817 | 798, 816 | anbi12i 628 |
. . . . . . . . . . . 12
⊢ ((¬
(((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∧ ¬ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))) ↔ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
| 818 | 780, 817 | bitri 275 |
. . . . . . . . . . 11
⊢ (¬
((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))) ↔ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
| 819 | 779, 818 | anbi12i 628 |
. . . . . . . . . 10
⊢ ((¬
((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∧ ¬ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 820 | 774, 819 | bitri 275 |
. . . . . . . . 9
⊢ (¬
(((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 821 | 6, 10, 523, 524 | preq12b 4832 |
. . . . . . . . . . . 12
⊢ ({𝑏, 𝑐} = {0, 1} ↔ ((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0))) |
| 822 | 6, 10, 524, 525 | preq12b 4832 |
. . . . . . . . . . . 12
⊢ ({𝑏, 𝑐} = {1, 2} ↔ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1))) |
| 823 | 6, 10, 525, 754 | preq12b 4832 |
. . . . . . . . . . . 12
⊢ ({𝑏, 𝑐} = {2, 3} ↔ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) |
| 824 | 821, 822,
823 | 3orbi123i 1156 |
. . . . . . . . . . 11
⊢ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ↔ (((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2)))) |
| 825 | 6, 10, 754, 756 | preq12b 4832 |
. . . . . . . . . . . 12
⊢ ({𝑏, 𝑐} = {3, 4} ↔ ((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3))) |
| 826 | 6, 10, 756, 758 | preq12b 4832 |
. . . . . . . . . . . 12
⊢ ({𝑏, 𝑐} = {4, 5} ↔ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4))) |
| 827 | 6, 10, 523, 758 | preq12b 4832 |
. . . . . . . . . . . 12
⊢ ({𝑏, 𝑐} = {0, 5} ↔ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))) |
| 828 | 825, 826,
827 | 3orbi123i 1156 |
. . . . . . . . . . 11
⊢ (({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}) ↔ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))) |
| 829 | 824, 828 | orbi12i 914 |
. . . . . . . . . 10
⊢ ((({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5})) ↔ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))) |
| 830 | 829 | orbi2i 912 |
. . . . . . . . 9
⊢ ((((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}))) ↔ (((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))))) |
| 831 | 820, 830 | xchnxbir 333 |
. . . . . . . 8
⊢ (¬
(((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}))) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 832 | | elun 4135 |
. . . . . . . . 9
⊢ ({𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({𝑏, 𝑐} ∈ {{0, 3}} ∨ {𝑏, 𝑐} ∈ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3,
4}, {4, 5}, {0, 5}}))) |
| 833 | | prex 5419 |
. . . . . . . . . . . 12
⊢ {𝑏, 𝑐} ∈ V |
| 834 | 833 | elsn 4623 |
. . . . . . . . . . 11
⊢ ({𝑏, 𝑐} ∈ {{0, 3}} ↔ {𝑏, 𝑐} = {0, 3}) |
| 835 | 6, 10, 523, 754 | preq12b 4832 |
. . . . . . . . . . 11
⊢ ({𝑏, 𝑐} = {0, 3} ↔ ((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0))) |
| 836 | 834, 835 | bitri 275 |
. . . . . . . . . 10
⊢ ({𝑏, 𝑐} ∈ {{0, 3}} ↔ ((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0))) |
| 837 | | elun 4135 |
. . . . . . . . . . 11
⊢ ({𝑏, 𝑐} ∈ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3,
4}, {4, 5}, {0, 5}}) ↔ ({𝑏, 𝑐} ∈ {{0, 1}, {1, 2}, {2, 3}} ∨ {𝑏, 𝑐} ∈ {{3, 4}, {4, 5}, {0,
5}})) |
| 838 | 833 | eltp 4671 |
. . . . . . . . . . . 12
⊢ ({𝑏, 𝑐} ∈ {{0, 1}, {1, 2}, {2, 3}} ↔
({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3})) |
| 839 | 833 | eltp 4671 |
. . . . . . . . . . . 12
⊢ ({𝑏, 𝑐} ∈ {{3, 4}, {4, 5}, {0, 5}} ↔
({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5})) |
| 840 | 838, 839 | orbi12i 914 |
. . . . . . . . . . 11
⊢ (({𝑏, 𝑐} ∈ {{0, 1}, {1, 2}, {2, 3}} ∨ {𝑏, 𝑐} ∈ {{3, 4}, {4, 5}, {0, 5}}) ↔
(({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}))) |
| 841 | 837, 840 | bitri 275 |
. . . . . . . . . 10
⊢ ({𝑏, 𝑐} ∈ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3,
4}, {4, 5}, {0, 5}}) ↔ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}))) |
| 842 | 836, 841 | orbi12i 914 |
. . . . . . . . 9
⊢ (({𝑏, 𝑐} ∈ {{0, 3}} ∨ {𝑏, 𝑐} ∈ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3,
4}, {4, 5}, {0, 5}})) ↔ (((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5})))) |
| 843 | 832, 842 | bitri 275 |
. . . . . . . 8
⊢ ({𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ (((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5})))) |
| 844 | 831, 843 | xchnxbir 333 |
. . . . . . 7
⊢ (¬
{𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
| 845 | 773, 844 | orbi12i 914 |
. . . . . 6
⊢ ((¬
𝑏 ≠ 𝑐 ∨ ¬ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))) ↔ (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
| 846 | 772, 845 | bitr2i 276 |
. . . . 5
⊢ ((𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ¬ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))) |
| 847 | 846 | 3ralbii 3117 |
. . . 4
⊢
(∀𝑎 ∈
({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑎 ∈ ({0, 1, 2} ∪ {3, 4,
5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎) ¬ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))) |
| 848 | | ralnex3 3121 |
. . . 4
⊢
(∀𝑎 ∈
({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎) ¬ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))) ↔ ¬ ∃𝑎 ∈ ({0, 1, 2} ∪ {3, 4,
5})∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))) |
| 849 | 847, 848 | bitri 275 |
. . 3
⊢
(∀𝑎 ∈
({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ¬ ∃𝑎 ∈ ({0, 1, 2} ∪ {3, 4,
5})∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))) |
| 850 | 771, 849 | mpbi 230 |
. 2
⊢ ¬
∃𝑎 ∈ ({0, 1, 2}
∪ {3, 4, 5})∃𝑏
∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))) |
| 851 | 1, 2, 3 | usgrexmpl2 47932 |
. . 3
⊢ 𝐺 ∈ USGraph |
| 852 | 1, 2, 3 | usgrexmpl2vtx 47933 |
. . . . 5
⊢
(Vtx‘𝐺) = ({0,
1, 2} ∪ {3, 4, 5}) |
| 853 | 852 | eqcomi 2743 |
. . . 4
⊢ ({0, 1,
2} ∪ {3, 4, 5}) = (Vtx‘𝐺) |
| 854 | 1, 2, 3 | usgrexmpl2edg 47934 |
. . . . 5
⊢
(Edg‘𝐺) =
({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0,
5}})) |
| 855 | 854 | eqcomi 2743 |
. . . 4
⊢ ({{0, 3}}
∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) =
(Edg‘𝐺) |
| 856 | | eqid 2734 |
. . . 4
⊢ (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 𝑎) |
| 857 | 853, 855,
856 | usgrgrtrirex 47863 |
. . 3
⊢ (𝐺 ∈ USGraph →
(∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ ({0, 1, 2} ∪ {3, 4,
5})∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))))) |
| 858 | 851, 857 | ax-mp 5 |
. 2
⊢
(∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ ({0, 1, 2} ∪ {3, 4,
5})∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))) |
| 859 | 850, 858 | mtbir 323 |
1
⊢ ¬
∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) |