Step | Hyp | Ref
| Expression |
1 | | usgrexmpl2.v |
. . . . . . . . . 10
⊢ 𝑉 = (0...5) |
2 | | usgrexmpl2.e |
. . . . . . . . . 10
⊢ 𝐸 = 〈“{0, 1} {1, 2}
{2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 |
3 | | usgrexmpl2.g |
. . . . . . . . . 10
⊢ 𝐺 = 〈𝑉, 𝐸〉 |
4 | 1, 2, 3 | usgrexmpl2nb0 47766 |
. . . . . . . . 9
⊢ (𝐺 NeighbVtx 0) = {1, 3,
5} |
5 | 4 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝐺 NeighbVtx 0) ↔ 𝑏 ∈ {1, 3, 5}) |
6 | | vex 3486 |
. . . . . . . . 9
⊢ 𝑏 ∈ V |
7 | 6 | eltp 4712 |
. . . . . . . 8
⊢ (𝑏 ∈ {1, 3, 5} ↔ (𝑏 = 1 ∨ 𝑏 = 3 ∨ 𝑏 = 5)) |
8 | 5, 7 | bitri 275 |
. . . . . . 7
⊢ (𝑏 ∈ (𝐺 NeighbVtx 0) ↔ (𝑏 = 1 ∨ 𝑏 = 3 ∨ 𝑏 = 5)) |
9 | 4 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑐 ∈ (𝐺 NeighbVtx 0) ↔ 𝑐 ∈ {1, 3, 5}) |
10 | | vex 3486 |
. . . . . . . . 9
⊢ 𝑐 ∈ V |
11 | 10 | eltp 4712 |
. . . . . . . 8
⊢ (𝑐 ∈ {1, 3, 5} ↔ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5)) |
12 | 9, 11 | bitri 275 |
. . . . . . 7
⊢ (𝑐 ∈ (𝐺 NeighbVtx 0) ↔ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5)) |
13 | | eqtr3 2760 |
. . . . . . . . . 10
⊢ ((𝑏 = 1 ∧ 𝑐 = 1) → 𝑏 = 𝑐) |
14 | 13 | orcd 872 |
. . . . . . . . 9
⊢ ((𝑏 = 1 ∧ 𝑐 = 1) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
15 | | ax-1ne0 11249 |
. . . . . . . . . . . . . . 15
⊢ 1 ≠
0 |
16 | | neeq1 3005 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 1 → (𝑏 ≠ 0 ↔ 1 ≠ 0)) |
17 | 15, 16 | mpbiri 258 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 1 → 𝑏 ≠ 0) |
18 | 17 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑏 ≠ 0) |
19 | 18 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑏 = 0) |
20 | 19 | orcd 872 |
. . . . . . . . . . 11
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
21 | | 3ne0 12395 |
. . . . . . . . . . . . . . 15
⊢ 3 ≠
0 |
22 | | neeq1 3005 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 3 → (𝑐 ≠ 0 ↔ 3 ≠ 0)) |
23 | 21, 22 | mpbiri 258 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 3 → 𝑐 ≠ 0) |
24 | 23 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑐 ≠ 0) |
25 | 24 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑐 = 0) |
26 | 25 | olcd 873 |
. . . . . . . . . . 11
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
27 | 19 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
28 | 25 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
29 | 27, 28 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
30 | | 2re 12363 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℝ |
31 | | 2lt3 12461 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 <
3 |
32 | 30, 31 | gtneii 11398 |
. . . . . . . . . . . . . . . . . 18
⊢ 3 ≠
2 |
33 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 3 → (𝑐 ≠ 2 ↔ 3 ≠ 2)) |
34 | 32, 33 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 3 → 𝑐 ≠ 2) |
35 | 34 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑐 ≠ 2) |
36 | 35 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑐 = 2) |
37 | 36 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
38 | | 1re 11286 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℝ |
39 | | 1lt3 12462 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 <
3 |
40 | 38, 39 | gtneii 11398 |
. . . . . . . . . . . . . . . . . 18
⊢ 3 ≠
1 |
41 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 3 → (𝑐 ≠ 1 ↔ 3 ≠ 1)) |
42 | 40, 41 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 3 → 𝑐 ≠ 1) |
43 | 42 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑐 ≠ 1) |
44 | 43 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑐 = 1) |
45 | 44 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
46 | 37, 45 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
47 | | 1ne2 12497 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ≠
2 |
48 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 1 → (𝑏 ≠ 2 ↔ 1 ≠ 2)) |
49 | 47, 48 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 1 → 𝑏 ≠ 2) |
50 | 49 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑏 ≠ 2) |
51 | 50 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑏 = 2) |
52 | 51 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
53 | 36 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
54 | 52, 53 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
55 | 29, 46, 54 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
56 | 38, 39 | ltneii 11399 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ≠
3 |
57 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 1 → (𝑏 ≠ 3 ↔ 1 ≠ 3)) |
58 | 56, 57 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 1 → 𝑏 ≠ 3) |
59 | 58 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑏 ≠ 3) |
60 | 59 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑏 = 3) |
61 | 60 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
62 | | 1lt4 12465 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 <
4 |
63 | 38, 62 | ltneii 11399 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ≠
4 |
64 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 1 → (𝑏 ≠ 4 ↔ 1 ≠ 4)) |
65 | 63, 64 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 1 → 𝑏 ≠ 4) |
66 | 65 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑏 ≠ 4) |
67 | 66 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑏 = 4) |
68 | 67 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
69 | 61, 68 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
70 | 67 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
71 | | 1lt5 12469 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 <
5 |
72 | 38, 71 | ltneii 11399 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ≠
5 |
73 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 1 → (𝑏 ≠ 5 ↔ 1 ≠ 5)) |
74 | 72, 73 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 1 → 𝑏 ≠ 5) |
75 | 74 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → 𝑏 ≠ 5) |
76 | 75 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ¬ 𝑏 = 5) |
77 | 76 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
78 | 70, 77 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
79 | 19 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
80 | 25 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
81 | 79, 80 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
82 | 69, 78, 81 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
83 | 55, 82 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
84 | 20, 26, 83 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
85 | 84 | olcd 873 |
. . . . . . . . 9
⊢ ((𝑏 = 1 ∧ 𝑐 = 3) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
86 | 17 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑏 ≠ 0) |
87 | 86 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑏 = 0) |
88 | 87 | orcd 872 |
. . . . . . . . . . 11
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
89 | 58 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑏 ≠ 3) |
90 | 89 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑏 = 3) |
91 | 90 | orcd 872 |
. . . . . . . . . . 11
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
92 | 87 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
93 | | 0re 11288 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℝ |
94 | | 5pos 12398 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 <
5 |
95 | 93, 94 | gtneii 11398 |
. . . . . . . . . . . . . . . . . 18
⊢ 5 ≠
0 |
96 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 5 → (𝑐 ≠ 0 ↔ 5 ≠ 0)) |
97 | 95, 96 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 5 → 𝑐 ≠ 0) |
98 | 97 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑐 ≠ 0) |
99 | 98 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑐 = 0) |
100 | 99 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
101 | 92, 100 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
102 | | 2lt5 12468 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 <
5 |
103 | 30, 102 | gtneii 11398 |
. . . . . . . . . . . . . . . . . 18
⊢ 5 ≠
2 |
104 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 5 → (𝑐 ≠ 2 ↔ 5 ≠ 2)) |
105 | 103, 104 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 5 → 𝑐 ≠ 2) |
106 | 105 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑐 ≠ 2) |
107 | 106 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑐 = 2) |
108 | 107 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
109 | 49 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑏 ≠ 2) |
110 | 109 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑏 = 2) |
111 | 110 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
112 | 108, 111 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
113 | 110 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
114 | 90 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
115 | 113, 114 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
116 | 101, 112,
115 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
117 | 90 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
118 | 65 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑏 ≠ 4) |
119 | 118 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑏 = 4) |
120 | 119 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
121 | 117, 120 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
122 | 119 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
123 | 74 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → 𝑏 ≠ 5) |
124 | 123 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ¬ 𝑏 = 5) |
125 | 124 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
126 | 122, 125 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
127 | 87 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
128 | 99 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
129 | 127, 128 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
130 | 121, 126,
129 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
131 | 116, 130 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
132 | 88, 91, 131 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
133 | 132 | olcd 873 |
. . . . . . . . 9
⊢ ((𝑏 = 1 ∧ 𝑐 = 5) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
134 | 14, 85, 133 | 3jaodan 1431 |
. . . . . . . 8
⊢ ((𝑏 = 1 ∧ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
135 | | neeq1 3005 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 3 → (𝑏 ≠ 0 ↔ 3 ≠ 0)) |
136 | 21, 135 | mpbiri 258 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 3 → 𝑏 ≠ 0) |
137 | 136 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑏 ≠ 0) |
138 | 137 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑏 = 0) |
139 | 138 | orcd 872 |
. . . . . . . . . . 11
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
140 | | neeq1 3005 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 1 → (𝑐 ≠ 0 ↔ 1 ≠ 0)) |
141 | 15, 140 | mpbiri 258 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 1 → 𝑐 ≠ 0) |
142 | 141 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑐 ≠ 0) |
143 | 142 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑐 = 0) |
144 | 143 | olcd 873 |
. . . . . . . . . . 11
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
145 | 138 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
146 | 143 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
147 | 145, 146 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
148 | 58 | necon2i 2977 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 3 → 𝑏 ≠ 1) |
149 | 148 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑏 ≠ 1) |
150 | 149 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑏 = 1) |
151 | 150 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
152 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 3 → (𝑏 ≠ 2 ↔ 3 ≠ 2)) |
153 | 32, 152 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 3 → 𝑏 ≠ 2) |
154 | 153 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑏 ≠ 2) |
155 | 154 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑏 = 2) |
156 | 155 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
157 | 151, 156 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
158 | 155 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
159 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 1 → (𝑐 ≠ 2 ↔ 1 ≠ 2)) |
160 | 47, 159 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 1 → 𝑐 ≠ 2) |
161 | 160 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑐 ≠ 2) |
162 | 161 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑐 = 2) |
163 | 162 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
164 | 158, 163 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
165 | 147, 157,
164 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
166 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 1 → (𝑐 ≠ 4 ↔ 1 ≠ 4)) |
167 | 63, 166 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 1 → 𝑐 ≠ 4) |
168 | 167 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑐 ≠ 4) |
169 | 168 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑐 = 4) |
170 | 169 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
171 | 42 | necon2i 2977 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 1 → 𝑐 ≠ 3) |
172 | 171 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑐 ≠ 3) |
173 | 172 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑐 = 3) |
174 | 173 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
175 | 170, 174 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
176 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 1 → (𝑐 ≠ 5 ↔ 1 ≠ 5)) |
177 | 72, 176 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 1 → 𝑐 ≠ 5) |
178 | 177 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → 𝑐 ≠ 5) |
179 | 178 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ¬ 𝑐 = 5) |
180 | 179 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
181 | 169 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
182 | 180, 181 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
183 | 138 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
184 | 143 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
185 | 183, 184 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
186 | 175, 182,
185 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
187 | 165, 186 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
188 | 139, 144,
187 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
189 | 188 | olcd 873 |
. . . . . . . . 9
⊢ ((𝑏 = 3 ∧ 𝑐 = 1) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
190 | | eqtr3 2760 |
. . . . . . . . . 10
⊢ ((𝑏 = 3 ∧ 𝑐 = 3) → 𝑏 = 𝑐) |
191 | 190 | orcd 872 |
. . . . . . . . 9
⊢ ((𝑏 = 3 ∧ 𝑐 = 3) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
192 | 136 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑏 ≠ 0) |
193 | 192 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑏 = 0) |
194 | 193 | orcd 872 |
. . . . . . . . . . 11
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
195 | 97 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑐 ≠ 0) |
196 | 195 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑐 = 0) |
197 | 196 | olcd 873 |
. . . . . . . . . . 11
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
198 | 193 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
199 | 196 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
200 | 198, 199 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
201 | 148 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑏 ≠ 1) |
202 | 201 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑏 = 1) |
203 | 202 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
204 | 177 | necon2i 2977 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 5 → 𝑐 ≠ 1) |
205 | 204 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑐 ≠ 1) |
206 | 205 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑐 = 1) |
207 | 206 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
208 | 203, 207 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
209 | 153 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑏 ≠ 2) |
210 | 209 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑏 = 2) |
211 | 210 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
212 | 105 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑐 ≠ 2) |
213 | 212 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑐 = 2) |
214 | 213 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
215 | 211, 214 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
216 | 200, 208,
215 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
217 | | 4re 12373 |
. . . . . . . . . . . . . . . . . . 19
⊢ 4 ∈
ℝ |
218 | | 4lt5 12466 |
. . . . . . . . . . . . . . . . . . 19
⊢ 4 <
5 |
219 | 217, 218 | gtneii 11398 |
. . . . . . . . . . . . . . . . . 18
⊢ 5 ≠
4 |
220 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 5 → (𝑐 ≠ 4 ↔ 5 ≠ 4)) |
221 | 219, 220 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 5 → 𝑐 ≠ 4) |
222 | 221 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑐 ≠ 4) |
223 | 222 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑐 = 4) |
224 | 223 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
225 | | 3re 12369 |
. . . . . . . . . . . . . . . . . . 19
⊢ 3 ∈
ℝ |
226 | | 3lt4 12463 |
. . . . . . . . . . . . . . . . . . 19
⊢ 3 <
4 |
227 | 225, 226 | ltneii 11399 |
. . . . . . . . . . . . . . . . . 18
⊢ 3 ≠
4 |
228 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 3 → (𝑏 ≠ 4 ↔ 3 ≠ 4)) |
229 | 227, 228 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 3 → 𝑏 ≠ 4) |
230 | 229 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → 𝑏 ≠ 4) |
231 | 230 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ¬ 𝑏 = 4) |
232 | 231 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
233 | 224, 232 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
234 | 231 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
235 | 223 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
236 | 234, 235 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
237 | 193 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
238 | 196 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
239 | 237, 238 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
240 | 233, 236,
239 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
241 | 216, 240 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
242 | 194, 197,
241 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
243 | 242 | olcd 873 |
. . . . . . . . 9
⊢ ((𝑏 = 3 ∧ 𝑐 = 5) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
244 | 189, 191,
243 | 3jaodan 1431 |
. . . . . . . 8
⊢ ((𝑏 = 3 ∧ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
245 | 171 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑐 ≠ 3) |
246 | 245 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑐 = 3) |
247 | 246 | olcd 873 |
. . . . . . . . . . 11
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
248 | 141 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑐 ≠ 0) |
249 | 248 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑐 = 0) |
250 | 249 | olcd 873 |
. . . . . . . . . . 11
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
251 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 5 → (𝑏 ≠ 0 ↔ 5 ≠ 0)) |
252 | 95, 251 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 5 → 𝑏 ≠ 0) |
253 | 252 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑏 ≠ 0) |
254 | 253 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑏 = 0) |
255 | 254 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
256 | 249 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
257 | 255, 256 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
258 | 74 | necon2i 2977 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 5 → 𝑏 ≠ 1) |
259 | 258 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑏 ≠ 1) |
260 | 259 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑏 = 1) |
261 | 260 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
262 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 5 → (𝑏 ≠ 2 ↔ 5 ≠ 2)) |
263 | 103, 262 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 5 → 𝑏 ≠ 2) |
264 | 263 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑏 ≠ 2) |
265 | 264 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑏 = 2) |
266 | 265 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
267 | 261, 266 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
268 | 246 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
269 | 160 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑐 ≠ 2) |
270 | 269 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑐 = 2) |
271 | 270 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
272 | 268, 271 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
273 | 257, 267,
272 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
274 | | 3lt5 12467 |
. . . . . . . . . . . . . . . . . . 19
⊢ 3 <
5 |
275 | 225, 274 | gtneii 11398 |
. . . . . . . . . . . . . . . . . 18
⊢ 5 ≠
3 |
276 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 5 → (𝑏 ≠ 3 ↔ 5 ≠ 3)) |
277 | 275, 276 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 5 → 𝑏 ≠ 3) |
278 | 277 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑏 ≠ 3) |
279 | 278 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑏 = 3) |
280 | 279 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
281 | 246 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
282 | 280, 281 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
283 | 177 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑐 ≠ 5) |
284 | 283 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑐 = 5) |
285 | 284 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
286 | 167 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → 𝑐 ≠ 4) |
287 | 286 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ¬ 𝑐 = 4) |
288 | 287 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
289 | 285, 288 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
290 | 254 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
291 | 249 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
292 | 290, 291 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
293 | 282, 289,
292 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
294 | 273, 293 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
295 | 247, 250,
294 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
296 | 295 | olcd 873 |
. . . . . . . . 9
⊢ ((𝑏 = 5 ∧ 𝑐 = 1) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
297 | 252 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑏 ≠ 0) |
298 | 297 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑏 = 0) |
299 | 298 | orcd 872 |
. . . . . . . . . . 11
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
300 | 23 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑐 ≠ 0) |
301 | 300 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑐 = 0) |
302 | 301 | olcd 873 |
. . . . . . . . . . 11
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
303 | 298 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
304 | 301 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
305 | 303, 304 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
306 | 258 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑏 ≠ 1) |
307 | 306 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑏 = 1) |
308 | 307 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
309 | 42 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑐 ≠ 1) |
310 | 309 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑐 = 1) |
311 | 310 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
312 | 308, 311 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
313 | 263 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑏 ≠ 2) |
314 | 313 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑏 = 2) |
315 | 314 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
316 | 277 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑏 ≠ 3) |
317 | 316 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑏 = 3) |
318 | 317 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
319 | 315, 318 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
320 | 305, 312,
319 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
321 | 317 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
322 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 5 → (𝑏 ≠ 4 ↔ 5 ≠ 4)) |
323 | 219, 322 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 5 → 𝑏 ≠ 4) |
324 | 323 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑏 ≠ 4) |
325 | 324 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑏 = 4) |
326 | 325 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
327 | 321, 326 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
328 | 325 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
329 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 3 → (𝑐 ≠ 4 ↔ 3 ≠ 4)) |
330 | 227, 329 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 3 → 𝑐 ≠ 4) |
331 | 330 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → 𝑐 ≠ 4) |
332 | 331 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ¬ 𝑐 = 4) |
333 | 332 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
334 | 328, 333 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
335 | 298 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
336 | 301 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
337 | 335, 336 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
338 | 327, 334,
337 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
339 | 320, 338 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
340 | 299, 302,
339 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
341 | 340 | olcd 873 |
. . . . . . . . 9
⊢ ((𝑏 = 5 ∧ 𝑐 = 3) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
342 | | eqtr3 2760 |
. . . . . . . . . 10
⊢ ((𝑏 = 5 ∧ 𝑐 = 5) → 𝑏 = 𝑐) |
343 | 342 | orcd 872 |
. . . . . . . . 9
⊢ ((𝑏 = 5 ∧ 𝑐 = 5) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
344 | 296, 341,
343 | 3jaodan 1431 |
. . . . . . . 8
⊢ ((𝑏 = 5 ∧ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
345 | 134, 244,
344 | 3jaoian 1430 |
. . . . . . 7
⊢ (((𝑏 = 1 ∨ 𝑏 = 3 ∨ 𝑏 = 5) ∧ (𝑐 = 1 ∨ 𝑐 = 3 ∨ 𝑐 = 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
346 | 8, 12, 345 | syl2anb 597 |
. . . . . 6
⊢ ((𝑏 ∈ (𝐺 NeighbVtx 0) ∧ 𝑐 ∈ (𝐺 NeighbVtx 0)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
347 | 346 | rgen2 3201 |
. . . . 5
⊢
∀𝑏 ∈
(𝐺 NeighbVtx
0)∀𝑐 ∈ (𝐺 NeighbVtx 0)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
348 | 1, 2, 3 | usgrexmpl2nb1 47767 |
. . . . . . . . 9
⊢ (𝐺 NeighbVtx 1) = {0,
2} |
349 | 348 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝐺 NeighbVtx 1) ↔ 𝑏 ∈ {0, 2}) |
350 | 6 | elpr 4672 |
. . . . . . . 8
⊢ (𝑏 ∈ {0, 2} ↔ (𝑏 = 0 ∨ 𝑏 = 2)) |
351 | 349, 350 | bitri 275 |
. . . . . . 7
⊢ (𝑏 ∈ (𝐺 NeighbVtx 1) ↔ (𝑏 = 0 ∨ 𝑏 = 2)) |
352 | 348 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑐 ∈ (𝐺 NeighbVtx 1) ↔ 𝑐 ∈ {0, 2}) |
353 | 10 | elpr 4672 |
. . . . . . . 8
⊢ (𝑐 ∈ {0, 2} ↔ (𝑐 = 0 ∨ 𝑐 = 2)) |
354 | 352, 353 | bitri 275 |
. . . . . . 7
⊢ (𝑐 ∈ (𝐺 NeighbVtx 1) ↔ (𝑐 = 0 ∨ 𝑐 = 2)) |
355 | | eqtr3 2760 |
. . . . . . . . 9
⊢ ((𝑏 = 0 ∧ 𝑐 = 0) → 𝑏 = 𝑐) |
356 | 355 | orcd 872 |
. . . . . . . 8
⊢ ((𝑏 = 0 ∧ 𝑐 = 0) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
357 | | 2ne0 12393 |
. . . . . . . . . . . . . 14
⊢ 2 ≠
0 |
358 | | neeq1 3005 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 2 → (𝑏 ≠ 0 ↔ 2 ≠ 0)) |
359 | 357, 358 | mpbiri 258 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 2 → 𝑏 ≠ 0) |
360 | 359 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑏 ≠ 0) |
361 | 360 | neneqd 2947 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑏 = 0) |
362 | 361 | orcd 872 |
. . . . . . . . . 10
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
363 | 153 | necon2i 2977 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 2 → 𝑏 ≠ 3) |
364 | 363 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑏 ≠ 3) |
365 | 364 | neneqd 2947 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑏 = 3) |
366 | 365 | orcd 872 |
. . . . . . . . . 10
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
367 | 361 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
368 | 49 | necon2i 2977 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 2 → 𝑏 ≠ 1) |
369 | 368 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑏 ≠ 1) |
370 | 369 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑏 = 1) |
371 | 370 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
372 | 367, 371 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
373 | 370 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
374 | 141 | necon2i 2977 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 0 → 𝑐 ≠ 1) |
375 | 374 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑐 ≠ 1) |
376 | 375 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑐 = 1) |
377 | 376 | olcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
378 | 373, 377 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
379 | 23 | necon2i 2977 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 0 → 𝑐 ≠ 3) |
380 | 379 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑐 ≠ 3) |
381 | 380 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑐 = 3) |
382 | 381 | olcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
383 | 365 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
384 | 382, 383 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
385 | 372, 378,
384 | 3jca 1128 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
386 | 365 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
387 | 381 | olcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
388 | 386, 387 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
389 | 97 | necon2i 2977 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 0 → 𝑐 ≠ 5) |
390 | 389 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑐 ≠ 5) |
391 | 390 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑐 = 5) |
392 | 391 | olcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
393 | | 4pos 12396 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 <
4 |
394 | 93, 393 | ltneii 11399 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ≠
4 |
395 | | neeq1 3005 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 0 → (𝑐 ≠ 4 ↔ 0 ≠ 4)) |
396 | 394, 395 | mpbiri 258 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 0 → 𝑐 ≠ 4) |
397 | 396 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑐 ≠ 4) |
398 | 397 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑐 = 4) |
399 | 398 | olcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
400 | 392, 399 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
401 | 361 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
402 | 263 | necon2i 2977 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 2 → 𝑏 ≠ 5) |
403 | 402 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → 𝑏 ≠ 5) |
404 | 403 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ¬ 𝑏 = 5) |
405 | 404 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
406 | 401, 405 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
407 | 388, 400,
406 | 3jca 1128 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
408 | 385, 407 | jca 511 |
. . . . . . . . . 10
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
409 | 362, 366,
408 | jca31 514 |
. . . . . . . . 9
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
410 | 409 | olcd 873 |
. . . . . . . 8
⊢ ((𝑏 = 2 ∧ 𝑐 = 0) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
411 | 34 | necon2i 2977 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 2 → 𝑐 ≠ 3) |
412 | 411 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑐 ≠ 3) |
413 | 412 | neneqd 2947 |
. . . . . . . . . . 11
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑐 = 3) |
414 | 413 | olcd 873 |
. . . . . . . . . 10
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
415 | | neeq1 3005 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 2 → (𝑐 ≠ 0 ↔ 2 ≠ 0)) |
416 | 357, 415 | mpbiri 258 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 2 → 𝑐 ≠ 0) |
417 | 416 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑐 ≠ 0) |
418 | 417 | neneqd 2947 |
. . . . . . . . . . 11
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑐 = 0) |
419 | 418 | olcd 873 |
. . . . . . . . . 10
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
420 | 160 | necon2i 2977 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 2 → 𝑐 ≠ 1) |
421 | 420 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑐 ≠ 1) |
422 | 421 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑐 = 1) |
423 | 422 | olcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
424 | 418 | olcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
425 | 423, 424 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
426 | 17 | necon2i 2977 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 0 → 𝑏 ≠ 1) |
427 | 426 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑏 ≠ 1) |
428 | 427 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑏 = 1) |
429 | 428 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
430 | 359 | necon2i 2977 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 0 → 𝑏 ≠ 2) |
431 | 430 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑏 ≠ 2) |
432 | 431 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑏 = 2) |
433 | 432 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
434 | 429, 433 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
435 | 413 | olcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
436 | 136 | necon2i 2977 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 0 → 𝑏 ≠ 3) |
437 | 436 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑏 ≠ 3) |
438 | 437 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑏 = 3) |
439 | 438 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
440 | 435, 439 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
441 | 425, 434,
440 | 3jca 1128 |
. . . . . . . . . . 11
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
442 | 438 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
443 | 413 | olcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
444 | 442, 443 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
445 | | neeq1 3005 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 0 → (𝑏 ≠ 4 ↔ 0 ≠ 4)) |
446 | 394, 445 | mpbiri 258 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 0 → 𝑏 ≠ 4) |
447 | 446 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑏 ≠ 4) |
448 | 447 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑏 = 4) |
449 | 448 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
450 | 252 | necon2i 2977 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 0 → 𝑏 ≠ 5) |
451 | 450 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑏 ≠ 5) |
452 | 451 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑏 = 5) |
453 | 452 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
454 | 449, 453 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
455 | 105 | necon2i 2977 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 2 → 𝑐 ≠ 5) |
456 | 455 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → 𝑐 ≠ 5) |
457 | 456 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ¬ 𝑐 = 5) |
458 | 457 | olcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
459 | 418 | olcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
460 | 458, 459 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
461 | 444, 454,
460 | 3jca 1128 |
. . . . . . . . . . 11
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
462 | 441, 461 | jca 511 |
. . . . . . . . . 10
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
463 | 414, 419,
462 | jca31 514 |
. . . . . . . . 9
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
464 | 463 | olcd 873 |
. . . . . . . 8
⊢ ((𝑏 = 0 ∧ 𝑐 = 2) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
465 | 359 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑏 ≠ 0) |
466 | 465 | neneqd 2947 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑏 = 0) |
467 | 466 | orcd 872 |
. . . . . . . . . 10
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
468 | 416 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑐 ≠ 0) |
469 | 468 | neneqd 2947 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑐 = 0) |
470 | 469 | olcd 873 |
. . . . . . . . . 10
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
471 | 466 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
472 | 469 | olcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
473 | 471, 472 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
474 | 368 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑏 ≠ 1) |
475 | 474 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑏 = 1) |
476 | 475 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
477 | 420 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑐 ≠ 1) |
478 | 477 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑐 = 1) |
479 | 478 | olcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
480 | 476, 479 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
481 | 411 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑐 ≠ 3) |
482 | 481 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑐 = 3) |
483 | 482 | olcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
484 | 363 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑏 ≠ 3) |
485 | 484 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑏 = 3) |
486 | 485 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
487 | 483, 486 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
488 | 473, 480,
487 | 3jca 1128 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
489 | 485 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
490 | | 2lt4 12464 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 <
4 |
491 | 30, 490 | ltneii 11399 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ≠
4 |
492 | | neeq1 3005 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 2 → (𝑏 ≠ 4 ↔ 2 ≠ 4)) |
493 | 491, 492 | mpbiri 258 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 2 → 𝑏 ≠ 4) |
494 | 493 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑏 ≠ 4) |
495 | 494 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑏 = 4) |
496 | 495 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
497 | 489, 496 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
498 | 495 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
499 | 402 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → 𝑏 ≠ 5) |
500 | 499 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ¬ 𝑏 = 5) |
501 | 500 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
502 | 498, 501 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
503 | 466 | orcd 872 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
504 | 469 | olcd 873 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
505 | 503, 504 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
506 | 497, 502,
505 | 3jca 1128 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
507 | 488, 506 | jca 511 |
. . . . . . . . . 10
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
508 | 467, 470,
507 | jca31 514 |
. . . . . . . . 9
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
509 | 508 | olcd 873 |
. . . . . . . 8
⊢ ((𝑏 = 2 ∧ 𝑐 = 2) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
510 | 356, 410,
464, 509 | ccase 1038 |
. . . . . . 7
⊢ (((𝑏 = 0 ∨ 𝑏 = 2) ∧ (𝑐 = 0 ∨ 𝑐 = 2)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
511 | 351, 354,
510 | syl2anb 597 |
. . . . . 6
⊢ ((𝑏 ∈ (𝐺 NeighbVtx 1) ∧ 𝑐 ∈ (𝐺 NeighbVtx 1)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
512 | 511 | rgen2 3201 |
. . . . 5
⊢
∀𝑏 ∈
(𝐺 NeighbVtx
1)∀𝑐 ∈ (𝐺 NeighbVtx 1)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
513 | 1, 2, 3 | usgrexmpl2nb2 47768 |
. . . . . . . . 9
⊢ (𝐺 NeighbVtx 2) = {1,
3} |
514 | 513 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝐺 NeighbVtx 2) ↔ 𝑏 ∈ {1, 3}) |
515 | 6 | elpr 4672 |
. . . . . . . 8
⊢ (𝑏 ∈ {1, 3} ↔ (𝑏 = 1 ∨ 𝑏 = 3)) |
516 | 514, 515 | bitri 275 |
. . . . . . 7
⊢ (𝑏 ∈ (𝐺 NeighbVtx 2) ↔ (𝑏 = 1 ∨ 𝑏 = 3)) |
517 | 513 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑐 ∈ (𝐺 NeighbVtx 2) ↔ 𝑐 ∈ {1, 3}) |
518 | 10 | elpr 4672 |
. . . . . . . 8
⊢ (𝑐 ∈ {1, 3} ↔ (𝑐 = 1 ∨ 𝑐 = 3)) |
519 | 517, 518 | bitri 275 |
. . . . . . 7
⊢ (𝑐 ∈ (𝐺 NeighbVtx 2) ↔ (𝑐 = 1 ∨ 𝑐 = 3)) |
520 | 14, 189, 85, 191 | ccase 1038 |
. . . . . . 7
⊢ (((𝑏 = 1 ∨ 𝑏 = 3) ∧ (𝑐 = 1 ∨ 𝑐 = 3)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
521 | 516, 519,
520 | syl2anb 597 |
. . . . . 6
⊢ ((𝑏 ∈ (𝐺 NeighbVtx 2) ∧ 𝑐 ∈ (𝐺 NeighbVtx 2)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
522 | 521 | rgen2 3201 |
. . . . 5
⊢
∀𝑏 ∈
(𝐺 NeighbVtx
2)∀𝑐 ∈ (𝐺 NeighbVtx 2)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
523 | | c0ex 11280 |
. . . . . 6
⊢ 0 ∈
V |
524 | | 1ex 11282 |
. . . . . 6
⊢ 1 ∈
V |
525 | | 2ex 12366 |
. . . . . 6
⊢ 2 ∈
V |
526 | | oveq2 7453 |
. . . . . . 7
⊢ (𝑎 = 0 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 0)) |
527 | 526 | raleqdv 3329 |
. . . . . . 7
⊢ (𝑎 = 0 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 0)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
528 | 526, 527 | raleqbidv 3349 |
. . . . . 6
⊢ (𝑎 = 0 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 0)∀𝑐 ∈ (𝐺 NeighbVtx 0)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
529 | | oveq2 7453 |
. . . . . . 7
⊢ (𝑎 = 1 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 1)) |
530 | 529 | raleqdv 3329 |
. . . . . . 7
⊢ (𝑎 = 1 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 1)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
531 | 529, 530 | raleqbidv 3349 |
. . . . . 6
⊢ (𝑎 = 1 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 1)∀𝑐 ∈ (𝐺 NeighbVtx 1)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
532 | | oveq2 7453 |
. . . . . . 7
⊢ (𝑎 = 2 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 2)) |
533 | 532 | raleqdv 3329 |
. . . . . . 7
⊢ (𝑎 = 2 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 2)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
534 | 532, 533 | raleqbidv 3349 |
. . . . . 6
⊢ (𝑎 = 2 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 2)∀𝑐 ∈ (𝐺 NeighbVtx 2)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
535 | 523, 524,
525, 528, 531, 534 | raltp 4730 |
. . . . 5
⊢
(∀𝑎 ∈
{0, 1, 2}∀𝑏 ∈
(𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ (∀𝑏 ∈ (𝐺 NeighbVtx 0)∀𝑐 ∈ (𝐺 NeighbVtx 0)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ∧ ∀𝑏 ∈ (𝐺 NeighbVtx 1)∀𝑐 ∈ (𝐺 NeighbVtx 1)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ∧ ∀𝑏 ∈ (𝐺 NeighbVtx 2)∀𝑐 ∈ (𝐺 NeighbVtx 2)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
536 | 347, 512,
522, 535 | mpbir3an 1341 |
. . . 4
⊢
∀𝑎 ∈ {0,
1, 2}∀𝑏 ∈
(𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
537 | 1, 2, 3 | usgrexmpl2nb3 47769 |
. . . . . . . . 9
⊢ (𝐺 NeighbVtx 3) = {0, 2,
4} |
538 | 537 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝐺 NeighbVtx 3) ↔ 𝑏 ∈ {0, 2, 4}) |
539 | 6 | eltp 4712 |
. . . . . . . 8
⊢ (𝑏 ∈ {0, 2, 4} ↔ (𝑏 = 0 ∨ 𝑏 = 2 ∨ 𝑏 = 4)) |
540 | 538, 539 | bitri 275 |
. . . . . . 7
⊢ (𝑏 ∈ (𝐺 NeighbVtx 3) ↔ (𝑏 = 0 ∨ 𝑏 = 2 ∨ 𝑏 = 4)) |
541 | 537 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑐 ∈ (𝐺 NeighbVtx 3) ↔ 𝑐 ∈ {0, 2, 4}) |
542 | 10 | eltp 4712 |
. . . . . . . 8
⊢ (𝑐 ∈ {0, 2, 4} ↔ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4)) |
543 | 541, 542 | bitri 275 |
. . . . . . 7
⊢ (𝑐 ∈ (𝐺 NeighbVtx 3) ↔ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4)) |
544 | 330 | necon2i 2977 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 4 → 𝑐 ≠ 3) |
545 | 544 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑐 ≠ 3) |
546 | 545 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑐 = 3) |
547 | 546 | olcd 873 |
. . . . . . . . . . 11
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
548 | 436 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑏 ≠ 3) |
549 | 548 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑏 = 3) |
550 | 549 | orcd 872 |
. . . . . . . . . . 11
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
551 | 167 | necon2i 2977 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 4 → 𝑐 ≠ 1) |
552 | 551 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑐 ≠ 1) |
553 | 552 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑐 = 1) |
554 | 553 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
555 | 426 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑏 ≠ 1) |
556 | 555 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑏 = 1) |
557 | 556 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
558 | 554, 557 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
559 | 556 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
560 | 430 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑏 ≠ 2) |
561 | 560 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑏 = 2) |
562 | 561 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
563 | 559, 562 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
564 | 546 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
565 | 549 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
566 | 564, 565 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
567 | 558, 563,
566 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
568 | 549 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
569 | 546 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
570 | 568, 569 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
571 | 446 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑏 ≠ 4) |
572 | 571 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑏 = 4) |
573 | 572 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
574 | 450 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑏 ≠ 5) |
575 | 574 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑏 = 5) |
576 | 575 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
577 | 573, 576 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
578 | 221 | necon2i 2977 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 4 → 𝑐 ≠ 5) |
579 | 578 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑐 ≠ 5) |
580 | 579 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑐 = 5) |
581 | 580 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
582 | 396 | necon2i 2977 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 4 → 𝑐 ≠ 0) |
583 | 582 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → 𝑐 ≠ 0) |
584 | 583 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ¬ 𝑐 = 0) |
585 | 584 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
586 | 581, 585 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
587 | 570, 577,
586 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
588 | 567, 587 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
589 | 547, 550,
588 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
590 | 589 | olcd 873 |
. . . . . . . . 9
⊢ ((𝑏 = 0 ∧ 𝑐 = 4) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
591 | 356, 464,
590 | 3jaodan 1431 |
. . . . . . . 8
⊢ ((𝑏 = 0 ∧ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
592 | 359 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑏 ≠ 0) |
593 | 592 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑏 = 0) |
594 | 593 | orcd 872 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
595 | 582 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑐 ≠ 0) |
596 | 595 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑐 = 0) |
597 | 596 | olcd 873 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
598 | 593 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
599 | 596 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
600 | 598, 599 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
601 | 368 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑏 ≠ 1) |
602 | 601 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑏 = 1) |
603 | 602 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
604 | 551 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑐 ≠ 1) |
605 | 604 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑐 = 1) |
606 | 605 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
607 | 603, 606 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
608 | 544 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑐 ≠ 3) |
609 | 608 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑐 = 3) |
610 | 609 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
611 | 363 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑏 ≠ 3) |
612 | 611 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑏 = 3) |
613 | 612 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
614 | 610, 613 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
615 | 600, 607,
614 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
616 | 612 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
617 | 609 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
618 | 616, 617 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
619 | 493 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑏 ≠ 4) |
620 | 619 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑏 = 4) |
621 | 620 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
622 | 402 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → 𝑏 ≠ 5) |
623 | 622 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ¬ 𝑏 = 5) |
624 | 623 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
625 | 621, 624 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
626 | 593 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
627 | 596 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
628 | 626, 627 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
629 | 618, 625,
628 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
630 | 615, 629 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
631 | 594, 597,
630 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
632 | 631 | olcd 873 |
. . . . . . . . 9
⊢ ((𝑏 = 2 ∧ 𝑐 = 4) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
633 | 410, 509,
632 | 3jaodan 1431 |
. . . . . . . 8
⊢ ((𝑏 = 2 ∧ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
634 | 446 | necon2i 2977 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 4 → 𝑏 ≠ 0) |
635 | 634 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑏 ≠ 0) |
636 | 635 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑏 = 0) |
637 | 636 | orcd 872 |
. . . . . . . . . . 11
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
638 | 229 | necon2i 2977 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 4 → 𝑏 ≠ 3) |
639 | 638 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑏 ≠ 3) |
640 | 639 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑏 = 3) |
641 | 640 | orcd 872 |
. . . . . . . . . . 11
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
642 | 636 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
643 | 65 | necon2i 2977 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 4 → 𝑏 ≠ 1) |
644 | 643 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑏 ≠ 1) |
645 | 644 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑏 = 1) |
646 | 645 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
647 | 642, 646 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
648 | 416 | necon2i 2977 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 0 → 𝑐 ≠ 2) |
649 | 648 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑐 ≠ 2) |
650 | 649 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑐 = 2) |
651 | 650 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
652 | 374 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑐 ≠ 1) |
653 | 652 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑐 = 1) |
654 | 653 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
655 | 651, 654 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
656 | 379 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑐 ≠ 3) |
657 | 656 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑐 = 3) |
658 | 657 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
659 | 640 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
660 | 658, 659 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
661 | 647, 655,
660 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
662 | 640 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
663 | 657 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
664 | 662, 663 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
665 | 389 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑐 ≠ 5) |
666 | 665 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑐 = 5) |
667 | 666 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
668 | 396 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑐 ≠ 4) |
669 | 668 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑐 = 4) |
670 | 669 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
671 | 667, 670 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
672 | 636 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
673 | 323 | necon2i 2977 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 4 → 𝑏 ≠ 5) |
674 | 673 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → 𝑏 ≠ 5) |
675 | 674 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ¬ 𝑏 = 5) |
676 | 675 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
677 | 672, 676 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
678 | 664, 671,
677 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
679 | 661, 678 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
680 | 637, 641,
679 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
681 | 680 | olcd 873 |
. . . . . . . . 9
⊢ ((𝑏 = 4 ∧ 𝑐 = 0) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
682 | 634 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑏 ≠ 0) |
683 | 682 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑏 = 0) |
684 | 683 | orcd 872 |
. . . . . . . . . . 11
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
685 | 416 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑐 ≠ 0) |
686 | 685 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑐 = 0) |
687 | 686 | olcd 873 |
. . . . . . . . . . 11
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
688 | 683 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
689 | 686 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
690 | 688, 689 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
691 | 643 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑏 ≠ 1) |
692 | 691 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑏 = 1) |
693 | 692 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
694 | 420 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑐 ≠ 1) |
695 | 694 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑐 = 1) |
696 | 695 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
697 | 693, 696 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
698 | 493 | necon2i 2977 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 4 → 𝑏 ≠ 2) |
699 | 698 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑏 ≠ 2) |
700 | 699 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑏 = 2) |
701 | 700 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
702 | 638 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑏 ≠ 3) |
703 | 702 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑏 = 3) |
704 | 703 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
705 | 701, 704 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
706 | 690, 697,
705 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
707 | 703 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
708 | 411 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑐 ≠ 3) |
709 | 708 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑐 = 3) |
710 | 709 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
711 | 707, 710 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
712 | 455 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑐 ≠ 5) |
713 | 712 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑐 = 5) |
714 | 713 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
715 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 2 → (𝑐 ≠ 4 ↔ 2 ≠ 4)) |
716 | 491, 715 | mpbiri 258 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 2 → 𝑐 ≠ 4) |
717 | 716 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → 𝑐 ≠ 4) |
718 | 717 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ¬ 𝑐 = 4) |
719 | 718 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
720 | 714, 719 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
721 | 683 | orcd 872 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
722 | 686 | olcd 873 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
723 | 721, 722 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
724 | 711, 720,
723 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
725 | 706, 724 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
726 | 684, 687,
725 | jca31 514 |
. . . . . . . . . 10
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
727 | 726 | olcd 873 |
. . . . . . . . 9
⊢ ((𝑏 = 4 ∧ 𝑐 = 2) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
728 | | eqtr3 2760 |
. . . . . . . . . 10
⊢ ((𝑏 = 4 ∧ 𝑐 = 4) → 𝑏 = 𝑐) |
729 | 728 | orcd 872 |
. . . . . . . . 9
⊢ ((𝑏 = 4 ∧ 𝑐 = 4) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
730 | 681, 727,
729 | 3jaodan 1431 |
. . . . . . . 8
⊢ ((𝑏 = 4 ∧ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
731 | 591, 633,
730 | 3jaoian 1430 |
. . . . . . 7
⊢ (((𝑏 = 0 ∨ 𝑏 = 2 ∨ 𝑏 = 4) ∧ (𝑐 = 0 ∨ 𝑐 = 2 ∨ 𝑐 = 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
732 | 540, 543,
731 | syl2anb 597 |
. . . . . 6
⊢ ((𝑏 ∈ (𝐺 NeighbVtx 3) ∧ 𝑐 ∈ (𝐺 NeighbVtx 3)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
733 | 732 | rgen2 3201 |
. . . . 5
⊢
∀𝑏 ∈
(𝐺 NeighbVtx
3)∀𝑐 ∈ (𝐺 NeighbVtx 3)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
734 | 1, 2, 3 | usgrexmpl2nb4 47770 |
. . . . . . . . 9
⊢ (𝐺 NeighbVtx 4) = {3,
5} |
735 | 734 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝐺 NeighbVtx 4) ↔ 𝑏 ∈ {3, 5}) |
736 | 6 | elpr 4672 |
. . . . . . . 8
⊢ (𝑏 ∈ {3, 5} ↔ (𝑏 = 3 ∨ 𝑏 = 5)) |
737 | 735, 736 | bitri 275 |
. . . . . . 7
⊢ (𝑏 ∈ (𝐺 NeighbVtx 4) ↔ (𝑏 = 3 ∨ 𝑏 = 5)) |
738 | 734 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑐 ∈ (𝐺 NeighbVtx 4) ↔ 𝑐 ∈ {3, 5}) |
739 | 10 | elpr 4672 |
. . . . . . . 8
⊢ (𝑐 ∈ {3, 5} ↔ (𝑐 = 3 ∨ 𝑐 = 5)) |
740 | 738, 739 | bitri 275 |
. . . . . . 7
⊢ (𝑐 ∈ (𝐺 NeighbVtx 4) ↔ (𝑐 = 3 ∨ 𝑐 = 5)) |
741 | 191, 341,
243, 343 | ccase 1038 |
. . . . . . 7
⊢ (((𝑏 = 3 ∨ 𝑏 = 5) ∧ (𝑐 = 3 ∨ 𝑐 = 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
742 | 737, 740,
741 | syl2anb 597 |
. . . . . 6
⊢ ((𝑏 ∈ (𝐺 NeighbVtx 4) ∧ 𝑐 ∈ (𝐺 NeighbVtx 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
743 | 742 | rgen2 3201 |
. . . . 5
⊢
∀𝑏 ∈
(𝐺 NeighbVtx
4)∀𝑐 ∈ (𝐺 NeighbVtx 4)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
744 | 1, 2, 3 | usgrexmpl2nb5 47771 |
. . . . . . . . 9
⊢ (𝐺 NeighbVtx 5) = {0,
4} |
745 | 744 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝐺 NeighbVtx 5) ↔ 𝑏 ∈ {0, 4}) |
746 | 6 | elpr 4672 |
. . . . . . . 8
⊢ (𝑏 ∈ {0, 4} ↔ (𝑏 = 0 ∨ 𝑏 = 4)) |
747 | 745, 746 | bitri 275 |
. . . . . . 7
⊢ (𝑏 ∈ (𝐺 NeighbVtx 5) ↔ (𝑏 = 0 ∨ 𝑏 = 4)) |
748 | 744 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑐 ∈ (𝐺 NeighbVtx 5) ↔ 𝑐 ∈ {0, 4}) |
749 | 10 | elpr 4672 |
. . . . . . . 8
⊢ (𝑐 ∈ {0, 4} ↔ (𝑐 = 0 ∨ 𝑐 = 4)) |
750 | 748, 749 | bitri 275 |
. . . . . . 7
⊢ (𝑐 ∈ (𝐺 NeighbVtx 5) ↔ (𝑐 = 0 ∨ 𝑐 = 4)) |
751 | 356, 681,
590, 729 | ccase 1038 |
. . . . . . 7
⊢ (((𝑏 = 0 ∨ 𝑏 = 4) ∧ (𝑐 = 0 ∨ 𝑐 = 4)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
752 | 747, 750,
751 | syl2anb 597 |
. . . . . 6
⊢ ((𝑏 ∈ (𝐺 NeighbVtx 5) ∧ 𝑐 ∈ (𝐺 NeighbVtx 5)) → (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
753 | 752 | rgen2 3201 |
. . . . 5
⊢
∀𝑏 ∈
(𝐺 NeighbVtx
5)∀𝑐 ∈ (𝐺 NeighbVtx 5)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
754 | | 3ex 12371 |
. . . . . 6
⊢ 3 ∈
V |
755 | | 4nn0 12568 |
. . . . . . 7
⊢ 4 ∈
ℕ0 |
756 | 755 | elexi 3506 |
. . . . . 6
⊢ 4 ∈
V |
757 | | 5nn0 12569 |
. . . . . . 7
⊢ 5 ∈
ℕ0 |
758 | 757 | elexi 3506 |
. . . . . 6
⊢ 5 ∈
V |
759 | | oveq2 7453 |
. . . . . . 7
⊢ (𝑎 = 3 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 3)) |
760 | 759 | raleqdv 3329 |
. . . . . . 7
⊢ (𝑎 = 3 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 3)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
761 | 759, 760 | raleqbidv 3349 |
. . . . . 6
⊢ (𝑎 = 3 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 3)∀𝑐 ∈ (𝐺 NeighbVtx 3)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
762 | | oveq2 7453 |
. . . . . . 7
⊢ (𝑎 = 4 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 4)) |
763 | 762 | raleqdv 3329 |
. . . . . . 7
⊢ (𝑎 = 4 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 4)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
764 | 762, 763 | raleqbidv 3349 |
. . . . . 6
⊢ (𝑎 = 4 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 4)∀𝑐 ∈ (𝐺 NeighbVtx 4)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
765 | | oveq2 7453 |
. . . . . . 7
⊢ (𝑎 = 5 → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 5)) |
766 | 765 | raleqdv 3329 |
. . . . . . 7
⊢ (𝑎 = 5 → (∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑐 ∈ (𝐺 NeighbVtx 5)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
767 | 765, 766 | raleqbidv 3349 |
. . . . . 6
⊢ (𝑎 = 5 → (∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑏 ∈ (𝐺 NeighbVtx 5)∀𝑐 ∈ (𝐺 NeighbVtx 5)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
768 | 754, 756,
758, 761, 764, 767 | raltp 4730 |
. . . . 5
⊢
(∀𝑎 ∈
{3, 4, 5}∀𝑏 ∈
(𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ (∀𝑏 ∈ (𝐺 NeighbVtx 3)∀𝑐 ∈ (𝐺 NeighbVtx 3)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ∧ ∀𝑏 ∈ (𝐺 NeighbVtx 4)∀𝑐 ∈ (𝐺 NeighbVtx 4)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ∧ ∀𝑏 ∈ (𝐺 NeighbVtx 5)∀𝑐 ∈ (𝐺 NeighbVtx 5)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
769 | 733, 743,
753, 768 | mpbir3an 1341 |
. . . 4
⊢
∀𝑎 ∈ {3,
4, 5}∀𝑏 ∈
(𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
770 | | ralunb 4214 |
. . . 4
⊢
(∀𝑎 ∈
({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ (∀𝑎 ∈ {0, 1, 2}∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ∧ ∀𝑎 ∈ {3, 4, 5}∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))))) |
771 | 536, 769,
770 | mpbir2an 710 |
. . 3
⊢
∀𝑎 ∈
({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
772 | | ianor 982 |
. . . . . 6
⊢ (¬
(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))) ↔ (¬ 𝑏 ≠ 𝑐 ∨ ¬ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))) |
773 | | nne 2946 |
. . . . . . 7
⊢ (¬
𝑏 ≠ 𝑐 ↔ 𝑏 = 𝑐) |
774 | | ioran 984 |
. . . . . . . . . 10
⊢ (¬
(((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))) ↔ (¬ ((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∧ ¬ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))))) |
775 | | ioran 984 |
. . . . . . . . . . . 12
⊢ (¬
((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ↔ (¬ (𝑏 = 0 ∧ 𝑐 = 3) ∧ ¬ (𝑏 = 3 ∧ 𝑐 = 0))) |
776 | | ianor 982 |
. . . . . . . . . . . . 13
⊢ (¬
(𝑏 = 0 ∧ 𝑐 = 3) ↔ (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3)) |
777 | | ianor 982 |
. . . . . . . . . . . . 13
⊢ (¬
(𝑏 = 3 ∧ 𝑐 = 0) ↔ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) |
778 | 776, 777 | anbi12i 627 |
. . . . . . . . . . . 12
⊢ ((¬
(𝑏 = 0 ∧ 𝑐 = 3) ∧ ¬ (𝑏 = 3 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))) |
779 | 775, 778 | bitri 275 |
. . . . . . . . . . 11
⊢ (¬
((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0))) |
780 | | ioran 984 |
. . . . . . . . . . . 12
⊢ (¬
((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))) ↔ (¬ (((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∧ ¬ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))) |
781 | | 3ioran 1106 |
. . . . . . . . . . . . . 14
⊢ (¬
(((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ↔ (¬ ((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∧ ¬ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∧ ¬ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2)))) |
782 | | ioran 984 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ↔ (¬ (𝑏 = 0 ∧ 𝑐 = 1) ∧ ¬ (𝑏 = 1 ∧ 𝑐 = 0))) |
783 | | ianor 982 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 0 ∧ 𝑐 = 1) ↔ (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1)) |
784 | | ianor 982 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 1 ∧ 𝑐 = 0) ↔ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) |
785 | 783, 784 | anbi12i 627 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
(𝑏 = 0 ∧ 𝑐 = 1) ∧ ¬ (𝑏 = 1 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
786 | 782, 785 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0))) |
787 | | ioran 984 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ↔ (¬ (𝑏 = 1 ∧ 𝑐 = 2) ∧ ¬ (𝑏 = 2 ∧ 𝑐 = 1))) |
788 | | ianor 982 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 1 ∧ 𝑐 = 2) ↔ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2)) |
789 | | ianor 982 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 2 ∧ 𝑐 = 1) ↔ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) |
790 | 788, 789 | anbi12i 627 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
(𝑏 = 1 ∧ 𝑐 = 2) ∧ ¬ (𝑏 = 2 ∧ 𝑐 = 1)) ↔ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
791 | 787, 790 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ↔ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1))) |
792 | | ioran 984 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2)) ↔ (¬ (𝑏 = 2 ∧ 𝑐 = 3) ∧ ¬ (𝑏 = 3 ∧ 𝑐 = 2))) |
793 | | ianor 982 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 2 ∧ 𝑐 = 3) ↔ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3)) |
794 | | ianor 982 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 3 ∧ 𝑐 = 2) ↔ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)) |
795 | 793, 794 | anbi12i 627 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
(𝑏 = 2 ∧ 𝑐 = 3) ∧ ¬ (𝑏 = 3 ∧ 𝑐 = 2)) ↔ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
796 | 792, 795 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2)) ↔ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) |
797 | 786, 791,
796 | 3anbi123i 1155 |
. . . . . . . . . . . . . 14
⊢ ((¬
((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∧ ¬ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∧ ¬ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
798 | 781, 797 | bitri 275 |
. . . . . . . . . . . . 13
⊢ (¬
(((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2)))) |
799 | | 3ioran 1106 |
. . . . . . . . . . . . . 14
⊢ (¬
(((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))) ↔ (¬ ((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∧ ¬ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∧ ¬ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))) |
800 | | ioran 984 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ↔ (¬ (𝑏 = 3 ∧ 𝑐 = 4) ∧ ¬ (𝑏 = 4 ∧ 𝑐 = 3))) |
801 | | ianor 982 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 3 ∧ 𝑐 = 4) ↔ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4)) |
802 | | ianor 982 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 4 ∧ 𝑐 = 3) ↔ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) |
803 | 801, 802 | anbi12i 627 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
(𝑏 = 3 ∧ 𝑐 = 4) ∧ ¬ (𝑏 = 4 ∧ 𝑐 = 3)) ↔ ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
804 | 800, 803 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ↔ ((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3))) |
805 | | ioran 984 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ↔ (¬ (𝑏 = 4 ∧ 𝑐 = 5) ∧ ¬ (𝑏 = 5 ∧ 𝑐 = 4))) |
806 | | ianor 982 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 4 ∧ 𝑐 = 5) ↔ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5)) |
807 | | ianor 982 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 5 ∧ 𝑐 = 4) ↔ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) |
808 | 806, 807 | anbi12i 627 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
(𝑏 = 4 ∧ 𝑐 = 5) ∧ ¬ (𝑏 = 5 ∧ 𝑐 = 4)) ↔ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
809 | 805, 808 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ↔ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4))) |
810 | | ioran 984 |
. . . . . . . . . . . . . . . 16
⊢ (¬
((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)) ↔ (¬ (𝑏 = 0 ∧ 𝑐 = 5) ∧ ¬ (𝑏 = 5 ∧ 𝑐 = 0))) |
811 | | ianor 982 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 0 ∧ 𝑐 = 5) ↔ (¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5)) |
812 | | ianor 982 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑏 = 5 ∧ 𝑐 = 0) ↔ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)) |
813 | 811, 812 | anbi12i 627 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
(𝑏 = 0 ∧ 𝑐 = 5) ∧ ¬ (𝑏 = 5 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
814 | 810, 813 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢ (¬
((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)) ↔ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))) |
815 | 804, 809,
814 | 3anbi123i 1155 |
. . . . . . . . . . . . . 14
⊢ ((¬
((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∧ ¬ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∧ ¬ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))) ↔ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
816 | 799, 815 | bitri 275 |
. . . . . . . . . . . . 13
⊢ (¬
(((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))) ↔ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))) |
817 | 798, 816 | anbi12i 627 |
. . . . . . . . . . . 12
⊢ ((¬
(((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∧ ¬ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))) ↔ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
818 | 780, 817 | bitri 275 |
. . . . . . . . . . 11
⊢ (¬
((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))) ↔ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))) |
819 | 779, 818 | anbi12i 627 |
. . . . . . . . . 10
⊢ ((¬
((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∧ ¬ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
820 | 774, 819 | bitri 275 |
. . . . . . . . 9
⊢ (¬
(((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
821 | 6, 10, 523, 524 | preq12b 4875 |
. . . . . . . . . . . 12
⊢ ({𝑏, 𝑐} = {0, 1} ↔ ((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0))) |
822 | 6, 10, 524, 525 | preq12b 4875 |
. . . . . . . . . . . 12
⊢ ({𝑏, 𝑐} = {1, 2} ↔ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1))) |
823 | 6, 10, 525, 754 | preq12b 4875 |
. . . . . . . . . . . 12
⊢ ({𝑏, 𝑐} = {2, 3} ↔ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) |
824 | 821, 822,
823 | 3orbi123i 1156 |
. . . . . . . . . . 11
⊢ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ↔ (((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2)))) |
825 | 6, 10, 754, 756 | preq12b 4875 |
. . . . . . . . . . . 12
⊢ ({𝑏, 𝑐} = {3, 4} ↔ ((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3))) |
826 | 6, 10, 756, 758 | preq12b 4875 |
. . . . . . . . . . . 12
⊢ ({𝑏, 𝑐} = {4, 5} ↔ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4))) |
827 | 6, 10, 523, 758 | preq12b 4875 |
. . . . . . . . . . . 12
⊢ ({𝑏, 𝑐} = {0, 5} ↔ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))) |
828 | 825, 826,
827 | 3orbi123i 1156 |
. . . . . . . . . . 11
⊢ (({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}) ↔ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))) |
829 | 824, 828 | orbi12i 913 |
. . . . . . . . . 10
⊢ ((({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5})) ↔ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0))))) |
830 | 829 | orbi2i 911 |
. . . . . . . . 9
⊢ ((((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}))) ↔ (((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ ((((𝑏 = 0 ∧ 𝑐 = 1) ∨ (𝑏 = 1 ∧ 𝑐 = 0)) ∨ ((𝑏 = 1 ∧ 𝑐 = 2) ∨ (𝑏 = 2 ∧ 𝑐 = 1)) ∨ ((𝑏 = 2 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 2))) ∨ (((𝑏 = 3 ∧ 𝑐 = 4) ∨ (𝑏 = 4 ∧ 𝑐 = 3)) ∨ ((𝑏 = 4 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 4)) ∨ ((𝑏 = 0 ∧ 𝑐 = 5) ∨ (𝑏 = 5 ∧ 𝑐 = 0)))))) |
831 | 820, 830 | xchnxbir 333 |
. . . . . . . 8
⊢ (¬
(((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}))) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
832 | | elun 4170 |
. . . . . . . . 9
⊢ ({𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({𝑏, 𝑐} ∈ {{0, 3}} ∨ {𝑏, 𝑐} ∈ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3,
4}, {4, 5}, {0, 5}}))) |
833 | | prex 5455 |
. . . . . . . . . . . 12
⊢ {𝑏, 𝑐} ∈ V |
834 | 833 | elsn 4663 |
. . . . . . . . . . 11
⊢ ({𝑏, 𝑐} ∈ {{0, 3}} ↔ {𝑏, 𝑐} = {0, 3}) |
835 | 6, 10, 523, 754 | preq12b 4875 |
. . . . . . . . . . 11
⊢ ({𝑏, 𝑐} = {0, 3} ↔ ((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0))) |
836 | 834, 835 | bitri 275 |
. . . . . . . . . 10
⊢ ({𝑏, 𝑐} ∈ {{0, 3}} ↔ ((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0))) |
837 | | elun 4170 |
. . . . . . . . . . 11
⊢ ({𝑏, 𝑐} ∈ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3,
4}, {4, 5}, {0, 5}}) ↔ ({𝑏, 𝑐} ∈ {{0, 1}, {1, 2}, {2, 3}} ∨ {𝑏, 𝑐} ∈ {{3, 4}, {4, 5}, {0,
5}})) |
838 | 833 | eltp 4712 |
. . . . . . . . . . . 12
⊢ ({𝑏, 𝑐} ∈ {{0, 1}, {1, 2}, {2, 3}} ↔
({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3})) |
839 | 833 | eltp 4712 |
. . . . . . . . . . . 12
⊢ ({𝑏, 𝑐} ∈ {{3, 4}, {4, 5}, {0, 5}} ↔
({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5})) |
840 | 838, 839 | orbi12i 913 |
. . . . . . . . . . 11
⊢ (({𝑏, 𝑐} ∈ {{0, 1}, {1, 2}, {2, 3}} ∨ {𝑏, 𝑐} ∈ {{3, 4}, {4, 5}, {0, 5}}) ↔
(({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}))) |
841 | 837, 840 | bitri 275 |
. . . . . . . . . 10
⊢ ({𝑏, 𝑐} ∈ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3,
4}, {4, 5}, {0, 5}}) ↔ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5}))) |
842 | 836, 841 | orbi12i 913 |
. . . . . . . . 9
⊢ (({𝑏, 𝑐} ∈ {{0, 3}} ∨ {𝑏, 𝑐} ∈ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3,
4}, {4, 5}, {0, 5}})) ↔ (((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5})))) |
843 | 832, 842 | bitri 275 |
. . . . . . . 8
⊢ ({𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ (((𝑏 = 0 ∧ 𝑐 = 3) ∨ (𝑏 = 3 ∧ 𝑐 = 0)) ∨ (({𝑏, 𝑐} = {0, 1} ∨ {𝑏, 𝑐} = {1, 2} ∨ {𝑏, 𝑐} = {2, 3}) ∨ ({𝑏, 𝑐} = {3, 4} ∨ {𝑏, 𝑐} = {4, 5} ∨ {𝑏, 𝑐} = {0, 5})))) |
844 | 831, 843 | xchnxbir 333 |
. . . . . . 7
⊢ (¬
{𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) |
845 | 773, 844 | orbi12i 913 |
. . . . . 6
⊢ ((¬
𝑏 ≠ 𝑐 ∨ ¬ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))) ↔ (𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0))))))) |
846 | 772, 845 | bitr2i 276 |
. . . . 5
⊢ ((𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ¬ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))) |
847 | 846 | 3ralbii 3132 |
. . . 4
⊢
(∀𝑎 ∈
({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ∀𝑎 ∈ ({0, 1, 2} ∪ {3, 4,
5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎) ¬ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))) |
848 | | ralnex3 3136 |
. . . 4
⊢
(∀𝑎 ∈
({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎) ¬ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))) ↔ ¬ ∃𝑎 ∈ ({0, 1, 2} ∪ {3, 4,
5})∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))) |
849 | 847, 848 | bitri 275 |
. . 3
⊢
(∀𝑎 ∈
({0, 1, 2} ∪ {3, 4, 5})∀𝑏 ∈ (𝐺 NeighbVtx 𝑎)∀𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 = 𝑐 ∨ (((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 0)) ∧ ((((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 1) ∧ (¬ 𝑏 = 1 ∨ ¬ 𝑐 = 0)) ∧ ((¬ 𝑏 = 1 ∨ ¬ 𝑐 = 2) ∧ (¬ 𝑏 = 2 ∨ ¬ 𝑐 = 1)) ∧ ((¬ 𝑏 = 2 ∨ ¬ 𝑐 = 3) ∧ (¬ 𝑏 = 3 ∨ ¬ 𝑐 = 2))) ∧ (((¬ 𝑏 = 3 ∨ ¬ 𝑐 = 4) ∧ (¬ 𝑏 = 4 ∨ ¬ 𝑐 = 3)) ∧ ((¬ 𝑏 = 4 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 4)) ∧ ((¬ 𝑏 = 0 ∨ ¬ 𝑐 = 5) ∧ (¬ 𝑏 = 5 ∨ ¬ 𝑐 = 0)))))) ↔ ¬ ∃𝑎 ∈ ({0, 1, 2} ∪ {3, 4,
5})∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))) |
850 | 771, 849 | mpbi 230 |
. 2
⊢ ¬
∃𝑎 ∈ ({0, 1, 2}
∪ {3, 4, 5})∃𝑏
∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))) |
851 | 1, 2, 3 | usgrexmpl2 47762 |
. . 3
⊢ 𝐺 ∈ USGraph |
852 | 1, 2, 3 | usgrexmpl2vtx 47763 |
. . . . 5
⊢
(Vtx‘𝐺) = ({0,
1, 2} ∪ {3, 4, 5}) |
853 | 852 | eqcomi 2743 |
. . . 4
⊢ ({0, 1,
2} ∪ {3, 4, 5}) = (Vtx‘𝐺) |
854 | 1, 2, 3 | usgrexmpl2edg 47764 |
. . . . 5
⊢
(Edg‘𝐺) =
({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0,
5}})) |
855 | 854 | eqcomi 2743 |
. . . 4
⊢ ({{0, 3}}
∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) =
(Edg‘𝐺) |
856 | | eqid 2734 |
. . . 4
⊢ (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 𝑎) |
857 | 853, 855,
856 | usgrgrtrirex 47728 |
. . 3
⊢ (𝐺 ∈ USGraph →
(∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ ({0, 1, 2} ∪ {3, 4,
5})∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))))) |
858 | 851, 857 | ax-mp 5 |
. 2
⊢
(∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ ({0, 1, 2} ∪ {3, 4,
5})∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})))) |
859 | 850, 858 | mtbir 323 |
1
⊢ ¬
∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) |