Proof of Theorem usgrexmpl2lem
| Step | Hyp | Ref
| Expression |
| 1 | | prex 5419 |
. . . . 5
⊢ {0, 1}
∈ V |
| 2 | | prex 5419 |
. . . . 5
⊢ {1, 2}
∈ V |
| 3 | | prex 5419 |
. . . . 5
⊢ {2, 3}
∈ V |
| 4 | 1, 2, 3 | 3pm3.2i 1339 |
. . . 4
⊢ ({0, 1}
∈ V ∧ {1, 2} ∈ V ∧ {2, 3} ∈ V) |
| 5 | | prex 5419 |
. . . 4
⊢ {3, 4}
∈ V |
| 6 | | prex 5419 |
. . . . 5
⊢ {4, 5}
∈ V |
| 7 | | prex 5419 |
. . . . 5
⊢ {0, 3}
∈ V |
| 8 | | prex 5419 |
. . . . 5
⊢ {0, 5}
∈ V |
| 9 | 6, 7, 8 | 3pm3.2i 1339 |
. . . 4
⊢ ({4, 5}
∈ V ∧ {0, 3} ∈ V ∧ {0, 5} ∈ V) |
| 10 | 4, 5, 9 | 3pm3.2i 1339 |
. . 3
⊢ (({0, 1}
∈ V ∧ {1, 2} ∈ V ∧ {2, 3} ∈ V) ∧ {3, 4} ∈ V
∧ ({4, 5} ∈ V ∧ {0, 3} ∈ V ∧ {0, 5} ∈
V)) |
| 11 | | 0nn0 12525 |
. . . . . . . . . 10
⊢ 0 ∈
ℕ0 |
| 12 | | 1nn0 12526 |
. . . . . . . . . 10
⊢ 1 ∈
ℕ0 |
| 13 | 11, 12 | pm3.2i 470 |
. . . . . . . . 9
⊢ (0 ∈
ℕ0 ∧ 1 ∈ ℕ0) |
| 14 | | 2nn0 12527 |
. . . . . . . . . 10
⊢ 2 ∈
ℕ0 |
| 15 | 12, 14 | pm3.2i 470 |
. . . . . . . . 9
⊢ (1 ∈
ℕ0 ∧ 2 ∈ ℕ0) |
| 16 | 13, 15 | pm3.2i 470 |
. . . . . . . 8
⊢ ((0
∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (1 ∈
ℕ0 ∧ 2 ∈ ℕ0)) |
| 17 | | 0ne1 12320 |
. . . . . . . . . 10
⊢ 0 ≠
1 |
| 18 | | 0ne2 12456 |
. . . . . . . . . 10
⊢ 0 ≠
2 |
| 19 | 17, 18 | pm3.2i 470 |
. . . . . . . . 9
⊢ (0 ≠ 1
∧ 0 ≠ 2) |
| 20 | 19 | orci 865 |
. . . . . . . 8
⊢ ((0 ≠
1 ∧ 0 ≠ 2) ∨ (1 ≠ 1 ∧ 1 ≠ 2)) |
| 21 | | prneimg 4836 |
. . . . . . . 8
⊢ (((0
∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (1 ∈
ℕ0 ∧ 2 ∈ ℕ0)) → (((0 ≠ 1
∧ 0 ≠ 2) ∨ (1 ≠ 1 ∧ 1 ≠ 2)) → {0, 1} ≠ {1,
2})) |
| 22 | 16, 20, 21 | mp2 9 |
. . . . . . 7
⊢ {0, 1}
≠ {1, 2} |
| 23 | | 3nn0 12528 |
. . . . . . . . . 10
⊢ 3 ∈
ℕ0 |
| 24 | 14, 23 | pm3.2i 470 |
. . . . . . . . 9
⊢ (2 ∈
ℕ0 ∧ 3 ∈ ℕ0) |
| 25 | 13, 24 | pm3.2i 470 |
. . . . . . . 8
⊢ ((0
∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (2 ∈
ℕ0 ∧ 3 ∈ ℕ0)) |
| 26 | | 0re 11246 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
| 27 | | 3pos 12354 |
. . . . . . . . . . 11
⊢ 0 <
3 |
| 28 | 26, 27 | ltneii 11357 |
. . . . . . . . . 10
⊢ 0 ≠
3 |
| 29 | 18, 28 | pm3.2i 470 |
. . . . . . . . 9
⊢ (0 ≠ 2
∧ 0 ≠ 3) |
| 30 | 29 | orci 865 |
. . . . . . . 8
⊢ ((0 ≠
2 ∧ 0 ≠ 3) ∨ (1 ≠ 2 ∧ 1 ≠ 3)) |
| 31 | | prneimg 4836 |
. . . . . . . 8
⊢ (((0
∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (2 ∈
ℕ0 ∧ 3 ∈ ℕ0)) → (((0 ≠ 2
∧ 0 ≠ 3) ∨ (1 ≠ 2 ∧ 1 ≠ 3)) → {0, 1} ≠ {2,
3})) |
| 32 | 25, 30, 31 | mp2 9 |
. . . . . . 7
⊢ {0, 1}
≠ {2, 3} |
| 33 | | 4nn0 12529 |
. . . . . . . . . 10
⊢ 4 ∈
ℕ0 |
| 34 | 23, 33 | pm3.2i 470 |
. . . . . . . . 9
⊢ (3 ∈
ℕ0 ∧ 4 ∈ ℕ0) |
| 35 | 13, 34 | pm3.2i 470 |
. . . . . . . 8
⊢ ((0
∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (3 ∈
ℕ0 ∧ 4 ∈ ℕ0)) |
| 36 | | 4pos 12356 |
. . . . . . . . . . 11
⊢ 0 <
4 |
| 37 | 26, 36 | ltneii 11357 |
. . . . . . . . . 10
⊢ 0 ≠
4 |
| 38 | 28, 37 | pm3.2i 470 |
. . . . . . . . 9
⊢ (0 ≠ 3
∧ 0 ≠ 4) |
| 39 | 38 | orci 865 |
. . . . . . . 8
⊢ ((0 ≠
3 ∧ 0 ≠ 4) ∨ (1 ≠ 3 ∧ 1 ≠ 4)) |
| 40 | | prneimg 4836 |
. . . . . . . 8
⊢ (((0
∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (3 ∈
ℕ0 ∧ 4 ∈ ℕ0)) → (((0 ≠ 3
∧ 0 ≠ 4) ∨ (1 ≠ 3 ∧ 1 ≠ 4)) → {0, 1} ≠ {3,
4})) |
| 41 | 35, 39, 40 | mp2 9 |
. . . . . . 7
⊢ {0, 1}
≠ {3, 4} |
| 42 | 22, 32, 41 | 3pm3.2i 1339 |
. . . . . 6
⊢ ({0, 1}
≠ {1, 2} ∧ {0, 1} ≠ {2, 3} ∧ {0, 1} ≠ {3, 4}) |
| 43 | | 5nn0 12530 |
. . . . . . . . . 10
⊢ 5 ∈
ℕ0 |
| 44 | 33, 43 | pm3.2i 470 |
. . . . . . . . 9
⊢ (4 ∈
ℕ0 ∧ 5 ∈ ℕ0) |
| 45 | 13, 44 | pm3.2i 470 |
. . . . . . . 8
⊢ ((0
∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (4 ∈
ℕ0 ∧ 5 ∈ ℕ0)) |
| 46 | | 5pos 12358 |
. . . . . . . . . . 11
⊢ 0 <
5 |
| 47 | 26, 46 | ltneii 11357 |
. . . . . . . . . 10
⊢ 0 ≠
5 |
| 48 | 37, 47 | pm3.2i 470 |
. . . . . . . . 9
⊢ (0 ≠ 4
∧ 0 ≠ 5) |
| 49 | 48 | orci 865 |
. . . . . . . 8
⊢ ((0 ≠
4 ∧ 0 ≠ 5) ∨ (1 ≠ 4 ∧ 1 ≠ 5)) |
| 50 | | prneimg 4836 |
. . . . . . . 8
⊢ (((0
∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (4 ∈
ℕ0 ∧ 5 ∈ ℕ0)) → (((0 ≠ 4
∧ 0 ≠ 5) ∨ (1 ≠ 4 ∧ 1 ≠ 5)) → {0, 1} ≠ {4,
5})) |
| 51 | 45, 49, 50 | mp2 9 |
. . . . . . 7
⊢ {0, 1}
≠ {4, 5} |
| 52 | 11, 23 | pm3.2i 470 |
. . . . . . . . 9
⊢ (0 ∈
ℕ0 ∧ 3 ∈ ℕ0) |
| 53 | 13, 52 | pm3.2i 470 |
. . . . . . . 8
⊢ ((0
∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 3 ∈ ℕ0)) |
| 54 | | ax-1ne0 11207 |
. . . . . . . . . 10
⊢ 1 ≠
0 |
| 55 | | 1re 11244 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ |
| 56 | | 1lt3 12422 |
. . . . . . . . . . 11
⊢ 1 <
3 |
| 57 | 55, 56 | ltneii 11357 |
. . . . . . . . . 10
⊢ 1 ≠
3 |
| 58 | 54, 57 | pm3.2i 470 |
. . . . . . . . 9
⊢ (1 ≠ 0
∧ 1 ≠ 3) |
| 59 | 58 | olci 866 |
. . . . . . . 8
⊢ ((0 ≠
0 ∧ 0 ≠ 3) ∨ (1 ≠ 0 ∧ 1 ≠ 3)) |
| 60 | | prneimg 4836 |
. . . . . . . 8
⊢ (((0
∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 3 ∈ ℕ0)) → (((0 ≠ 0
∧ 0 ≠ 3) ∨ (1 ≠ 0 ∧ 1 ≠ 3)) → {0, 1} ≠ {0,
3})) |
| 61 | 53, 59, 60 | mp2 9 |
. . . . . . 7
⊢ {0, 1}
≠ {0, 3} |
| 62 | 11, 43 | pm3.2i 470 |
. . . . . . . . 9
⊢ (0 ∈
ℕ0 ∧ 5 ∈ ℕ0) |
| 63 | 13, 62 | pm3.2i 470 |
. . . . . . . 8
⊢ ((0
∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 5 ∈ ℕ0)) |
| 64 | | 1lt5 12429 |
. . . . . . . . . . 11
⊢ 1 <
5 |
| 65 | 55, 64 | ltneii 11357 |
. . . . . . . . . 10
⊢ 1 ≠
5 |
| 66 | 54, 65 | pm3.2i 470 |
. . . . . . . . 9
⊢ (1 ≠ 0
∧ 1 ≠ 5) |
| 67 | 66 | olci 866 |
. . . . . . . 8
⊢ ((0 ≠
0 ∧ 0 ≠ 5) ∨ (1 ≠ 0 ∧ 1 ≠ 5)) |
| 68 | | prneimg 4836 |
. . . . . . . 8
⊢ (((0
∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 5 ∈ ℕ0)) → (((0 ≠ 0
∧ 0 ≠ 5) ∨ (1 ≠ 0 ∧ 1 ≠ 5)) → {0, 1} ≠ {0,
5})) |
| 69 | 63, 67, 68 | mp2 9 |
. . . . . . 7
⊢ {0, 1}
≠ {0, 5} |
| 70 | 51, 61, 69 | 3pm3.2i 1339 |
. . . . . 6
⊢ ({0, 1}
≠ {4, 5} ∧ {0, 1} ≠ {0, 3} ∧ {0, 1} ≠ {0, 5}) |
| 71 | 42, 70 | pm3.2i 470 |
. . . . 5
⊢ (({0, 1}
≠ {1, 2} ∧ {0, 1} ≠ {2, 3} ∧ {0, 1} ≠ {3, 4}) ∧ ({0, 1}
≠ {4, 5} ∧ {0, 1} ≠ {0, 3} ∧ {0, 1} ≠ {0,
5})) |
| 72 | 15, 24 | pm3.2i 470 |
. . . . . . . 8
⊢ ((1
∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (2 ∈
ℕ0 ∧ 3 ∈ ℕ0)) |
| 73 | | 1ne2 12457 |
. . . . . . . . . 10
⊢ 1 ≠
2 |
| 74 | 73, 57 | pm3.2i 470 |
. . . . . . . . 9
⊢ (1 ≠ 2
∧ 1 ≠ 3) |
| 75 | 74 | orci 865 |
. . . . . . . 8
⊢ ((1 ≠
2 ∧ 1 ≠ 3) ∨ (2 ≠ 2 ∧ 2 ≠ 3)) |
| 76 | | prneimg 4836 |
. . . . . . . 8
⊢ (((1
∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (2 ∈
ℕ0 ∧ 3 ∈ ℕ0)) → (((1 ≠ 2
∧ 1 ≠ 3) ∨ (2 ≠ 2 ∧ 2 ≠ 3)) → {1, 2} ≠ {2,
3})) |
| 77 | 72, 75, 76 | mp2 9 |
. . . . . . 7
⊢ {1, 2}
≠ {2, 3} |
| 78 | 15, 34 | pm3.2i 470 |
. . . . . . . 8
⊢ ((1
∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (3 ∈
ℕ0 ∧ 4 ∈ ℕ0)) |
| 79 | | 1lt4 12425 |
. . . . . . . . . . 11
⊢ 1 <
4 |
| 80 | 55, 79 | ltneii 11357 |
. . . . . . . . . 10
⊢ 1 ≠
4 |
| 81 | 57, 80 | pm3.2i 470 |
. . . . . . . . 9
⊢ (1 ≠ 3
∧ 1 ≠ 4) |
| 82 | 81 | orci 865 |
. . . . . . . 8
⊢ ((1 ≠
3 ∧ 1 ≠ 4) ∨ (2 ≠ 3 ∧ 2 ≠ 4)) |
| 83 | | prneimg 4836 |
. . . . . . . 8
⊢ (((1
∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (3 ∈
ℕ0 ∧ 4 ∈ ℕ0)) → (((1 ≠ 3
∧ 1 ≠ 4) ∨ (2 ≠ 3 ∧ 2 ≠ 4)) → {1, 2} ≠ {3,
4})) |
| 84 | 78, 82, 83 | mp2 9 |
. . . . . . 7
⊢ {1, 2}
≠ {3, 4} |
| 85 | 77, 84 | pm3.2i 470 |
. . . . . 6
⊢ ({1, 2}
≠ {2, 3} ∧ {1, 2} ≠ {3, 4}) |
| 86 | 15, 44 | pm3.2i 470 |
. . . . . . . 8
⊢ ((1
∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (4 ∈
ℕ0 ∧ 5 ∈ ℕ0)) |
| 87 | 80, 65 | pm3.2i 470 |
. . . . . . . . 9
⊢ (1 ≠ 4
∧ 1 ≠ 5) |
| 88 | 87 | orci 865 |
. . . . . . . 8
⊢ ((1 ≠
4 ∧ 1 ≠ 5) ∨ (2 ≠ 4 ∧ 2 ≠ 5)) |
| 89 | | prneimg 4836 |
. . . . . . . 8
⊢ (((1
∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (4 ∈
ℕ0 ∧ 5 ∈ ℕ0)) → (((1 ≠ 4
∧ 1 ≠ 5) ∨ (2 ≠ 4 ∧ 2 ≠ 5)) → {1, 2} ≠ {4,
5})) |
| 90 | 86, 88, 89 | mp2 9 |
. . . . . . 7
⊢ {1, 2}
≠ {4, 5} |
| 91 | 15, 52 | pm3.2i 470 |
. . . . . . . 8
⊢ ((1
∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 3 ∈ ℕ0)) |
| 92 | 58 | orci 865 |
. . . . . . . 8
⊢ ((1 ≠
0 ∧ 1 ≠ 3) ∨ (2 ≠ 0 ∧ 2 ≠ 3)) |
| 93 | | prneimg 4836 |
. . . . . . . 8
⊢ (((1
∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 3 ∈ ℕ0)) → (((1 ≠ 0
∧ 1 ≠ 3) ∨ (2 ≠ 0 ∧ 2 ≠ 3)) → {1, 2} ≠ {0,
3})) |
| 94 | 91, 92, 93 | mp2 9 |
. . . . . . 7
⊢ {1, 2}
≠ {0, 3} |
| 95 | 15, 62 | pm3.2i 470 |
. . . . . . . 8
⊢ ((1
∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 5 ∈ ℕ0)) |
| 96 | 66 | orci 865 |
. . . . . . . 8
⊢ ((1 ≠
0 ∧ 1 ≠ 5) ∨ (2 ≠ 0 ∧ 2 ≠ 5)) |
| 97 | | prneimg 4836 |
. . . . . . . 8
⊢ (((1
∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 5 ∈ ℕ0)) → (((1 ≠ 0
∧ 1 ≠ 5) ∨ (2 ≠ 0 ∧ 2 ≠ 5)) → {1, 2} ≠ {0,
5})) |
| 98 | 95, 96, 97 | mp2 9 |
. . . . . . 7
⊢ {1, 2}
≠ {0, 5} |
| 99 | 90, 94, 98 | 3pm3.2i 1339 |
. . . . . 6
⊢ ({1, 2}
≠ {4, 5} ∧ {1, 2} ≠ {0, 3} ∧ {1, 2} ≠ {0, 5}) |
| 100 | 85, 99 | pm3.2i 470 |
. . . . 5
⊢ (({1, 2}
≠ {2, 3} ∧ {1, 2} ≠ {3, 4}) ∧ ({1, 2} ≠ {4, 5} ∧ {1, 2}
≠ {0, 3} ∧ {1, 2} ≠ {0, 5})) |
| 101 | 24, 34 | pm3.2i 470 |
. . . . . . 7
⊢ ((2
∈ ℕ0 ∧ 3 ∈ ℕ0) ∧ (3 ∈
ℕ0 ∧ 4 ∈ ℕ0)) |
| 102 | | 2re 12323 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
| 103 | | 2lt3 12421 |
. . . . . . . . . 10
⊢ 2 <
3 |
| 104 | 102, 103 | ltneii 11357 |
. . . . . . . . 9
⊢ 2 ≠
3 |
| 105 | | 2lt4 12424 |
. . . . . . . . . 10
⊢ 2 <
4 |
| 106 | 102, 105 | ltneii 11357 |
. . . . . . . . 9
⊢ 2 ≠
4 |
| 107 | 104, 106 | pm3.2i 470 |
. . . . . . . 8
⊢ (2 ≠ 3
∧ 2 ≠ 4) |
| 108 | 107 | orci 865 |
. . . . . . 7
⊢ ((2 ≠
3 ∧ 2 ≠ 4) ∨ (3 ≠ 3 ∧ 3 ≠ 4)) |
| 109 | | prneimg 4836 |
. . . . . . 7
⊢ (((2
∈ ℕ0 ∧ 3 ∈ ℕ0) ∧ (3 ∈
ℕ0 ∧ 4 ∈ ℕ0)) → (((2 ≠ 3
∧ 2 ≠ 4) ∨ (3 ≠ 3 ∧ 3 ≠ 4)) → {2, 3} ≠ {3,
4})) |
| 110 | 101, 108,
109 | mp2 9 |
. . . . . 6
⊢ {2, 3}
≠ {3, 4} |
| 111 | 24, 44 | pm3.2i 470 |
. . . . . . . 8
⊢ ((2
∈ ℕ0 ∧ 3 ∈ ℕ0) ∧ (4 ∈
ℕ0 ∧ 5 ∈ ℕ0)) |
| 112 | | 2lt5 12428 |
. . . . . . . . . . 11
⊢ 2 <
5 |
| 113 | 102, 112 | ltneii 11357 |
. . . . . . . . . 10
⊢ 2 ≠
5 |
| 114 | 106, 113 | pm3.2i 470 |
. . . . . . . . 9
⊢ (2 ≠ 4
∧ 2 ≠ 5) |
| 115 | 114 | orci 865 |
. . . . . . . 8
⊢ ((2 ≠
4 ∧ 2 ≠ 5) ∨ (3 ≠ 4 ∧ 3 ≠ 5)) |
| 116 | | prneimg 4836 |
. . . . . . . 8
⊢ (((2
∈ ℕ0 ∧ 3 ∈ ℕ0) ∧ (4 ∈
ℕ0 ∧ 5 ∈ ℕ0)) → (((2 ≠ 4
∧ 2 ≠ 5) ∨ (3 ≠ 4 ∧ 3 ≠ 5)) → {2, 3} ≠ {4,
5})) |
| 117 | 111, 115,
116 | mp2 9 |
. . . . . . 7
⊢ {2, 3}
≠ {4, 5} |
| 118 | 24, 52 | pm3.2i 470 |
. . . . . . . 8
⊢ ((2
∈ ℕ0 ∧ 3 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 3 ∈ ℕ0)) |
| 119 | | 2ne0 12353 |
. . . . . . . . . 10
⊢ 2 ≠
0 |
| 120 | 119, 104 | pm3.2i 470 |
. . . . . . . . 9
⊢ (2 ≠ 0
∧ 2 ≠ 3) |
| 121 | 120 | orci 865 |
. . . . . . . 8
⊢ ((2 ≠
0 ∧ 2 ≠ 3) ∨ (3 ≠ 0 ∧ 3 ≠ 3)) |
| 122 | | prneimg 4836 |
. . . . . . . 8
⊢ (((2
∈ ℕ0 ∧ 3 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 3 ∈ ℕ0)) → (((2 ≠ 0
∧ 2 ≠ 3) ∨ (3 ≠ 0 ∧ 3 ≠ 3)) → {2, 3} ≠ {0,
3})) |
| 123 | 118, 121,
122 | mp2 9 |
. . . . . . 7
⊢ {2, 3}
≠ {0, 3} |
| 124 | 24, 62 | pm3.2i 470 |
. . . . . . . 8
⊢ ((2
∈ ℕ0 ∧ 3 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 5 ∈ ℕ0)) |
| 125 | 119, 113 | pm3.2i 470 |
. . . . . . . . 9
⊢ (2 ≠ 0
∧ 2 ≠ 5) |
| 126 | 125 | orci 865 |
. . . . . . . 8
⊢ ((2 ≠
0 ∧ 2 ≠ 5) ∨ (3 ≠ 0 ∧ 3 ≠ 5)) |
| 127 | | prneimg 4836 |
. . . . . . . 8
⊢ (((2
∈ ℕ0 ∧ 3 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 5 ∈ ℕ0)) → (((2 ≠ 0
∧ 2 ≠ 5) ∨ (3 ≠ 0 ∧ 3 ≠ 5)) → {2, 3} ≠ {0,
5})) |
| 128 | 124, 126,
127 | mp2 9 |
. . . . . . 7
⊢ {2, 3}
≠ {0, 5} |
| 129 | 117, 123,
128 | 3pm3.2i 1339 |
. . . . . 6
⊢ ({2, 3}
≠ {4, 5} ∧ {2, 3} ≠ {0, 3} ∧ {2, 3} ≠ {0, 5}) |
| 130 | 110, 129 | pm3.2i 470 |
. . . . 5
⊢ ({2, 3}
≠ {3, 4} ∧ ({2, 3} ≠ {4, 5} ∧ {2, 3} ≠ {0, 3} ∧ {2, 3}
≠ {0, 5})) |
| 131 | 71, 100, 130 | 3pm3.2i 1339 |
. . . 4
⊢ ((({0, 1}
≠ {1, 2} ∧ {0, 1} ≠ {2, 3} ∧ {0, 1} ≠ {3, 4}) ∧ ({0, 1}
≠ {4, 5} ∧ {0, 1} ≠ {0, 3} ∧ {0, 1} ≠ {0, 5})) ∧ (({1, 2}
≠ {2, 3} ∧ {1, 2} ≠ {3, 4}) ∧ ({1, 2} ≠ {4, 5} ∧ {1, 2}
≠ {0, 3} ∧ {1, 2} ≠ {0, 5})) ∧ ({2, 3} ≠ {3, 4} ∧ ({2, 3}
≠ {4, 5} ∧ {2, 3} ≠ {0, 3} ∧ {2, 3} ≠ {0,
5}))) |
| 132 | 34, 44 | pm3.2i 470 |
. . . . . . 7
⊢ ((3
∈ ℕ0 ∧ 4 ∈ ℕ0) ∧ (4 ∈
ℕ0 ∧ 5 ∈ ℕ0)) |
| 133 | | 3re 12329 |
. . . . . . . . . 10
⊢ 3 ∈
ℝ |
| 134 | | 3lt4 12423 |
. . . . . . . . . 10
⊢ 3 <
4 |
| 135 | 133, 134 | ltneii 11357 |
. . . . . . . . 9
⊢ 3 ≠
4 |
| 136 | | 3lt5 12427 |
. . . . . . . . . 10
⊢ 3 <
5 |
| 137 | 133, 136 | ltneii 11357 |
. . . . . . . . 9
⊢ 3 ≠
5 |
| 138 | 135, 137 | pm3.2i 470 |
. . . . . . . 8
⊢ (3 ≠ 4
∧ 3 ≠ 5) |
| 139 | 138 | orci 865 |
. . . . . . 7
⊢ ((3 ≠
4 ∧ 3 ≠ 5) ∨ (4 ≠ 4 ∧ 4 ≠ 5)) |
| 140 | | prneimg 4836 |
. . . . . . 7
⊢ (((3
∈ ℕ0 ∧ 4 ∈ ℕ0) ∧ (4 ∈
ℕ0 ∧ 5 ∈ ℕ0)) → (((3 ≠ 4
∧ 3 ≠ 5) ∨ (4 ≠ 4 ∧ 4 ≠ 5)) → {3, 4} ≠ {4,
5})) |
| 141 | 132, 139,
140 | mp2 9 |
. . . . . 6
⊢ {3, 4}
≠ {4, 5} |
| 142 | 34, 52 | pm3.2i 470 |
. . . . . . 7
⊢ ((3
∈ ℕ0 ∧ 4 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 3 ∈ ℕ0)) |
| 143 | | 4ne0 12357 |
. . . . . . . . 9
⊢ 4 ≠
0 |
| 144 | 135 | necomi 2985 |
. . . . . . . . 9
⊢ 4 ≠
3 |
| 145 | 143, 144 | pm3.2i 470 |
. . . . . . . 8
⊢ (4 ≠ 0
∧ 4 ≠ 3) |
| 146 | 145 | olci 866 |
. . . . . . 7
⊢ ((3 ≠
0 ∧ 3 ≠ 3) ∨ (4 ≠ 0 ∧ 4 ≠ 3)) |
| 147 | | prneimg 4836 |
. . . . . . 7
⊢ (((3
∈ ℕ0 ∧ 4 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 3 ∈ ℕ0)) → (((3 ≠ 0
∧ 3 ≠ 3) ∨ (4 ≠ 0 ∧ 4 ≠ 3)) → {3, 4} ≠ {0,
3})) |
| 148 | 142, 146,
147 | mp2 9 |
. . . . . 6
⊢ {3, 4}
≠ {0, 3} |
| 149 | 34, 62 | pm3.2i 470 |
. . . . . . 7
⊢ ((3
∈ ℕ0 ∧ 4 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 5 ∈ ℕ0)) |
| 150 | | 3ne0 12355 |
. . . . . . . . 9
⊢ 3 ≠
0 |
| 151 | 150, 137 | pm3.2i 470 |
. . . . . . . 8
⊢ (3 ≠ 0
∧ 3 ≠ 5) |
| 152 | 151 | orci 865 |
. . . . . . 7
⊢ ((3 ≠
0 ∧ 3 ≠ 5) ∨ (4 ≠ 0 ∧ 4 ≠ 5)) |
| 153 | | prneimg 4836 |
. . . . . . 7
⊢ (((3
∈ ℕ0 ∧ 4 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 5 ∈ ℕ0)) → (((3 ≠ 0
∧ 3 ≠ 5) ∨ (4 ≠ 0 ∧ 4 ≠ 5)) → {3, 4} ≠ {0,
5})) |
| 154 | 149, 152,
153 | mp2 9 |
. . . . . 6
⊢ {3, 4}
≠ {0, 5} |
| 155 | 141, 148,
154 | 3pm3.2i 1339 |
. . . . 5
⊢ ({3, 4}
≠ {4, 5} ∧ {3, 4} ≠ {0, 3} ∧ {3, 4} ≠ {0, 5}) |
| 156 | 44, 52 | pm3.2i 470 |
. . . . . . 7
⊢ ((4
∈ ℕ0 ∧ 5 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 3 ∈ ℕ0)) |
| 157 | 145 | orci 865 |
. . . . . . 7
⊢ ((4 ≠
0 ∧ 4 ≠ 3) ∨ (5 ≠ 0 ∧ 5 ≠ 3)) |
| 158 | | prneimg 4836 |
. . . . . . 7
⊢ (((4
∈ ℕ0 ∧ 5 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 3 ∈ ℕ0)) → (((4 ≠ 0
∧ 4 ≠ 3) ∨ (5 ≠ 0 ∧ 5 ≠ 3)) → {4, 5} ≠ {0,
3})) |
| 159 | 156, 157,
158 | mp2 9 |
. . . . . 6
⊢ {4, 5}
≠ {0, 3} |
| 160 | 44, 62 | pm3.2i 470 |
. . . . . . 7
⊢ ((4
∈ ℕ0 ∧ 5 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 5 ∈ ℕ0)) |
| 161 | | 4re 12333 |
. . . . . . . . . 10
⊢ 4 ∈
ℝ |
| 162 | | 4lt5 12426 |
. . . . . . . . . 10
⊢ 4 <
5 |
| 163 | 161, 162 | ltneii 11357 |
. . . . . . . . 9
⊢ 4 ≠
5 |
| 164 | 143, 163 | pm3.2i 470 |
. . . . . . . 8
⊢ (4 ≠ 0
∧ 4 ≠ 5) |
| 165 | 164 | orci 865 |
. . . . . . 7
⊢ ((4 ≠
0 ∧ 4 ≠ 5) ∨ (5 ≠ 0 ∧ 5 ≠ 5)) |
| 166 | | prneimg 4836 |
. . . . . . 7
⊢ (((4
∈ ℕ0 ∧ 5 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 5 ∈ ℕ0)) → (((4 ≠ 0
∧ 4 ≠ 5) ∨ (5 ≠ 0 ∧ 5 ≠ 5)) → {4, 5} ≠ {0,
5})) |
| 167 | 160, 165,
166 | mp2 9 |
. . . . . 6
⊢ {4, 5}
≠ {0, 5} |
| 168 | 52, 62 | pm3.2i 470 |
. . . . . . 7
⊢ ((0
∈ ℕ0 ∧ 3 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 5 ∈ ℕ0)) |
| 169 | 151 | olci 866 |
. . . . . . 7
⊢ ((0 ≠
0 ∧ 0 ≠ 5) ∨ (3 ≠ 0 ∧ 3 ≠ 5)) |
| 170 | | prneimg 4836 |
. . . . . . 7
⊢ (((0
∈ ℕ0 ∧ 3 ∈ ℕ0) ∧ (0 ∈
ℕ0 ∧ 5 ∈ ℕ0)) → (((0 ≠ 0
∧ 0 ≠ 5) ∨ (3 ≠ 0 ∧ 3 ≠ 5)) → {0, 3} ≠ {0,
5})) |
| 171 | 168, 169,
170 | mp2 9 |
. . . . . 6
⊢ {0, 3}
≠ {0, 5} |
| 172 | 159, 167,
171 | 3pm3.2i 1339 |
. . . . 5
⊢ ({4, 5}
≠ {0, 3} ∧ {4, 5} ≠ {0, 5} ∧ {0, 3} ≠ {0, 5}) |
| 173 | 155, 172 | pm3.2i 470 |
. . . 4
⊢ (({3, 4}
≠ {4, 5} ∧ {3, 4} ≠ {0, 3} ∧ {3, 4} ≠ {0, 5}) ∧ ({4, 5}
≠ {0, 3} ∧ {4, 5} ≠ {0, 5} ∧ {0, 3} ≠ {0,
5})) |
| 174 | 131, 173 | pm3.2i 470 |
. . 3
⊢ (((({0,
1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 3} ∧ {0, 1} ≠ {3, 4}) ∧ ({0, 1}
≠ {4, 5} ∧ {0, 1} ≠ {0, 3} ∧ {0, 1} ≠ {0, 5})) ∧ (({1, 2}
≠ {2, 3} ∧ {1, 2} ≠ {3, 4}) ∧ ({1, 2} ≠ {4, 5} ∧ {1, 2}
≠ {0, 3} ∧ {1, 2} ≠ {0, 5})) ∧ ({2, 3} ≠ {3, 4} ∧ ({2, 3}
≠ {4, 5} ∧ {2, 3} ≠ {0, 3} ∧ {2, 3} ≠ {0, 5}))) ∧ (({3, 4}
≠ {4, 5} ∧ {3, 4} ≠ {0, 3} ∧ {3, 4} ≠ {0, 5}) ∧ ({4, 5}
≠ {0, 3} ∧ {4, 5} ≠ {0, 5} ∧ {0, 3} ≠ {0,
5}))) |
| 175 | 10, 174 | pm3.2i 470 |
. 2
⊢ ((({0, 1}
∈ V ∧ {1, 2} ∈ V ∧ {2, 3} ∈ V) ∧ {3, 4} ∈ V
∧ ({4, 5} ∈ V ∧ {0, 3} ∈ V ∧ {0, 5} ∈ V)) ∧
(((({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 3} ∧ {0, 1} ≠ {3, 4}) ∧
({0, 1} ≠ {4, 5} ∧ {0, 1} ≠ {0, 3} ∧ {0, 1} ≠ {0, 5})) ∧
(({1, 2} ≠ {2, 3} ∧ {1, 2} ≠ {3, 4}) ∧ ({1, 2} ≠ {4, 5} ∧
{1, 2} ≠ {0, 3} ∧ {1, 2} ≠ {0, 5})) ∧ ({2, 3} ≠ {3, 4} ∧
({2, 3} ≠ {4, 5} ∧ {2, 3} ≠ {0, 3} ∧ {2, 3} ≠ {0, 5}))) ∧
(({3, 4} ≠ {4, 5} ∧ {3, 4} ≠ {0, 3} ∧ {3, 4} ≠ {0, 5}) ∧
({4, 5} ≠ {0, 3} ∧ {4, 5} ≠ {0, 5} ∧ {0, 3} ≠ {0,
5})))) |
| 176 | | usgrexmpl2.e |
. 2
⊢ 𝐸 = 〈“{0, 1} {1, 2}
{2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 |
| 177 | | s7f1o 14988 |
. . . . . . 7
⊢ (((({0,
1} ∈ V ∧ {1, 2} ∈ V ∧ {2, 3} ∈ V) ∧ {3, 4} ∈ V
∧ ({4, 5} ∈ V ∧ {0, 3} ∈ V ∧ {0, 5} ∈ V)) ∧
(((({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 3} ∧ {0, 1} ≠ {3, 4}) ∧
({0, 1} ≠ {4, 5} ∧ {0, 1} ≠ {0, 3} ∧ {0, 1} ≠ {0, 5})) ∧
(({1, 2} ≠ {2, 3} ∧ {1, 2} ≠ {3, 4}) ∧ ({1, 2} ≠ {4, 5} ∧
{1, 2} ≠ {0, 3} ∧ {1, 2} ≠ {0, 5})) ∧ ({2, 3} ≠ {3, 4} ∧
({2, 3} ≠ {4, 5} ∧ {2, 3} ≠ {0, 3} ∧ {2, 3} ≠ {0, 5}))) ∧
(({3, 4} ≠ {4, 5} ∧ {3, 4} ≠ {0, 3} ∧ {3, 4} ≠ {0, 5}) ∧
({4, 5} ≠ {0, 3} ∧ {4, 5} ≠ {0, 5} ∧ {0, 3} ≠ {0, 5}))))
→ (𝐸 =
〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉
→ 𝐸:(0..^7)–1-1-onto→(({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})
∪ {{4, 5}, {0, 3}, {0, 5}}))) |
| 178 | 177 | imp 406 |
. . . . . 6
⊢ ((((({0,
1} ∈ V ∧ {1, 2} ∈ V ∧ {2, 3} ∈ V) ∧ {3, 4} ∈ V
∧ ({4, 5} ∈ V ∧ {0, 3} ∈ V ∧ {0, 5} ∈ V)) ∧
(((({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 3} ∧ {0, 1} ≠ {3, 4}) ∧
({0, 1} ≠ {4, 5} ∧ {0, 1} ≠ {0, 3} ∧ {0, 1} ≠ {0, 5})) ∧
(({1, 2} ≠ {2, 3} ∧ {1, 2} ≠ {3, 4}) ∧ ({1, 2} ≠ {4, 5} ∧
{1, 2} ≠ {0, 3} ∧ {1, 2} ≠ {0, 5})) ∧ ({2, 3} ≠ {3, 4} ∧
({2, 3} ≠ {4, 5} ∧ {2, 3} ≠ {0, 3} ∧ {2, 3} ≠ {0, 5}))) ∧
(({3, 4} ≠ {4, 5} ∧ {3, 4} ≠ {0, 3} ∧ {3, 4} ≠ {0, 5}) ∧
({4, 5} ≠ {0, 3} ∧ {4, 5} ≠ {0, 5} ∧ {0, 3} ≠ {0, 5})))) ∧
𝐸 = 〈“{0, 1} {1,
2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉) → 𝐸:(0..^7)–1-1-onto→(({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})
∪ {{4, 5}, {0, 3}, {0, 5}})) |
| 179 | | s7len 14924 |
. . . . . . . 8
⊢
(♯‘〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3}
{0, 5}”〉) = 7 |
| 180 | 179 | oveq2i 7425 |
. . . . . . 7
⊢
(0..^(♯‘〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0,
3} {0, 5}”〉)) = (0..^7) |
| 181 | | f1oeq2 6818 |
. . . . . . 7
⊢
((0..^(♯‘〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0,
3} {0, 5}”〉)) = (0..^7) → (𝐸:(0..^(♯‘〈“{0, 1} {1,
2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉))–1-1-onto→(({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})
∪ {{4, 5}, {0, 3}, {0, 5}}) ↔ 𝐸:(0..^7)–1-1-onto→(({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})
∪ {{4, 5}, {0, 3}, {0, 5}}))) |
| 182 | 180, 181 | ax-mp 5 |
. . . . . 6
⊢ (𝐸:(0..^(♯‘〈“{0, 1} {1,
2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉))–1-1-onto→(({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})
∪ {{4, 5}, {0, 3}, {0, 5}}) ↔ 𝐸:(0..^7)–1-1-onto→(({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})
∪ {{4, 5}, {0, 3}, {0, 5}})) |
| 183 | 178, 182 | sylibr 234 |
. . . . 5
⊢ ((((({0,
1} ∈ V ∧ {1, 2} ∈ V ∧ {2, 3} ∈ V) ∧ {3, 4} ∈ V
∧ ({4, 5} ∈ V ∧ {0, 3} ∈ V ∧ {0, 5} ∈ V)) ∧
(((({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 3} ∧ {0, 1} ≠ {3, 4}) ∧
({0, 1} ≠ {4, 5} ∧ {0, 1} ≠ {0, 3} ∧ {0, 1} ≠ {0, 5})) ∧
(({1, 2} ≠ {2, 3} ∧ {1, 2} ≠ {3, 4}) ∧ ({1, 2} ≠ {4, 5} ∧
{1, 2} ≠ {0, 3} ∧ {1, 2} ≠ {0, 5})) ∧ ({2, 3} ≠ {3, 4} ∧
({2, 3} ≠ {4, 5} ∧ {2, 3} ≠ {0, 3} ∧ {2, 3} ≠ {0, 5}))) ∧
(({3, 4} ≠ {4, 5} ∧ {3, 4} ≠ {0, 3} ∧ {3, 4} ≠ {0, 5}) ∧
({4, 5} ≠ {0, 3} ∧ {4, 5} ≠ {0, 5} ∧ {0, 3} ≠ {0, 5})))) ∧
𝐸 = 〈“{0, 1} {1,
2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉) → 𝐸:(0..^(♯‘〈“{0, 1} {1,
2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉))–1-1-onto→(({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})
∪ {{4, 5}, {0, 3}, {0, 5}})) |
| 184 | 176 | dmeqi 5897 |
. . . . . . 7
⊢ dom 𝐸 = dom 〈“{0, 1} {1,
2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 |
| 185 | | s7cli 14907 |
. . . . . . . 8
⊢
〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0,
5}”〉 ∈ Word V |
| 186 | | wrddm 14542 |
. . . . . . . 8
⊢
(〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0,
5}”〉 ∈ Word V → dom 〈“{0, 1} {1, 2} {2, 3} {3,
4} {4, 5} {0, 3} {0, 5}”〉 = (0..^(♯‘〈“{0, 1}
{1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉))) |
| 187 | 185, 186 | ax-mp 5 |
. . . . . . 7
⊢ dom
〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 =
(0..^(♯‘〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0,
5}”〉)) |
| 188 | 184, 187 | eqtri 2757 |
. . . . . 6
⊢ dom 𝐸 =
(0..^(♯‘〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0,
5}”〉)) |
| 189 | | f1oeq2 6818 |
. . . . . 6
⊢ (dom
𝐸 =
(0..^(♯‘〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0,
5}”〉)) → (𝐸:dom 𝐸–1-1-onto→(({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})
∪ {{4, 5}, {0, 3}, {0, 5}}) ↔ 𝐸:(0..^(♯‘〈“{0, 1} {1,
2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉))–1-1-onto→(({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})
∪ {{4, 5}, {0, 3}, {0, 5}}))) |
| 190 | 188, 189 | ax-mp 5 |
. . . . 5
⊢ (𝐸:dom 𝐸–1-1-onto→(({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})
∪ {{4, 5}, {0, 3}, {0, 5}}) ↔ 𝐸:(0..^(♯‘〈“{0, 1} {1,
2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉))–1-1-onto→(({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})
∪ {{4, 5}, {0, 3}, {0, 5}})) |
| 191 | 183, 190 | sylibr 234 |
. . . 4
⊢ ((((({0,
1} ∈ V ∧ {1, 2} ∈ V ∧ {2, 3} ∈ V) ∧ {3, 4} ∈ V
∧ ({4, 5} ∈ V ∧ {0, 3} ∈ V ∧ {0, 5} ∈ V)) ∧
(((({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 3} ∧ {0, 1} ≠ {3, 4}) ∧
({0, 1} ≠ {4, 5} ∧ {0, 1} ≠ {0, 3} ∧ {0, 1} ≠ {0, 5})) ∧
(({1, 2} ≠ {2, 3} ∧ {1, 2} ≠ {3, 4}) ∧ ({1, 2} ≠ {4, 5} ∧
{1, 2} ≠ {0, 3} ∧ {1, 2} ≠ {0, 5})) ∧ ({2, 3} ≠ {3, 4} ∧
({2, 3} ≠ {4, 5} ∧ {2, 3} ≠ {0, 3} ∧ {2, 3} ≠ {0, 5}))) ∧
(({3, 4} ≠ {4, 5} ∧ {3, 4} ≠ {0, 3} ∧ {3, 4} ≠ {0, 5}) ∧
({4, 5} ≠ {0, 3} ∧ {4, 5} ≠ {0, 5} ∧ {0, 3} ≠ {0, 5})))) ∧
𝐸 = 〈“{0, 1} {1,
2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉) → 𝐸:dom 𝐸–1-1-onto→(({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})
∪ {{4, 5}, {0, 3}, {0, 5}})) |
| 192 | | f1of1 6828 |
. . . 4
⊢ (𝐸:dom 𝐸–1-1-onto→(({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})
∪ {{4, 5}, {0, 3}, {0, 5}}) → 𝐸:dom 𝐸–1-1→(({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})
∪ {{4, 5}, {0, 3}, {0, 5}})) |
| 193 | 191, 192 | syl 17 |
. . 3
⊢ ((((({0,
1} ∈ V ∧ {1, 2} ∈ V ∧ {2, 3} ∈ V) ∧ {3, 4} ∈ V
∧ ({4, 5} ∈ V ∧ {0, 3} ∈ V ∧ {0, 5} ∈ V)) ∧
(((({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 3} ∧ {0, 1} ≠ {3, 4}) ∧
({0, 1} ≠ {4, 5} ∧ {0, 1} ≠ {0, 3} ∧ {0, 1} ≠ {0, 5})) ∧
(({1, 2} ≠ {2, 3} ∧ {1, 2} ≠ {3, 4}) ∧ ({1, 2} ≠ {4, 5} ∧
{1, 2} ≠ {0, 3} ∧ {1, 2} ≠ {0, 5})) ∧ ({2, 3} ≠ {3, 4} ∧
({2, 3} ≠ {4, 5} ∧ {2, 3} ≠ {0, 3} ∧ {2, 3} ≠ {0, 5}))) ∧
(({3, 4} ≠ {4, 5} ∧ {3, 4} ≠ {0, 3} ∧ {3, 4} ≠ {0, 5}) ∧
({4, 5} ≠ {0, 3} ∧ {4, 5} ≠ {0, 5} ∧ {0, 3} ≠ {0, 5})))) ∧
𝐸 = 〈“{0, 1} {1,
2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉) → 𝐸:dom 𝐸–1-1→(({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})
∪ {{4, 5}, {0, 3}, {0, 5}})) |
| 194 | | 0elfz 13647 |
. . . . . . . . . . 11
⊢ (5 ∈
ℕ0 → 0 ∈ (0...5)) |
| 195 | 43, 194 | ax-mp 5 |
. . . . . . . . . 10
⊢ 0 ∈
(0...5) |
| 196 | | 5re 12336 |
. . . . . . . . . . . 12
⊢ 5 ∈
ℝ |
| 197 | 55, 196, 64 | ltleii 11367 |
. . . . . . . . . . 11
⊢ 1 ≤
5 |
| 198 | | elfz2nn0 13641 |
. . . . . . . . . . 11
⊢ (1 ∈
(0...5) ↔ (1 ∈ ℕ0 ∧ 5 ∈ ℕ0
∧ 1 ≤ 5)) |
| 199 | 12, 43, 197, 198 | mpbir3an 1341 |
. . . . . . . . . 10
⊢ 1 ∈
(0...5) |
| 200 | | prssi 4803 |
. . . . . . . . . 10
⊢ ((0
∈ (0...5) ∧ 1 ∈ (0...5)) → {0, 1} ⊆
(0...5)) |
| 201 | 195, 199,
200 | mp2an 692 |
. . . . . . . . 9
⊢ {0, 1}
⊆ (0...5) |
| 202 | 102, 196,
112 | ltleii 11367 |
. . . . . . . . . . 11
⊢ 2 ≤
5 |
| 203 | | elfz2nn0 13641 |
. . . . . . . . . . 11
⊢ (2 ∈
(0...5) ↔ (2 ∈ ℕ0 ∧ 5 ∈ ℕ0
∧ 2 ≤ 5)) |
| 204 | 14, 43, 202, 203 | mpbir3an 1341 |
. . . . . . . . . 10
⊢ 2 ∈
(0...5) |
| 205 | | prssi 4803 |
. . . . . . . . . 10
⊢ ((1
∈ (0...5) ∧ 2 ∈ (0...5)) → {1, 2} ⊆
(0...5)) |
| 206 | 199, 204,
205 | mp2an 692 |
. . . . . . . . 9
⊢ {1, 2}
⊆ (0...5) |
| 207 | 133, 196,
136 | ltleii 11367 |
. . . . . . . . . . 11
⊢ 3 ≤
5 |
| 208 | | elfz2nn0 13641 |
. . . . . . . . . . 11
⊢ (3 ∈
(0...5) ↔ (3 ∈ ℕ0 ∧ 5 ∈ ℕ0
∧ 3 ≤ 5)) |
| 209 | 23, 43, 207, 208 | mpbir3an 1341 |
. . . . . . . . . 10
⊢ 3 ∈
(0...5) |
| 210 | | prssi 4803 |
. . . . . . . . . 10
⊢ ((2
∈ (0...5) ∧ 3 ∈ (0...5)) → {2, 3} ⊆
(0...5)) |
| 211 | 204, 209,
210 | mp2an 692 |
. . . . . . . . 9
⊢ {2, 3}
⊆ (0...5) |
| 212 | | sseq1 3991 |
. . . . . . . . . 10
⊢ (𝑒 = {0, 1} → (𝑒 ⊆ (0...5) ↔ {0, 1}
⊆ (0...5))) |
| 213 | | sseq1 3991 |
. . . . . . . . . 10
⊢ (𝑒 = {1, 2} → (𝑒 ⊆ (0...5) ↔ {1, 2}
⊆ (0...5))) |
| 214 | | sseq1 3991 |
. . . . . . . . . 10
⊢ (𝑒 = {2, 3} → (𝑒 ⊆ (0...5) ↔ {2, 3}
⊆ (0...5))) |
| 215 | 1, 2, 3, 212, 213, 214 | raltp 4687 |
. . . . . . . . 9
⊢
(∀𝑒 ∈
{{0, 1}, {1, 2}, {2, 3}}𝑒
⊆ (0...5) ↔ ({0, 1} ⊆ (0...5) ∧ {1, 2} ⊆ (0...5)
∧ {2, 3} ⊆ (0...5))) |
| 216 | 201, 206,
211, 215 | mpbir3an 1341 |
. . . . . . . 8
⊢
∀𝑒 ∈
{{0, 1}, {1, 2}, {2, 3}}𝑒
⊆ (0...5) |
| 217 | 161, 196,
162 | ltleii 11367 |
. . . . . . . . . . 11
⊢ 4 ≤
5 |
| 218 | | elfz2nn0 13641 |
. . . . . . . . . . 11
⊢ (4 ∈
(0...5) ↔ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0
∧ 4 ≤ 5)) |
| 219 | 33, 43, 217, 218 | mpbir3an 1341 |
. . . . . . . . . 10
⊢ 4 ∈
(0...5) |
| 220 | | prssi 4803 |
. . . . . . . . . 10
⊢ ((3
∈ (0...5) ∧ 4 ∈ (0...5)) → {3, 4} ⊆
(0...5)) |
| 221 | 209, 219,
220 | mp2an 692 |
. . . . . . . . 9
⊢ {3, 4}
⊆ (0...5) |
| 222 | | sseq1 3991 |
. . . . . . . . . 10
⊢ (𝑒 = {3, 4} → (𝑒 ⊆ (0...5) ↔ {3, 4}
⊆ (0...5))) |
| 223 | 5, 222 | ralsn 4663 |
. . . . . . . . 9
⊢
(∀𝑒 ∈
{{3, 4}}𝑒 ⊆ (0...5)
↔ {3, 4} ⊆ (0...5)) |
| 224 | 221, 223 | mpbir 231 |
. . . . . . . 8
⊢
∀𝑒 ∈
{{3, 4}}𝑒 ⊆
(0...5) |
| 225 | | ralunb 4179 |
. . . . . . . 8
⊢
(∀𝑒 ∈
({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})𝑒 ⊆ (0...5) ↔ (∀𝑒 ∈ {{0, 1}, {1, 2}, {2,
3}}𝑒 ⊆ (0...5) ∧
∀𝑒 ∈ {{3,
4}}𝑒 ⊆
(0...5))) |
| 226 | 216, 224,
225 | mpbir2an 711 |
. . . . . . 7
⊢
∀𝑒 ∈
({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})𝑒 ⊆ (0...5) |
| 227 | 196 | leidi 11780 |
. . . . . . . . . 10
⊢ 5 ≤
5 |
| 228 | | elfz2nn0 13641 |
. . . . . . . . . 10
⊢ (5 ∈
(0...5) ↔ (5 ∈ ℕ0 ∧ 5 ∈ ℕ0
∧ 5 ≤ 5)) |
| 229 | 43, 43, 227, 228 | mpbir3an 1341 |
. . . . . . . . 9
⊢ 5 ∈
(0...5) |
| 230 | | prssi 4803 |
. . . . . . . . 9
⊢ ((4
∈ (0...5) ∧ 5 ∈ (0...5)) → {4, 5} ⊆
(0...5)) |
| 231 | 219, 229,
230 | mp2an 692 |
. . . . . . . 8
⊢ {4, 5}
⊆ (0...5) |
| 232 | | prssi 4803 |
. . . . . . . . 9
⊢ ((0
∈ (0...5) ∧ 3 ∈ (0...5)) → {0, 3} ⊆
(0...5)) |
| 233 | 195, 209,
232 | mp2an 692 |
. . . . . . . 8
⊢ {0, 3}
⊆ (0...5) |
| 234 | | prssi 4803 |
. . . . . . . . 9
⊢ ((0
∈ (0...5) ∧ 5 ∈ (0...5)) → {0, 5} ⊆
(0...5)) |
| 235 | 195, 229,
234 | mp2an 692 |
. . . . . . . 8
⊢ {0, 5}
⊆ (0...5) |
| 236 | | sseq1 3991 |
. . . . . . . . 9
⊢ (𝑒 = {4, 5} → (𝑒 ⊆ (0...5) ↔ {4, 5}
⊆ (0...5))) |
| 237 | | sseq1 3991 |
. . . . . . . . 9
⊢ (𝑒 = {0, 3} → (𝑒 ⊆ (0...5) ↔ {0, 3}
⊆ (0...5))) |
| 238 | | sseq1 3991 |
. . . . . . . . 9
⊢ (𝑒 = {0, 5} → (𝑒 ⊆ (0...5) ↔ {0, 5}
⊆ (0...5))) |
| 239 | 6, 7, 8, 236, 237, 238 | raltp 4687 |
. . . . . . . 8
⊢
(∀𝑒 ∈
{{4, 5}, {0, 3}, {0, 5}}𝑒
⊆ (0...5) ↔ ({4, 5} ⊆ (0...5) ∧ {0, 3} ⊆ (0...5)
∧ {0, 5} ⊆ (0...5))) |
| 240 | 231, 233,
235, 239 | mpbir3an 1341 |
. . . . . . 7
⊢
∀𝑒 ∈
{{4, 5}, {0, 3}, {0, 5}}𝑒
⊆ (0...5) |
| 241 | | ralunb 4179 |
. . . . . . 7
⊢
(∀𝑒 ∈
(({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}}) ∪ {{4, 5}, {0, 3}, {0, 5}})𝑒 ⊆ (0...5) ↔
(∀𝑒 ∈ ({{0, 1},
{1, 2}, {2, 3}} ∪ {{3, 4}})𝑒 ⊆ (0...5) ∧ ∀𝑒 ∈ {{4, 5}, {0, 3}, {0,
5}}𝑒 ⊆
(0...5))) |
| 242 | 226, 240,
241 | mpbir2an 711 |
. . . . . 6
⊢
∀𝑒 ∈
(({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}}) ∪ {{4, 5}, {0, 3}, {0, 5}})𝑒 ⊆
(0...5) |
| 243 | | pwssb 5083 |
. . . . . 6
⊢ ((({{0,
1}, {1, 2}, {2, 3}} ∪ {{3, 4}}) ∪ {{4, 5}, {0, 3}, {0, 5}}) ⊆
𝒫 (0...5) ↔ ∀𝑒 ∈ (({{0, 1}, {1, 2}, {2, 3}} ∪ {{3,
4}}) ∪ {{4, 5}, {0, 3}, {0, 5}})𝑒 ⊆ (0...5)) |
| 244 | 242, 243 | mpbir 231 |
. . . . 5
⊢ (({{0,
1}, {1, 2}, {2, 3}} ∪ {{3, 4}}) ∪ {{4, 5}, {0, 3}, {0, 5}}) ⊆
𝒫 (0...5) |
| 245 | | usgrexmpl2.v |
. . . . . 6
⊢ 𝑉 = (0...5) |
| 246 | 245 | pweqi 4598 |
. . . . 5
⊢ 𝒫
𝑉 = 𝒫
(0...5) |
| 247 | 244, 246 | sseqtrri 4015 |
. . . 4
⊢ (({{0,
1}, {1, 2}, {2, 3}} ∪ {{3, 4}}) ∪ {{4, 5}, {0, 3}, {0, 5}}) ⊆
𝒫 𝑉 |
| 248 | | prhash2ex 14421 |
. . . . . . 7
⊢
(♯‘{0, 1}) = 2 |
| 249 | | 1ex 11240 |
. . . . . . . . 9
⊢ 1 ∈
V |
| 250 | | 2ex 12326 |
. . . . . . . . 9
⊢ 2 ∈
V |
| 251 | 249, 250,
73 | 3pm3.2i 1339 |
. . . . . . . 8
⊢ (1 ∈
V ∧ 2 ∈ V ∧ 1 ≠ 2) |
| 252 | | hashprb 14419 |
. . . . . . . 8
⊢ ((1
∈ V ∧ 2 ∈ V ∧ 1 ≠ 2) ↔ (♯‘{1, 2}) =
2) |
| 253 | 251, 252 | mpbi 230 |
. . . . . . 7
⊢
(♯‘{1, 2}) = 2 |
| 254 | | 3ex 12331 |
. . . . . . . . 9
⊢ 3 ∈
V |
| 255 | 250, 254,
104 | 3pm3.2i 1339 |
. . . . . . . 8
⊢ (2 ∈
V ∧ 3 ∈ V ∧ 2 ≠ 3) |
| 256 | | hashprb 14419 |
. . . . . . . 8
⊢ ((2
∈ V ∧ 3 ∈ V ∧ 2 ≠ 3) ↔ (♯‘{2, 3}) =
2) |
| 257 | 255, 256 | mpbi 230 |
. . . . . . 7
⊢
(♯‘{2, 3}) = 2 |
| 258 | | fveqeq2 6896 |
. . . . . . . 8
⊢ (𝑒 = {0, 1} →
((♯‘𝑒) = 2
↔ (♯‘{0, 1}) = 2)) |
| 259 | | fveqeq2 6896 |
. . . . . . . 8
⊢ (𝑒 = {1, 2} →
((♯‘𝑒) = 2
↔ (♯‘{1, 2}) = 2)) |
| 260 | | fveqeq2 6896 |
. . . . . . . 8
⊢ (𝑒 = {2, 3} →
((♯‘𝑒) = 2
↔ (♯‘{2, 3}) = 2)) |
| 261 | 1, 2, 3, 258, 259, 260 | raltp 4687 |
. . . . . . 7
⊢
(∀𝑒 ∈
{{0, 1}, {1, 2}, {2, 3}} (♯‘𝑒) = 2 ↔ ((♯‘{0, 1}) = 2
∧ (♯‘{1, 2}) = 2 ∧ (♯‘{2, 3}) =
2)) |
| 262 | 248, 253,
257, 261 | mpbir3an 1341 |
. . . . . 6
⊢
∀𝑒 ∈
{{0, 1}, {1, 2}, {2, 3}} (♯‘𝑒) = 2 |
| 263 | 33 | elexi 3487 |
. . . . . . . . 9
⊢ 4 ∈
V |
| 264 | 254, 263,
135 | 3pm3.2i 1339 |
. . . . . . . 8
⊢ (3 ∈
V ∧ 4 ∈ V ∧ 3 ≠ 4) |
| 265 | | hashprb 14419 |
. . . . . . . 8
⊢ ((3
∈ V ∧ 4 ∈ V ∧ 3 ≠ 4) ↔ (♯‘{3, 4}) =
2) |
| 266 | 264, 265 | mpbi 230 |
. . . . . . 7
⊢
(♯‘{3, 4}) = 2 |
| 267 | | fveqeq2 6896 |
. . . . . . . 8
⊢ (𝑒 = {3, 4} →
((♯‘𝑒) = 2
↔ (♯‘{3, 4}) = 2)) |
| 268 | 5, 267 | ralsn 4663 |
. . . . . . 7
⊢
(∀𝑒 ∈
{{3, 4}} (♯‘𝑒)
= 2 ↔ (♯‘{3, 4}) = 2) |
| 269 | 266, 268 | mpbir 231 |
. . . . . 6
⊢
∀𝑒 ∈
{{3, 4}} (♯‘𝑒)
= 2 |
| 270 | | ralunb 4179 |
. . . . . 6
⊢
(∀𝑒 ∈
({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})(♯‘𝑒) = 2 ↔ (∀𝑒 ∈ {{0, 1}, {1, 2}, {2, 3}}
(♯‘𝑒) = 2 ∧
∀𝑒 ∈ {{3, 4}}
(♯‘𝑒) =
2)) |
| 271 | 262, 269,
270 | mpbir2an 711 |
. . . . 5
⊢
∀𝑒 ∈
({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})(♯‘𝑒) = 2 |
| 272 | 43 | elexi 3487 |
. . . . . . . 8
⊢ 5 ∈
V |
| 273 | 263, 272,
163 | 3pm3.2i 1339 |
. . . . . . 7
⊢ (4 ∈
V ∧ 5 ∈ V ∧ 4 ≠ 5) |
| 274 | | hashprb 14419 |
. . . . . . 7
⊢ ((4
∈ V ∧ 5 ∈ V ∧ 4 ≠ 5) ↔ (♯‘{4, 5}) =
2) |
| 275 | 273, 274 | mpbi 230 |
. . . . . 6
⊢
(♯‘{4, 5}) = 2 |
| 276 | | c0ex 11238 |
. . . . . . . 8
⊢ 0 ∈
V |
| 277 | 276, 254,
28 | 3pm3.2i 1339 |
. . . . . . 7
⊢ (0 ∈
V ∧ 3 ∈ V ∧ 0 ≠ 3) |
| 278 | | hashprb 14419 |
. . . . . . 7
⊢ ((0
∈ V ∧ 3 ∈ V ∧ 0 ≠ 3) ↔ (♯‘{0, 3}) =
2) |
| 279 | 277, 278 | mpbi 230 |
. . . . . 6
⊢
(♯‘{0, 3}) = 2 |
| 280 | 276, 272,
47 | 3pm3.2i 1339 |
. . . . . . 7
⊢ (0 ∈
V ∧ 5 ∈ V ∧ 0 ≠ 5) |
| 281 | | hashprb 14419 |
. . . . . . 7
⊢ ((0
∈ V ∧ 5 ∈ V ∧ 0 ≠ 5) ↔ (♯‘{0, 5}) =
2) |
| 282 | 280, 281 | mpbi 230 |
. . . . . 6
⊢
(♯‘{0, 5}) = 2 |
| 283 | | fveqeq2 6896 |
. . . . . . 7
⊢ (𝑒 = {4, 5} →
((♯‘𝑒) = 2
↔ (♯‘{4, 5}) = 2)) |
| 284 | | fveqeq2 6896 |
. . . . . . 7
⊢ (𝑒 = {0, 3} →
((♯‘𝑒) = 2
↔ (♯‘{0, 3}) = 2)) |
| 285 | | fveqeq2 6896 |
. . . . . . 7
⊢ (𝑒 = {0, 5} →
((♯‘𝑒) = 2
↔ (♯‘{0, 5}) = 2)) |
| 286 | 6, 7, 8, 283, 284, 285 | raltp 4687 |
. . . . . 6
⊢
(∀𝑒 ∈
{{4, 5}, {0, 3}, {0, 5}} (♯‘𝑒) = 2 ↔ ((♯‘{4, 5}) = 2
∧ (♯‘{0, 3}) = 2 ∧ (♯‘{0, 5}) =
2)) |
| 287 | 275, 279,
282, 286 | mpbir3an 1341 |
. . . . 5
⊢
∀𝑒 ∈
{{4, 5}, {0, 3}, {0, 5}} (♯‘𝑒) = 2 |
| 288 | | ralunb 4179 |
. . . . 5
⊢
(∀𝑒 ∈
(({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}}) ∪ {{4, 5}, {0, 3}, {0,
5}})(♯‘𝑒) = 2
↔ (∀𝑒 ∈
({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})(♯‘𝑒) = 2 ∧ ∀𝑒 ∈ {{4, 5}, {0, 3}, {0, 5}}
(♯‘𝑒) =
2)) |
| 289 | 271, 287,
288 | mpbir2an 711 |
. . . 4
⊢
∀𝑒 ∈
(({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}}) ∪ {{4, 5}, {0, 3}, {0,
5}})(♯‘𝑒) =
2 |
| 290 | | ssrab 4055 |
. . . 4
⊢ ((({{0,
1}, {1, 2}, {2, 3}} ∪ {{3, 4}}) ∪ {{4, 5}, {0, 3}, {0, 5}}) ⊆
{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ↔ ((({{0, 1}, {1,
2}, {2, 3}} ∪ {{3, 4}}) ∪ {{4, 5}, {0, 3}, {0, 5}}) ⊆ 𝒫
𝑉 ∧ ∀𝑒 ∈ (({{0, 1}, {1, 2}, {2,
3}} ∪ {{3, 4}}) ∪ {{4, 5}, {0, 3}, {0, 5}})(♯‘𝑒) = 2)) |
| 291 | 247, 289,
290 | mpbir2an 711 |
. . 3
⊢ (({{0,
1}, {1, 2}, {2, 3}} ∪ {{3, 4}}) ∪ {{4, 5}, {0, 3}, {0, 5}}) ⊆
{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} |
| 292 | | f1ss 6790 |
. . 3
⊢ ((𝐸:dom 𝐸–1-1→(({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}})
∪ {{4, 5}, {0, 3}, {0, 5}}) ∧ (({{0, 1}, {1, 2}, {2, 3}} ∪ {{3,
4}}) ∪ {{4, 5}, {0, 3}, {0, 5}}) ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) → 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) |
| 293 | 193, 291,
292 | sylancl 586 |
. 2
⊢ ((((({0,
1} ∈ V ∧ {1, 2} ∈ V ∧ {2, 3} ∈ V) ∧ {3, 4} ∈ V
∧ ({4, 5} ∈ V ∧ {0, 3} ∈ V ∧ {0, 5} ∈ V)) ∧
(((({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 3} ∧ {0, 1} ≠ {3, 4}) ∧
({0, 1} ≠ {4, 5} ∧ {0, 1} ≠ {0, 3} ∧ {0, 1} ≠ {0, 5})) ∧
(({1, 2} ≠ {2, 3} ∧ {1, 2} ≠ {3, 4}) ∧ ({1, 2} ≠ {4, 5} ∧
{1, 2} ≠ {0, 3} ∧ {1, 2} ≠ {0, 5})) ∧ ({2, 3} ≠ {3, 4} ∧
({2, 3} ≠ {4, 5} ∧ {2, 3} ≠ {0, 3} ∧ {2, 3} ≠ {0, 5}))) ∧
(({3, 4} ≠ {4, 5} ∧ {3, 4} ≠ {0, 3} ∧ {3, 4} ≠ {0, 5}) ∧
({4, 5} ≠ {0, 3} ∧ {4, 5} ≠ {0, 5} ∧ {0, 3} ≠ {0, 5})))) ∧
𝐸 = 〈“{0, 1} {1,
2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉) → 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) |
| 294 | 175, 176,
293 | mp2an 692 |
1
⊢ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} |