| Step | Hyp | Ref
| Expression |
| 1 | | gpgprismgr4cycl.g |
. . . . . . 7
⊢ 𝐺 = (𝑁 gPetersenGr 1) |
| 2 | 1 | fveq2i 6878 |
. . . . . 6
⊢
(iEdg‘𝐺) =
(iEdg‘(𝑁 gPetersenGr
1)) |
| 3 | 2 | a1i 11 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑋 ∈ (0..^(♯‘𝐹))) → (iEdg‘𝐺) = (iEdg‘(𝑁 gPetersenGr
1))) |
| 4 | | eluzge3nn 12904 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℕ) |
| 5 | | 1elfzo1ceilhalf1 47314 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘3) → 1 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| 6 | 4, 5 | jca 511 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘3) → (𝑁 ∈ ℕ ∧ 1 ∈
(1..^(⌈‘(𝑁 /
2))))) |
| 7 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑋 ∈ (0..^(♯‘𝐹))) → (𝑁 ∈ ℕ ∧ 1 ∈
(1..^(⌈‘(𝑁 /
2))))) |
| 8 | | eqid 2735 |
. . . . . . 7
⊢
(1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2))) |
| 9 | | eqid 2735 |
. . . . . . 7
⊢
(0..^𝑁) = (0..^𝑁) |
| 10 | 8, 9 | gpgiedg 47996 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 1 ∈
(1..^(⌈‘(𝑁 /
2)))) → (iEdg‘(𝑁
gPetersenGr 1)) = ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉})})) |
| 11 | 7, 10 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑋 ∈ (0..^(♯‘𝐹))) → (iEdg‘(𝑁 gPetersenGr 1)) = ( I ↾
{𝑒 ∈ 𝒫 ({0, 1}
× (0..^𝑁)) ∣
∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉})})) |
| 12 | 3, 11 | eqtrd 2770 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑋 ∈ (0..^(♯‘𝐹))) → (iEdg‘𝐺) = ( I ↾ {𝑒 ∈ 𝒫 ({0, 1}
× (0..^𝑁)) ∣
∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉})})) |
| 13 | 12 | fveq1d 6877 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑋 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹‘𝑋)) = (( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉})})‘(𝐹‘𝑋))) |
| 14 | | gpgprismgr4cycl.f |
. . . . . 6
⊢ 𝐹 = 〈“{〈0,
0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1,
1〉, 〈1, 0〉} {〈1, 0〉, 〈0,
0〉}”〉 |
| 15 | 14 | gpgprismgr4cycllem3 48044 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑋 ∈ (0..^4)) → ((𝐹‘𝑋) ∈ 𝒫 ({0, 1} ×
(0..^𝑁)) ∧ ∃𝑥 ∈ (0..^𝑁)((𝐹‘𝑋) = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ (𝐹‘𝑋) = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ (𝐹‘𝑋) = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉}))) |
| 16 | 14 | gpgprismgr4cycllem1 48042 |
. . . . . . . 8
⊢
(♯‘𝐹) =
4 |
| 17 | 16 | oveq2i 7414 |
. . . . . . 7
⊢
(0..^(♯‘𝐹)) = (0..^4) |
| 18 | 17 | eleq2i 2826 |
. . . . . 6
⊢ (𝑋 ∈
(0..^(♯‘𝐹))
↔ 𝑋 ∈
(0..^4)) |
| 19 | 18 | anbi2i 623 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑋 ∈ (0..^(♯‘𝐹))) ↔ (𝑁 ∈ (ℤ≥‘3)
∧ 𝑋 ∈
(0..^4))) |
| 20 | | eqeq1 2739 |
. . . . . . . 8
⊢ (𝑒 = (𝐹‘𝑋) → (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ↔ (𝐹‘𝑋) = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉})) |
| 21 | | eqeq1 2739 |
. . . . . . . 8
⊢ (𝑒 = (𝐹‘𝑋) → (𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ↔ (𝐹‘𝑋) = {〈0, 𝑥〉, 〈1, 𝑥〉})) |
| 22 | | eqeq1 2739 |
. . . . . . . 8
⊢ (𝑒 = (𝐹‘𝑋) → (𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉} ↔ (𝐹‘𝑋) = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉})) |
| 23 | 20, 21, 22 | 3orbi123d 1437 |
. . . . . . 7
⊢ (𝑒 = (𝐹‘𝑋) → ((𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉}) ↔ ((𝐹‘𝑋) = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ (𝐹‘𝑋) = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ (𝐹‘𝑋) = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉}))) |
| 24 | 23 | rexbidv 3164 |
. . . . . 6
⊢ (𝑒 = (𝐹‘𝑋) → (∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉}) ↔ ∃𝑥 ∈ (0..^𝑁)((𝐹‘𝑋) = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ (𝐹‘𝑋) = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ (𝐹‘𝑋) = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉}))) |
| 25 | 24 | elrab 3671 |
. . . . 5
⊢ ((𝐹‘𝑋) ∈ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉})} ↔ ((𝐹‘𝑋) ∈ 𝒫 ({0, 1} ×
(0..^𝑁)) ∧ ∃𝑥 ∈ (0..^𝑁)((𝐹‘𝑋) = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ (𝐹‘𝑋) = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ (𝐹‘𝑋) = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉}))) |
| 26 | 15, 19, 25 | 3imtr4i 292 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑋 ∈ (0..^(♯‘𝐹))) → (𝐹‘𝑋) ∈ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉})}) |
| 27 | | fvresi 7164 |
. . . 4
⊢ ((𝐹‘𝑋) ∈ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑁)) ∣ ∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉})} → (( I ↾ {𝑒 ∈ 𝒫 ({0, 1}
× (0..^𝑁)) ∣
∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉})})‘(𝐹‘𝑋)) = (𝐹‘𝑋)) |
| 28 | 26, 27 | syl 17 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑋 ∈ (0..^(♯‘𝐹))) → (( I ↾ {𝑒 ∈ 𝒫 ({0, 1}
× (0..^𝑁)) ∣
∃𝑥 ∈ (0..^𝑁)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 1) mod 𝑁)〉})})‘(𝐹‘𝑋)) = (𝐹‘𝑋)) |
| 29 | 13, 28 | eqtrd 2770 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑋 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹‘𝑋)) = (𝐹‘𝑋)) |
| 30 | | fzo0to42pr 13767 |
. . . . . 6
⊢ (0..^4) =
({0, 1} ∪ {2, 3}) |
| 31 | 30 | eleq2i 2826 |
. . . . 5
⊢ (𝑋 ∈ (0..^4) ↔ 𝑋 ∈ ({0, 1} ∪ {2,
3})) |
| 32 | | elun 4128 |
. . . . 5
⊢ (𝑋 ∈ ({0, 1} ∪ {2, 3})
↔ (𝑋 ∈ {0, 1}
∨ 𝑋 ∈ {2,
3})) |
| 33 | 18, 31, 32 | 3bitri 297 |
. . . 4
⊢ (𝑋 ∈
(0..^(♯‘𝐹))
↔ (𝑋 ∈ {0, 1}
∨ 𝑋 ∈ {2,
3})) |
| 34 | | elpri 4625 |
. . . . . 6
⊢ (𝑋 ∈ {0, 1} → (𝑋 = 0 ∨ 𝑋 = 1)) |
| 35 | | prex 5407 |
. . . . . . . . . 10
⊢ {〈0,
0〉, 〈0, 1〉} ∈ V |
| 36 | | s4fv0 14912 |
. . . . . . . . . 10
⊢
({〈0, 0〉, 〈0, 1〉} ∈ V →
(〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1,
1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0,
0〉}”〉‘0) = {〈0, 0〉, 〈0,
1〉}) |
| 37 | 35, 36 | ax-mp 5 |
. . . . . . . . 9
⊢
(〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉,
〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉,
〈0, 0〉}”〉‘0) = {〈0, 0〉, 〈0,
1〉} |
| 38 | 14 | fveq1i 6876 |
. . . . . . . . 9
⊢ (𝐹‘0) =
(〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1,
1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0,
0〉}”〉‘0) |
| 39 | | gpgprismgr4cycl.p |
. . . . . . . . . . . 12
⊢ 𝑃 = 〈“〈0,
0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0,
0〉”〉 |
| 40 | 39 | fveq1i 6876 |
. . . . . . . . . . 11
⊢ (𝑃‘0) =
(〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉‘0) |
| 41 | | opex 5439 |
. . . . . . . . . . . 12
⊢ 〈0,
0〉 ∈ V |
| 42 | | df-s5 14868 |
. . . . . . . . . . . . 13
⊢
〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉 = (〈“〈0, 0〉〈0,
1〉〈1, 1〉〈1, 0〉”〉 ++ 〈“〈0,
0〉”〉) |
| 43 | | s4cli 14899 |
. . . . . . . . . . . . 13
⊢
〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉”〉 ∈ Word V |
| 44 | | s4len 14916 |
. . . . . . . . . . . . 13
⊢
(♯‘〈“〈0, 0〉〈0, 1〉〈1,
1〉〈1, 0〉”〉) = 4 |
| 45 | | s4fv0 14912 |
. . . . . . . . . . . . 13
⊢ (〈0,
0〉 ∈ V → (〈“〈0, 0〉〈0, 1〉〈1,
1〉〈1, 0〉”〉‘0) = 〈0,
0〉) |
| 46 | | 0nn0 12514 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℕ0 |
| 47 | | 4pos 12345 |
. . . . . . . . . . . . 13
⊢ 0 <
4 |
| 48 | 42, 43, 44, 45, 46, 47 | cats1fv 14876 |
. . . . . . . . . . . 12
⊢ (〈0,
0〉 ∈ V → (〈“〈0, 0〉〈0, 1〉〈1,
1〉〈1, 0〉〈0, 0〉”〉‘0) = 〈0,
0〉) |
| 49 | 41, 48 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉‘0) = 〈0,
0〉 |
| 50 | 40, 49 | eqtri 2758 |
. . . . . . . . . 10
⊢ (𝑃‘0) = 〈0,
0〉 |
| 51 | 39 | fveq1i 6876 |
. . . . . . . . . . 11
⊢ (𝑃‘1) =
(〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉‘1) |
| 52 | | opex 5439 |
. . . . . . . . . . . 12
⊢ 〈0,
1〉 ∈ V |
| 53 | | s4fv1 14913 |
. . . . . . . . . . . . 13
⊢ (〈0,
1〉 ∈ V → (〈“〈0, 0〉〈0, 1〉〈1,
1〉〈1, 0〉”〉‘1) = 〈0,
1〉) |
| 54 | | 1nn0 12515 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℕ0 |
| 55 | | 1lt4 12414 |
. . . . . . . . . . . . 13
⊢ 1 <
4 |
| 56 | 42, 43, 44, 53, 54, 55 | cats1fv 14876 |
. . . . . . . . . . . 12
⊢ (〈0,
1〉 ∈ V → (〈“〈0, 0〉〈0, 1〉〈1,
1〉〈1, 0〉〈0, 0〉”〉‘1) = 〈0,
1〉) |
| 57 | 52, 56 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉‘1) = 〈0,
1〉 |
| 58 | 51, 57 | eqtri 2758 |
. . . . . . . . . 10
⊢ (𝑃‘1) = 〈0,
1〉 |
| 59 | 50, 58 | preq12i 4714 |
. . . . . . . . 9
⊢ {(𝑃‘0), (𝑃‘1)} = {〈0, 0〉, 〈0,
1〉} |
| 60 | 37, 38, 59 | 3eqtr4i 2768 |
. . . . . . . 8
⊢ (𝐹‘0) = {(𝑃‘0), (𝑃‘1)} |
| 61 | | fveq2 6875 |
. . . . . . . 8
⊢ (𝑋 = 0 → (𝐹‘𝑋) = (𝐹‘0)) |
| 62 | | fveq2 6875 |
. . . . . . . . 9
⊢ (𝑋 = 0 → (𝑃‘𝑋) = (𝑃‘0)) |
| 63 | | fv0p1e1 12361 |
. . . . . . . . 9
⊢ (𝑋 = 0 → (𝑃‘(𝑋 + 1)) = (𝑃‘1)) |
| 64 | 62, 63 | preq12d 4717 |
. . . . . . . 8
⊢ (𝑋 = 0 → {(𝑃‘𝑋), (𝑃‘(𝑋 + 1))} = {(𝑃‘0), (𝑃‘1)}) |
| 65 | 60, 61, 64 | 3eqtr4a 2796 |
. . . . . . 7
⊢ (𝑋 = 0 → (𝐹‘𝑋) = {(𝑃‘𝑋), (𝑃‘(𝑋 + 1))}) |
| 66 | | prex 5407 |
. . . . . . . . . 10
⊢ {〈0,
1〉, 〈1, 1〉} ∈ V |
| 67 | | s4fv1 14913 |
. . . . . . . . . 10
⊢
({〈0, 1〉, 〈1, 1〉} ∈ V →
(〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1,
1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0,
0〉}”〉‘1) = {〈0, 1〉, 〈1,
1〉}) |
| 68 | 66, 67 | ax-mp 5 |
. . . . . . . . 9
⊢
(〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉,
〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉,
〈0, 0〉}”〉‘1) = {〈0, 1〉, 〈1,
1〉} |
| 69 | 14 | fveq1i 6876 |
. . . . . . . . 9
⊢ (𝐹‘1) =
(〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1,
1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0,
0〉}”〉‘1) |
| 70 | 39 | fveq1i 6876 |
. . . . . . . . . . 11
⊢ (𝑃‘2) =
(〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉‘2) |
| 71 | | opex 5439 |
. . . . . . . . . . . 12
⊢ 〈1,
1〉 ∈ V |
| 72 | | s4fv2 14914 |
. . . . . . . . . . . . 13
⊢ (〈1,
1〉 ∈ V → (〈“〈0, 0〉〈0, 1〉〈1,
1〉〈1, 0〉”〉‘2) = 〈1,
1〉) |
| 73 | | 2nn0 12516 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℕ0 |
| 74 | | 2lt4 12413 |
. . . . . . . . . . . . 13
⊢ 2 <
4 |
| 75 | 42, 43, 44, 72, 73, 74 | cats1fv 14876 |
. . . . . . . . . . . 12
⊢ (〈1,
1〉 ∈ V → (〈“〈0, 0〉〈0, 1〉〈1,
1〉〈1, 0〉〈0, 0〉”〉‘2) = 〈1,
1〉) |
| 76 | 71, 75 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉‘2) = 〈1,
1〉 |
| 77 | 70, 76 | eqtri 2758 |
. . . . . . . . . 10
⊢ (𝑃‘2) = 〈1,
1〉 |
| 78 | 58, 77 | preq12i 4714 |
. . . . . . . . 9
⊢ {(𝑃‘1), (𝑃‘2)} = {〈0, 1〉, 〈1,
1〉} |
| 79 | 68, 69, 78 | 3eqtr4i 2768 |
. . . . . . . 8
⊢ (𝐹‘1) = {(𝑃‘1), (𝑃‘2)} |
| 80 | | fveq2 6875 |
. . . . . . . 8
⊢ (𝑋 = 1 → (𝐹‘𝑋) = (𝐹‘1)) |
| 81 | | fveq2 6875 |
. . . . . . . . 9
⊢ (𝑋 = 1 → (𝑃‘𝑋) = (𝑃‘1)) |
| 82 | | oveq1 7410 |
. . . . . . . . . . 11
⊢ (𝑋 = 1 → (𝑋 + 1) = (1 + 1)) |
| 83 | | 1p1e2 12363 |
. . . . . . . . . . 11
⊢ (1 + 1) =
2 |
| 84 | 82, 83 | eqtrdi 2786 |
. . . . . . . . . 10
⊢ (𝑋 = 1 → (𝑋 + 1) = 2) |
| 85 | 84 | fveq2d 6879 |
. . . . . . . . 9
⊢ (𝑋 = 1 → (𝑃‘(𝑋 + 1)) = (𝑃‘2)) |
| 86 | 81, 85 | preq12d 4717 |
. . . . . . . 8
⊢ (𝑋 = 1 → {(𝑃‘𝑋), (𝑃‘(𝑋 + 1))} = {(𝑃‘1), (𝑃‘2)}) |
| 87 | 79, 80, 86 | 3eqtr4a 2796 |
. . . . . . 7
⊢ (𝑋 = 1 → (𝐹‘𝑋) = {(𝑃‘𝑋), (𝑃‘(𝑋 + 1))}) |
| 88 | 65, 87 | jaoi 857 |
. . . . . 6
⊢ ((𝑋 = 0 ∨ 𝑋 = 1) → (𝐹‘𝑋) = {(𝑃‘𝑋), (𝑃‘(𝑋 + 1))}) |
| 89 | 34, 88 | syl 17 |
. . . . 5
⊢ (𝑋 ∈ {0, 1} → (𝐹‘𝑋) = {(𝑃‘𝑋), (𝑃‘(𝑋 + 1))}) |
| 90 | | elpri 4625 |
. . . . . 6
⊢ (𝑋 ∈ {2, 3} → (𝑋 = 2 ∨ 𝑋 = 3)) |
| 91 | | prex 5407 |
. . . . . . . . . 10
⊢ {〈1,
1〉, 〈1, 0〉} ∈ V |
| 92 | | s4fv2 14914 |
. . . . . . . . . 10
⊢
({〈1, 1〉, 〈1, 0〉} ∈ V →
(〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1,
1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0,
0〉}”〉‘2) = {〈1, 1〉, 〈1,
0〉}) |
| 93 | 91, 92 | ax-mp 5 |
. . . . . . . . 9
⊢
(〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉,
〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉,
〈0, 0〉}”〉‘2) = {〈1, 1〉, 〈1,
0〉} |
| 94 | 14 | fveq1i 6876 |
. . . . . . . . 9
⊢ (𝐹‘2) =
(〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1,
1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0,
0〉}”〉‘2) |
| 95 | 39 | fveq1i 6876 |
. . . . . . . . . . 11
⊢ (𝑃‘3) =
(〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉‘3) |
| 96 | | opex 5439 |
. . . . . . . . . . . 12
⊢ 〈1,
0〉 ∈ V |
| 97 | | s4fv3 14915 |
. . . . . . . . . . . . 13
⊢ (〈1,
0〉 ∈ V → (〈“〈0, 0〉〈0, 1〉〈1,
1〉〈1, 0〉”〉‘3) = 〈1,
0〉) |
| 98 | | 3nn0 12517 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℕ0 |
| 99 | | 3lt4 12412 |
. . . . . . . . . . . . 13
⊢ 3 <
4 |
| 100 | 42, 43, 44, 97, 98, 99 | cats1fv 14876 |
. . . . . . . . . . . 12
⊢ (〈1,
0〉 ∈ V → (〈“〈0, 0〉〈0, 1〉〈1,
1〉〈1, 0〉〈0, 0〉”〉‘3) = 〈1,
0〉) |
| 101 | 96, 100 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉‘3) = 〈1,
0〉 |
| 102 | 95, 101 | eqtri 2758 |
. . . . . . . . . 10
⊢ (𝑃‘3) = 〈1,
0〉 |
| 103 | 77, 102 | preq12i 4714 |
. . . . . . . . 9
⊢ {(𝑃‘2), (𝑃‘3)} = {〈1, 1〉, 〈1,
0〉} |
| 104 | 93, 94, 103 | 3eqtr4i 2768 |
. . . . . . . 8
⊢ (𝐹‘2) = {(𝑃‘2), (𝑃‘3)} |
| 105 | | fveq2 6875 |
. . . . . . . 8
⊢ (𝑋 = 2 → (𝐹‘𝑋) = (𝐹‘2)) |
| 106 | | fveq2 6875 |
. . . . . . . . 9
⊢ (𝑋 = 2 → (𝑃‘𝑋) = (𝑃‘2)) |
| 107 | | oveq1 7410 |
. . . . . . . . . . 11
⊢ (𝑋 = 2 → (𝑋 + 1) = (2 + 1)) |
| 108 | | 2p1e3 12380 |
. . . . . . . . . . 11
⊢ (2 + 1) =
3 |
| 109 | 107, 108 | eqtrdi 2786 |
. . . . . . . . . 10
⊢ (𝑋 = 2 → (𝑋 + 1) = 3) |
| 110 | 109 | fveq2d 6879 |
. . . . . . . . 9
⊢ (𝑋 = 2 → (𝑃‘(𝑋 + 1)) = (𝑃‘3)) |
| 111 | 106, 110 | preq12d 4717 |
. . . . . . . 8
⊢ (𝑋 = 2 → {(𝑃‘𝑋), (𝑃‘(𝑋 + 1))} = {(𝑃‘2), (𝑃‘3)}) |
| 112 | 104, 105,
111 | 3eqtr4a 2796 |
. . . . . . 7
⊢ (𝑋 = 2 → (𝐹‘𝑋) = {(𝑃‘𝑋), (𝑃‘(𝑋 + 1))}) |
| 113 | | prex 5407 |
. . . . . . . . . 10
⊢ {〈1,
0〉, 〈0, 0〉} ∈ V |
| 114 | | s4fv3 14915 |
. . . . . . . . . 10
⊢
({〈1, 0〉, 〈0, 0〉} ∈ V →
(〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1,
1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0,
0〉}”〉‘3) = {〈1, 0〉, 〈0,
0〉}) |
| 115 | 113, 114 | ax-mp 5 |
. . . . . . . . 9
⊢
(〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉,
〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉,
〈0, 0〉}”〉‘3) = {〈1, 0〉, 〈0,
0〉} |
| 116 | 14 | fveq1i 6876 |
. . . . . . . . 9
⊢ (𝐹‘3) =
(〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1,
1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0,
0〉}”〉‘3) |
| 117 | 39 | fveq1i 6876 |
. . . . . . . . . . 11
⊢ (𝑃‘4) =
(〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉‘4) |
| 118 | 42, 43, 44 | cats1fvn 14875 |
. . . . . . . . . . . 12
⊢ (〈0,
0〉 ∈ V → (〈“〈0, 0〉〈0, 1〉〈1,
1〉〈1, 0〉〈0, 0〉”〉‘4) = 〈0,
0〉) |
| 119 | 41, 118 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉‘4) = 〈0,
0〉 |
| 120 | 117, 119 | eqtri 2758 |
. . . . . . . . . 10
⊢ (𝑃‘4) = 〈0,
0〉 |
| 121 | 102, 120 | preq12i 4714 |
. . . . . . . . 9
⊢ {(𝑃‘3), (𝑃‘4)} = {〈1, 0〉, 〈0,
0〉} |
| 122 | 115, 116,
121 | 3eqtr4i 2768 |
. . . . . . . 8
⊢ (𝐹‘3) = {(𝑃‘3), (𝑃‘4)} |
| 123 | | fveq2 6875 |
. . . . . . . 8
⊢ (𝑋 = 3 → (𝐹‘𝑋) = (𝐹‘3)) |
| 124 | | fveq2 6875 |
. . . . . . . . 9
⊢ (𝑋 = 3 → (𝑃‘𝑋) = (𝑃‘3)) |
| 125 | | oveq1 7410 |
. . . . . . . . . . 11
⊢ (𝑋 = 3 → (𝑋 + 1) = (3 + 1)) |
| 126 | | 3p1e4 12383 |
. . . . . . . . . . 11
⊢ (3 + 1) =
4 |
| 127 | 125, 126 | eqtrdi 2786 |
. . . . . . . . . 10
⊢ (𝑋 = 3 → (𝑋 + 1) = 4) |
| 128 | 127 | fveq2d 6879 |
. . . . . . . . 9
⊢ (𝑋 = 3 → (𝑃‘(𝑋 + 1)) = (𝑃‘4)) |
| 129 | 124, 128 | preq12d 4717 |
. . . . . . . 8
⊢ (𝑋 = 3 → {(𝑃‘𝑋), (𝑃‘(𝑋 + 1))} = {(𝑃‘3), (𝑃‘4)}) |
| 130 | 122, 123,
129 | 3eqtr4a 2796 |
. . . . . . 7
⊢ (𝑋 = 3 → (𝐹‘𝑋) = {(𝑃‘𝑋), (𝑃‘(𝑋 + 1))}) |
| 131 | 112, 130 | jaoi 857 |
. . . . . 6
⊢ ((𝑋 = 2 ∨ 𝑋 = 3) → (𝐹‘𝑋) = {(𝑃‘𝑋), (𝑃‘(𝑋 + 1))}) |
| 132 | 90, 131 | syl 17 |
. . . . 5
⊢ (𝑋 ∈ {2, 3} → (𝐹‘𝑋) = {(𝑃‘𝑋), (𝑃‘(𝑋 + 1))}) |
| 133 | 89, 132 | jaoi 857 |
. . . 4
⊢ ((𝑋 ∈ {0, 1} ∨ 𝑋 ∈ {2, 3}) → (𝐹‘𝑋) = {(𝑃‘𝑋), (𝑃‘(𝑋 + 1))}) |
| 134 | 33, 133 | sylbi 217 |
. . 3
⊢ (𝑋 ∈
(0..^(♯‘𝐹))
→ (𝐹‘𝑋) = {(𝑃‘𝑋), (𝑃‘(𝑋 + 1))}) |
| 135 | 134 | adantl 481 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑋 ∈ (0..^(♯‘𝐹))) → (𝐹‘𝑋) = {(𝑃‘𝑋), (𝑃‘(𝑋 + 1))}) |
| 136 | 29, 135 | eqtrd 2770 |
1
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑋 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹‘𝑋)) = {(𝑃‘𝑋), (𝑃‘(𝑋 + 1))}) |