Proof of Theorem gpgprismgr4cycllem7
| Step | Hyp | Ref
| Expression |
| 1 | | gpgprismgr4cycl.p |
. . . . . . 7
⊢ 𝑃 = 〈“〈0,
0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0,
0〉”〉 |
| 2 | 1 | gpgprismgr4cycllem4 48045 |
. . . . . 6
⊢
(♯‘𝑃) =
5 |
| 3 | | df-5 12304 |
. . . . . 6
⊢ 5 = (4 +
1) |
| 4 | 2, 3 | eqtri 2758 |
. . . . 5
⊢
(♯‘𝑃) =
(4 + 1) |
| 5 | 4 | oveq2i 7414 |
. . . 4
⊢
(0..^(♯‘𝑃)) = (0..^(4 + 1)) |
| 6 | | 4nn0 12518 |
. . . . . 6
⊢ 4 ∈
ℕ0 |
| 7 | | elnn0uz 12895 |
. . . . . 6
⊢ (4 ∈
ℕ0 ↔ 4 ∈
(ℤ≥‘0)) |
| 8 | 6, 7 | mpbi 230 |
. . . . 5
⊢ 4 ∈
(ℤ≥‘0) |
| 9 | | fzosplitsn 13789 |
. . . . 5
⊢ (4 ∈
(ℤ≥‘0) → (0..^(4 + 1)) = ((0..^4) ∪
{4})) |
| 10 | 8, 9 | ax-mp 5 |
. . . 4
⊢ (0..^(4 +
1)) = ((0..^4) ∪ {4}) |
| 11 | | fzo0to42pr 13767 |
. . . . 5
⊢ (0..^4) =
({0, 1} ∪ {2, 3}) |
| 12 | 11 | uneq1i 4139 |
. . . 4
⊢ ((0..^4)
∪ {4}) = (({0, 1} ∪ {2, 3}) ∪ {4}) |
| 13 | 5, 10, 12 | 3eqtri 2762 |
. . 3
⊢
(0..^(♯‘𝑃)) = (({0, 1} ∪ {2, 3}) ∪
{4}) |
| 14 | 13 | eleq2i 2826 |
. 2
⊢ (𝑋 ∈
(0..^(♯‘𝑃))
↔ 𝑋 ∈ (({0, 1}
∪ {2, 3}) ∪ {4})) |
| 15 | | fzo1to4tp 13768 |
. . 3
⊢ (1..^4) =
{1, 2, 3} |
| 16 | 15 | eleq2i 2826 |
. 2
⊢ (𝑌 ∈ (1..^4) ↔ 𝑌 ∈ {1, 2,
3}) |
| 17 | | elun 4128 |
. . . . 5
⊢ (𝑋 ∈ (({0, 1} ∪ {2, 3})
∪ {4}) ↔ (𝑋 ∈
({0, 1} ∪ {2, 3}) ∨ 𝑋 ∈ {4})) |
| 18 | | elun 4128 |
. . . . . 6
⊢ (𝑋 ∈ ({0, 1} ∪ {2, 3})
↔ (𝑋 ∈ {0, 1}
∨ 𝑋 ∈ {2,
3})) |
| 19 | 18 | orbi1i 913 |
. . . . 5
⊢ ((𝑋 ∈ ({0, 1} ∪ {2, 3})
∨ 𝑋 ∈ {4}) ↔
((𝑋 ∈ {0, 1} ∨
𝑋 ∈ {2, 3}) ∨ 𝑋 ∈ {4})) |
| 20 | 17, 19 | bitri 275 |
. . . 4
⊢ (𝑋 ∈ (({0, 1} ∪ {2, 3})
∪ {4}) ↔ ((𝑋
∈ {0, 1} ∨ 𝑋 ∈
{2, 3}) ∨ 𝑋 ∈
{4})) |
| 21 | | elpri 4625 |
. . . . . . 7
⊢ (𝑋 ∈ {0, 1} → (𝑋 = 0 ∨ 𝑋 = 1)) |
| 22 | | 0ne1 12309 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ≠
1 |
| 23 | 22 | olci 866 |
. . . . . . . . . . . . . . . 16
⊢ (0 ≠ 0
∨ 0 ≠ 1) |
| 24 | | c0ex 11227 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
V |
| 25 | 24, 24 | opthne 5457 |
. . . . . . . . . . . . . . . 16
⊢ (〈0,
0〉 ≠ 〈0, 1〉 ↔ (0 ≠ 0 ∨ 0 ≠ 1)) |
| 26 | 23, 25 | mpbir 231 |
. . . . . . . . . . . . . . 15
⊢ 〈0,
0〉 ≠ 〈0, 1〉 |
| 27 | 1 | fveq1i 6876 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃‘0) =
(〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉‘0) |
| 28 | | opex 5439 |
. . . . . . . . . . . . . . . . . 18
⊢ 〈0,
0〉 ∈ V |
| 29 | | df-s5 14868 |
. . . . . . . . . . . . . . . . . . 19
⊢
〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉 = (〈“〈0, 0〉〈0,
1〉〈1, 1〉〈1, 0〉”〉 ++ 〈“〈0,
0〉”〉) |
| 30 | | s4cli 14899 |
. . . . . . . . . . . . . . . . . . 19
⊢
〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉”〉 ∈ Word V |
| 31 | | s4len 14916 |
. . . . . . . . . . . . . . . . . . 19
⊢
(♯‘〈“〈0, 0〉〈0, 1〉〈1,
1〉〈1, 0〉”〉) = 4 |
| 32 | | s4fv0 14912 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈0,
0〉 ∈ V → (〈“〈0, 0〉〈0, 1〉〈1,
1〉〈1, 0〉”〉‘0) = 〈0,
0〉) |
| 33 | | 0nn0 12514 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℕ0 |
| 34 | | 4pos 12345 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 <
4 |
| 35 | 29, 30, 31, 32, 33, 34 | cats1fv 14876 |
. . . . . . . . . . . . . . . . . 18
⊢ (〈0,
0〉 ∈ V → (〈“〈0, 0〉〈0, 1〉〈1,
1〉〈1, 0〉〈0, 0〉”〉‘0) = 〈0,
0〉) |
| 36 | 28, 35 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉‘0) = 〈0,
0〉 |
| 37 | 27, 36 | eqtri 2758 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃‘0) = 〈0,
0〉 |
| 38 | 1 | fveq1i 6876 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃‘1) =
(〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉‘1) |
| 39 | | opex 5439 |
. . . . . . . . . . . . . . . . . 18
⊢ 〈0,
1〉 ∈ V |
| 40 | | s4fv1 14913 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈0,
1〉 ∈ V → (〈“〈0, 0〉〈0, 1〉〈1,
1〉〈1, 0〉”〉‘1) = 〈0,
1〉) |
| 41 | | 1nn0 12515 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℕ0 |
| 42 | | 1lt4 12414 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 <
4 |
| 43 | 29, 30, 31, 40, 41, 42 | cats1fv 14876 |
. . . . . . . . . . . . . . . . . 18
⊢ (〈0,
1〉 ∈ V → (〈“〈0, 0〉〈0, 1〉〈1,
1〉〈1, 0〉〈0, 0〉”〉‘1) = 〈0,
1〉) |
| 44 | 39, 43 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉‘1) = 〈0,
1〉 |
| 45 | 38, 44 | eqtri 2758 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃‘1) = 〈0,
1〉 |
| 46 | 37, 45 | neeq12i 2998 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃‘0) ≠ (𝑃‘1) ↔ 〈0,
0〉 ≠ 〈0, 1〉) |
| 47 | 26, 46 | mpbir 231 |
. . . . . . . . . . . . . 14
⊢ (𝑃‘0) ≠ (𝑃‘1) |
| 48 | 47 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 1 ∧ 𝑋 = 0) → (𝑃‘0) ≠ (𝑃‘1)) |
| 49 | | fveq2 6875 |
. . . . . . . . . . . . . 14
⊢ (𝑋 = 0 → (𝑃‘𝑋) = (𝑃‘0)) |
| 50 | 49 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 1 ∧ 𝑋 = 0) → (𝑃‘𝑋) = (𝑃‘0)) |
| 51 | | fveq2 6875 |
. . . . . . . . . . . . . 14
⊢ (𝑌 = 1 → (𝑃‘𝑌) = (𝑃‘1)) |
| 52 | 51 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 1 ∧ 𝑋 = 0) → (𝑃‘𝑌) = (𝑃‘1)) |
| 53 | 48, 50, 52 | 3netr4d 3009 |
. . . . . . . . . . . 12
⊢ ((𝑌 = 1 ∧ 𝑋 = 0) → (𝑃‘𝑋) ≠ (𝑃‘𝑌)) |
| 54 | 53 | a1d 25 |
. . . . . . . . . . 11
⊢ ((𝑌 = 1 ∧ 𝑋 = 0) → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) |
| 55 | 54 | ex 412 |
. . . . . . . . . 10
⊢ (𝑌 = 1 → (𝑋 = 0 → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 56 | 22 | orci 865 |
. . . . . . . . . . . . . . . 16
⊢ (0 ≠ 1
∨ 0 ≠ 1) |
| 57 | 24, 24 | opthne 5457 |
. . . . . . . . . . . . . . . 16
⊢ (〈0,
0〉 ≠ 〈1, 1〉 ↔ (0 ≠ 1 ∨ 0 ≠ 1)) |
| 58 | 56, 57 | mpbir 231 |
. . . . . . . . . . . . . . 15
⊢ 〈0,
0〉 ≠ 〈1, 1〉 |
| 59 | 1 | fveq1i 6876 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃‘2) =
(〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉‘2) |
| 60 | | opex 5439 |
. . . . . . . . . . . . . . . . . 18
⊢ 〈1,
1〉 ∈ V |
| 61 | | s4fv2 14914 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈1,
1〉 ∈ V → (〈“〈0, 0〉〈0, 1〉〈1,
1〉〈1, 0〉”〉‘2) = 〈1,
1〉) |
| 62 | | 2nn0 12516 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℕ0 |
| 63 | | 2lt4 12413 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 <
4 |
| 64 | 29, 30, 31, 61, 62, 63 | cats1fv 14876 |
. . . . . . . . . . . . . . . . . 18
⊢ (〈1,
1〉 ∈ V → (〈“〈0, 0〉〈0, 1〉〈1,
1〉〈1, 0〉〈0, 0〉”〉‘2) = 〈1,
1〉) |
| 65 | 60, 64 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉‘2) = 〈1,
1〉 |
| 66 | 59, 65 | eqtri 2758 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃‘2) = 〈1,
1〉 |
| 67 | 37, 66 | neeq12i 2998 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃‘0) ≠ (𝑃‘2) ↔ 〈0,
0〉 ≠ 〈1, 1〉) |
| 68 | 58, 67 | mpbir 231 |
. . . . . . . . . . . . . 14
⊢ (𝑃‘0) ≠ (𝑃‘2) |
| 69 | 68 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 2 ∧ 𝑋 = 0) → (𝑃‘0) ≠ (𝑃‘2)) |
| 70 | 49 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 2 ∧ 𝑋 = 0) → (𝑃‘𝑋) = (𝑃‘0)) |
| 71 | | fveq2 6875 |
. . . . . . . . . . . . . 14
⊢ (𝑌 = 2 → (𝑃‘𝑌) = (𝑃‘2)) |
| 72 | 71 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 2 ∧ 𝑋 = 0) → (𝑃‘𝑌) = (𝑃‘2)) |
| 73 | 69, 70, 72 | 3netr4d 3009 |
. . . . . . . . . . . 12
⊢ ((𝑌 = 2 ∧ 𝑋 = 0) → (𝑃‘𝑋) ≠ (𝑃‘𝑌)) |
| 74 | 73 | a1d 25 |
. . . . . . . . . . 11
⊢ ((𝑌 = 2 ∧ 𝑋 = 0) → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) |
| 75 | 74 | ex 412 |
. . . . . . . . . 10
⊢ (𝑌 = 2 → (𝑋 = 0 → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 76 | 22 | orci 865 |
. . . . . . . . . . . . . . . 16
⊢ (0 ≠ 1
∨ 0 ≠ 0) |
| 77 | 24, 24 | opthne 5457 |
. . . . . . . . . . . . . . . 16
⊢ (〈0,
0〉 ≠ 〈1, 0〉 ↔ (0 ≠ 1 ∨ 0 ≠ 0)) |
| 78 | 76, 77 | mpbir 231 |
. . . . . . . . . . . . . . 15
⊢ 〈0,
0〉 ≠ 〈1, 0〉 |
| 79 | 1 | fveq1i 6876 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃‘3) =
(〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉‘3) |
| 80 | | opex 5439 |
. . . . . . . . . . . . . . . . . 18
⊢ 〈1,
0〉 ∈ V |
| 81 | | s4fv3 14915 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈1,
0〉 ∈ V → (〈“〈0, 0〉〈0, 1〉〈1,
1〉〈1, 0〉”〉‘3) = 〈1,
0〉) |
| 82 | | 3nn0 12517 |
. . . . . . . . . . . . . . . . . . 19
⊢ 3 ∈
ℕ0 |
| 83 | | 3lt4 12412 |
. . . . . . . . . . . . . . . . . . 19
⊢ 3 <
4 |
| 84 | 29, 30, 31, 81, 82, 83 | cats1fv 14876 |
. . . . . . . . . . . . . . . . . 18
⊢ (〈1,
0〉 ∈ V → (〈“〈0, 0〉〈0, 1〉〈1,
1〉〈1, 0〉〈0, 0〉”〉‘3) = 〈1,
0〉) |
| 85 | 80, 84 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉‘3) = 〈1,
0〉 |
| 86 | 79, 85 | eqtri 2758 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃‘3) = 〈1,
0〉 |
| 87 | 37, 86 | neeq12i 2998 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃‘0) ≠ (𝑃‘3) ↔ 〈0,
0〉 ≠ 〈1, 0〉) |
| 88 | 78, 87 | mpbir 231 |
. . . . . . . . . . . . . 14
⊢ (𝑃‘0) ≠ (𝑃‘3) |
| 89 | 88 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 3 ∧ 𝑋 = 0) → (𝑃‘0) ≠ (𝑃‘3)) |
| 90 | 49 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 3 ∧ 𝑋 = 0) → (𝑃‘𝑋) = (𝑃‘0)) |
| 91 | | fveq2 6875 |
. . . . . . . . . . . . . 14
⊢ (𝑌 = 3 → (𝑃‘𝑌) = (𝑃‘3)) |
| 92 | 91 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 3 ∧ 𝑋 = 0) → (𝑃‘𝑌) = (𝑃‘3)) |
| 93 | 89, 90, 92 | 3netr4d 3009 |
. . . . . . . . . . . 12
⊢ ((𝑌 = 3 ∧ 𝑋 = 0) → (𝑃‘𝑋) ≠ (𝑃‘𝑌)) |
| 94 | 93 | a1d 25 |
. . . . . . . . . . 11
⊢ ((𝑌 = 3 ∧ 𝑋 = 0) → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) |
| 95 | 94 | ex 412 |
. . . . . . . . . 10
⊢ (𝑌 = 3 → (𝑋 = 0 → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 96 | 55, 75, 95 | 3jaoi 1430 |
. . . . . . . . 9
⊢ ((𝑌 = 1 ∨ 𝑌 = 2 ∨ 𝑌 = 3) → (𝑋 = 0 → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 97 | | eltpi 4664 |
. . . . . . . . 9
⊢ (𝑌 ∈ {1, 2, 3} → (𝑌 = 1 ∨ 𝑌 = 2 ∨ 𝑌 = 3)) |
| 98 | 96, 97 | syl11 33 |
. . . . . . . 8
⊢ (𝑋 = 0 → (𝑌 ∈ {1, 2, 3} → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 99 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 1 ∧ 𝑋 = 1) → 𝑋 = 1) |
| 100 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 1 ∧ 𝑋 = 1) → 𝑌 = 1) |
| 101 | 99, 100 | neeq12d 2993 |
. . . . . . . . . . . 12
⊢ ((𝑌 = 1 ∧ 𝑋 = 1) → (𝑋 ≠ 𝑌 ↔ 1 ≠ 1)) |
| 102 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢ 1 =
1 |
| 103 | | eqneqall 2943 |
. . . . . . . . . . . . 13
⊢ (1 = 1
→ (1 ≠ 1 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) |
| 104 | 102, 103 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (1 ≠ 1
→ (𝑃‘𝑋) ≠ (𝑃‘𝑌)) |
| 105 | 101, 104 | biimtrdi 253 |
. . . . . . . . . . 11
⊢ ((𝑌 = 1 ∧ 𝑋 = 1) → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) |
| 106 | 105 | ex 412 |
. . . . . . . . . 10
⊢ (𝑌 = 1 → (𝑋 = 1 → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 107 | 22 | orci 865 |
. . . . . . . . . . . . . . . 16
⊢ (0 ≠ 1
∨ 1 ≠ 1) |
| 108 | | 1ex 11229 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
V |
| 109 | 24, 108 | opthne 5457 |
. . . . . . . . . . . . . . . 16
⊢ (〈0,
1〉 ≠ 〈1, 1〉 ↔ (0 ≠ 1 ∨ 1 ≠ 1)) |
| 110 | 107, 109 | mpbir 231 |
. . . . . . . . . . . . . . 15
⊢ 〈0,
1〉 ≠ 〈1, 1〉 |
| 111 | 45, 66 | neeq12i 2998 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃‘1) ≠ (𝑃‘2) ↔ 〈0,
1〉 ≠ 〈1, 1〉) |
| 112 | 110, 111 | mpbir 231 |
. . . . . . . . . . . . . 14
⊢ (𝑃‘1) ≠ (𝑃‘2) |
| 113 | 112 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 2 ∧ 𝑋 = 1) → (𝑃‘1) ≠ (𝑃‘2)) |
| 114 | | fveq2 6875 |
. . . . . . . . . . . . . 14
⊢ (𝑋 = 1 → (𝑃‘𝑋) = (𝑃‘1)) |
| 115 | 114 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 2 ∧ 𝑋 = 1) → (𝑃‘𝑋) = (𝑃‘1)) |
| 116 | 71 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 2 ∧ 𝑋 = 1) → (𝑃‘𝑌) = (𝑃‘2)) |
| 117 | 113, 115,
116 | 3netr4d 3009 |
. . . . . . . . . . . 12
⊢ ((𝑌 = 2 ∧ 𝑋 = 1) → (𝑃‘𝑋) ≠ (𝑃‘𝑌)) |
| 118 | 117 | a1d 25 |
. . . . . . . . . . 11
⊢ ((𝑌 = 2 ∧ 𝑋 = 1) → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) |
| 119 | 118 | ex 412 |
. . . . . . . . . 10
⊢ (𝑌 = 2 → (𝑋 = 1 → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 120 | 22 | orci 865 |
. . . . . . . . . . . . . . . 16
⊢ (0 ≠ 1
∨ 1 ≠ 0) |
| 121 | 24, 108 | opthne 5457 |
. . . . . . . . . . . . . . . 16
⊢ (〈0,
1〉 ≠ 〈1, 0〉 ↔ (0 ≠ 1 ∨ 1 ≠ 0)) |
| 122 | 120, 121 | mpbir 231 |
. . . . . . . . . . . . . . 15
⊢ 〈0,
1〉 ≠ 〈1, 0〉 |
| 123 | 45, 86 | neeq12i 2998 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃‘1) ≠ (𝑃‘3) ↔ 〈0,
1〉 ≠ 〈1, 0〉) |
| 124 | 122, 123 | mpbir 231 |
. . . . . . . . . . . . . 14
⊢ (𝑃‘1) ≠ (𝑃‘3) |
| 125 | 124 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 3 ∧ 𝑋 = 1) → (𝑃‘1) ≠ (𝑃‘3)) |
| 126 | 114 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 3 ∧ 𝑋 = 1) → (𝑃‘𝑋) = (𝑃‘1)) |
| 127 | 91 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 3 ∧ 𝑋 = 1) → (𝑃‘𝑌) = (𝑃‘3)) |
| 128 | 125, 126,
127 | 3netr4d 3009 |
. . . . . . . . . . . 12
⊢ ((𝑌 = 3 ∧ 𝑋 = 1) → (𝑃‘𝑋) ≠ (𝑃‘𝑌)) |
| 129 | 128 | a1d 25 |
. . . . . . . . . . 11
⊢ ((𝑌 = 3 ∧ 𝑋 = 1) → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) |
| 130 | 129 | ex 412 |
. . . . . . . . . 10
⊢ (𝑌 = 3 → (𝑋 = 1 → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 131 | 106, 119,
130 | 3jaoi 1430 |
. . . . . . . . 9
⊢ ((𝑌 = 1 ∨ 𝑌 = 2 ∨ 𝑌 = 3) → (𝑋 = 1 → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 132 | 131, 97 | syl11 33 |
. . . . . . . 8
⊢ (𝑋 = 1 → (𝑌 ∈ {1, 2, 3} → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 133 | 98, 132 | jaoi 857 |
. . . . . . 7
⊢ ((𝑋 = 0 ∨ 𝑋 = 1) → (𝑌 ∈ {1, 2, 3} → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 134 | 21, 133 | syl 17 |
. . . . . 6
⊢ (𝑋 ∈ {0, 1} → (𝑌 ∈ {1, 2, 3} → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 135 | | elpri 4625 |
. . . . . . 7
⊢ (𝑋 ∈ {2, 3} → (𝑋 = 2 ∨ 𝑋 = 3)) |
| 136 | 112 | necomi 2986 |
. . . . . . . . . . . . . 14
⊢ (𝑃‘2) ≠ (𝑃‘1) |
| 137 | 136 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 1 ∧ 𝑋 = 2) → (𝑃‘2) ≠ (𝑃‘1)) |
| 138 | | fveq2 6875 |
. . . . . . . . . . . . . 14
⊢ (𝑋 = 2 → (𝑃‘𝑋) = (𝑃‘2)) |
| 139 | 138 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 1 ∧ 𝑋 = 2) → (𝑃‘𝑋) = (𝑃‘2)) |
| 140 | 51 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 1 ∧ 𝑋 = 2) → (𝑃‘𝑌) = (𝑃‘1)) |
| 141 | 137, 139,
140 | 3netr4d 3009 |
. . . . . . . . . . . 12
⊢ ((𝑌 = 1 ∧ 𝑋 = 2) → (𝑃‘𝑋) ≠ (𝑃‘𝑌)) |
| 142 | 141 | a1d 25 |
. . . . . . . . . . 11
⊢ ((𝑌 = 1 ∧ 𝑋 = 2) → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) |
| 143 | 142 | ex 412 |
. . . . . . . . . 10
⊢ (𝑌 = 1 → (𝑋 = 2 → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 144 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 2 ∧ 𝑋 = 2) → 𝑋 = 2) |
| 145 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 2 ∧ 𝑋 = 2) → 𝑌 = 2) |
| 146 | 144, 145 | neeq12d 2993 |
. . . . . . . . . . . 12
⊢ ((𝑌 = 2 ∧ 𝑋 = 2) → (𝑋 ≠ 𝑌 ↔ 2 ≠ 2)) |
| 147 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢ 2 =
2 |
| 148 | | eqneqall 2943 |
. . . . . . . . . . . . 13
⊢ (2 = 2
→ (2 ≠ 2 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) |
| 149 | 147, 148 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (2 ≠ 2
→ (𝑃‘𝑋) ≠ (𝑃‘𝑌)) |
| 150 | 146, 149 | biimtrdi 253 |
. . . . . . . . . . 11
⊢ ((𝑌 = 2 ∧ 𝑋 = 2) → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) |
| 151 | 150 | ex 412 |
. . . . . . . . . 10
⊢ (𝑌 = 2 → (𝑋 = 2 → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 152 | 22 | necomi 2986 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ≠
0 |
| 153 | 152 | olci 866 |
. . . . . . . . . . . . . . . 16
⊢ (1 ≠ 1
∨ 1 ≠ 0) |
| 154 | 108, 108 | opthne 5457 |
. . . . . . . . . . . . . . . 16
⊢ (〈1,
1〉 ≠ 〈1, 0〉 ↔ (1 ≠ 1 ∨ 1 ≠ 0)) |
| 155 | 153, 154 | mpbir 231 |
. . . . . . . . . . . . . . 15
⊢ 〈1,
1〉 ≠ 〈1, 0〉 |
| 156 | 66, 86 | neeq12i 2998 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃‘2) ≠ (𝑃‘3) ↔ 〈1,
1〉 ≠ 〈1, 0〉) |
| 157 | 155, 156 | mpbir 231 |
. . . . . . . . . . . . . 14
⊢ (𝑃‘2) ≠ (𝑃‘3) |
| 158 | 157 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 3 ∧ 𝑋 = 2) → (𝑃‘2) ≠ (𝑃‘3)) |
| 159 | 138 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 3 ∧ 𝑋 = 2) → (𝑃‘𝑋) = (𝑃‘2)) |
| 160 | 91 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 3 ∧ 𝑋 = 2) → (𝑃‘𝑌) = (𝑃‘3)) |
| 161 | 158, 159,
160 | 3netr4d 3009 |
. . . . . . . . . . . 12
⊢ ((𝑌 = 3 ∧ 𝑋 = 2) → (𝑃‘𝑋) ≠ (𝑃‘𝑌)) |
| 162 | 161 | a1d 25 |
. . . . . . . . . . 11
⊢ ((𝑌 = 3 ∧ 𝑋 = 2) → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) |
| 163 | 162 | ex 412 |
. . . . . . . . . 10
⊢ (𝑌 = 3 → (𝑋 = 2 → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 164 | 143, 151,
163 | 3jaoi 1430 |
. . . . . . . . 9
⊢ ((𝑌 = 1 ∨ 𝑌 = 2 ∨ 𝑌 = 3) → (𝑋 = 2 → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 165 | 164, 97 | syl11 33 |
. . . . . . . 8
⊢ (𝑋 = 2 → (𝑌 ∈ {1, 2, 3} → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 166 | 124 | necomi 2986 |
. . . . . . . . . . . . . 14
⊢ (𝑃‘3) ≠ (𝑃‘1) |
| 167 | 166 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 1 ∧ 𝑋 = 3) → (𝑃‘3) ≠ (𝑃‘1)) |
| 168 | | fveq2 6875 |
. . . . . . . . . . . . . 14
⊢ (𝑋 = 3 → (𝑃‘𝑋) = (𝑃‘3)) |
| 169 | 168 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 1 ∧ 𝑋 = 3) → (𝑃‘𝑋) = (𝑃‘3)) |
| 170 | 51 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 1 ∧ 𝑋 = 3) → (𝑃‘𝑌) = (𝑃‘1)) |
| 171 | 167, 169,
170 | 3netr4d 3009 |
. . . . . . . . . . . 12
⊢ ((𝑌 = 1 ∧ 𝑋 = 3) → (𝑃‘𝑋) ≠ (𝑃‘𝑌)) |
| 172 | 171 | a1d 25 |
. . . . . . . . . . 11
⊢ ((𝑌 = 1 ∧ 𝑋 = 3) → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) |
| 173 | 172 | ex 412 |
. . . . . . . . . 10
⊢ (𝑌 = 1 → (𝑋 = 3 → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 174 | 157 | necomi 2986 |
. . . . . . . . . . . . . 14
⊢ (𝑃‘3) ≠ (𝑃‘2) |
| 175 | 174 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 2 ∧ 𝑋 = 3) → (𝑃‘3) ≠ (𝑃‘2)) |
| 176 | 168 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 2 ∧ 𝑋 = 3) → (𝑃‘𝑋) = (𝑃‘3)) |
| 177 | 71 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 2 ∧ 𝑋 = 3) → (𝑃‘𝑌) = (𝑃‘2)) |
| 178 | 175, 176,
177 | 3netr4d 3009 |
. . . . . . . . . . . 12
⊢ ((𝑌 = 2 ∧ 𝑋 = 3) → (𝑃‘𝑋) ≠ (𝑃‘𝑌)) |
| 179 | 178 | a1d 25 |
. . . . . . . . . . 11
⊢ ((𝑌 = 2 ∧ 𝑋 = 3) → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) |
| 180 | 179 | ex 412 |
. . . . . . . . . 10
⊢ (𝑌 = 2 → (𝑋 = 3 → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 181 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 3 ∧ 𝑋 = 3) → 𝑋 = 3) |
| 182 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 3 ∧ 𝑋 = 3) → 𝑌 = 3) |
| 183 | 181, 182 | neeq12d 2993 |
. . . . . . . . . . . 12
⊢ ((𝑌 = 3 ∧ 𝑋 = 3) → (𝑋 ≠ 𝑌 ↔ 3 ≠ 3)) |
| 184 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢ 3 =
3 |
| 185 | | eqneqall 2943 |
. . . . . . . . . . . . 13
⊢ (3 = 3
→ (3 ≠ 3 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) |
| 186 | 184, 185 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (3 ≠ 3
→ (𝑃‘𝑋) ≠ (𝑃‘𝑌)) |
| 187 | 183, 186 | biimtrdi 253 |
. . . . . . . . . . 11
⊢ ((𝑌 = 3 ∧ 𝑋 = 3) → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) |
| 188 | 187 | ex 412 |
. . . . . . . . . 10
⊢ (𝑌 = 3 → (𝑋 = 3 → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 189 | 173, 180,
188 | 3jaoi 1430 |
. . . . . . . . 9
⊢ ((𝑌 = 1 ∨ 𝑌 = 2 ∨ 𝑌 = 3) → (𝑋 = 3 → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 190 | 189, 97 | syl11 33 |
. . . . . . . 8
⊢ (𝑋 = 3 → (𝑌 ∈ {1, 2, 3} → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 191 | 165, 190 | jaoi 857 |
. . . . . . 7
⊢ ((𝑋 = 2 ∨ 𝑋 = 3) → (𝑌 ∈ {1, 2, 3} → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 192 | 135, 191 | syl 17 |
. . . . . 6
⊢ (𝑋 ∈ {2, 3} → (𝑌 ∈ {1, 2, 3} → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 193 | 134, 192 | jaoi 857 |
. . . . 5
⊢ ((𝑋 ∈ {0, 1} ∨ 𝑋 ∈ {2, 3}) → (𝑌 ∈ {1, 2, 3} → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 194 | | elsni 4618 |
. . . . . 6
⊢ (𝑋 ∈ {4} → 𝑋 = 4) |
| 195 | 1 | fveq1i 6876 |
. . . . . . . . . . . . . 14
⊢ (𝑃‘4) =
(〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉‘4) |
| 196 | 29, 30, 31 | cats1fvn 14875 |
. . . . . . . . . . . . . . 15
⊢ (〈0,
0〉 ∈ V → (〈“〈0, 0〉〈0, 1〉〈1,
1〉〈1, 0〉〈0, 0〉”〉‘4) = 〈0,
0〉) |
| 197 | 28, 196 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
(〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1,
0〉〈0, 0〉”〉‘4) = 〈0,
0〉 |
| 198 | 195, 197 | eqtri 2758 |
. . . . . . . . . . . . 13
⊢ (𝑃‘4) = 〈0,
0〉 |
| 199 | 198, 45 | neeq12i 2998 |
. . . . . . . . . . . 12
⊢ ((𝑃‘4) ≠ (𝑃‘1) ↔ 〈0,
0〉 ≠ 〈0, 1〉) |
| 200 | 26, 199 | mpbir 231 |
. . . . . . . . . . 11
⊢ (𝑃‘4) ≠ (𝑃‘1) |
| 201 | 200 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑌 = 1 ∧ 𝑋 = 4) → (𝑃‘4) ≠ (𝑃‘1)) |
| 202 | | fveq2 6875 |
. . . . . . . . . . 11
⊢ (𝑋 = 4 → (𝑃‘𝑋) = (𝑃‘4)) |
| 203 | 202 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑌 = 1 ∧ 𝑋 = 4) → (𝑃‘𝑋) = (𝑃‘4)) |
| 204 | 51 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑌 = 1 ∧ 𝑋 = 4) → (𝑃‘𝑌) = (𝑃‘1)) |
| 205 | 201, 203,
204 | 3netr4d 3009 |
. . . . . . . . 9
⊢ ((𝑌 = 1 ∧ 𝑋 = 4) → (𝑃‘𝑋) ≠ (𝑃‘𝑌)) |
| 206 | 205 | a1d 25 |
. . . . . . . 8
⊢ ((𝑌 = 1 ∧ 𝑋 = 4) → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) |
| 207 | 206 | ex 412 |
. . . . . . 7
⊢ (𝑌 = 1 → (𝑋 = 4 → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 208 | 198, 66 | neeq12i 2998 |
. . . . . . . . . . . 12
⊢ ((𝑃‘4) ≠ (𝑃‘2) ↔ 〈0,
0〉 ≠ 〈1, 1〉) |
| 209 | 58, 208 | mpbir 231 |
. . . . . . . . . . 11
⊢ (𝑃‘4) ≠ (𝑃‘2) |
| 210 | 209 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑌 = 2 ∧ 𝑋 = 4) → (𝑃‘4) ≠ (𝑃‘2)) |
| 211 | 202 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑌 = 2 ∧ 𝑋 = 4) → (𝑃‘𝑋) = (𝑃‘4)) |
| 212 | 71 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑌 = 2 ∧ 𝑋 = 4) → (𝑃‘𝑌) = (𝑃‘2)) |
| 213 | 210, 211,
212 | 3netr4d 3009 |
. . . . . . . . 9
⊢ ((𝑌 = 2 ∧ 𝑋 = 4) → (𝑃‘𝑋) ≠ (𝑃‘𝑌)) |
| 214 | 213 | a1d 25 |
. . . . . . . 8
⊢ ((𝑌 = 2 ∧ 𝑋 = 4) → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) |
| 215 | 214 | ex 412 |
. . . . . . 7
⊢ (𝑌 = 2 → (𝑋 = 4 → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 216 | 198, 86 | neeq12i 2998 |
. . . . . . . . . . . 12
⊢ ((𝑃‘4) ≠ (𝑃‘3) ↔ 〈0,
0〉 ≠ 〈1, 0〉) |
| 217 | 78, 216 | mpbir 231 |
. . . . . . . . . . 11
⊢ (𝑃‘4) ≠ (𝑃‘3) |
| 218 | 217 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑌 = 3 ∧ 𝑋 = 4) → (𝑃‘4) ≠ (𝑃‘3)) |
| 219 | 202 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑌 = 3 ∧ 𝑋 = 4) → (𝑃‘𝑋) = (𝑃‘4)) |
| 220 | 91 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑌 = 3 ∧ 𝑋 = 4) → (𝑃‘𝑌) = (𝑃‘3)) |
| 221 | 218, 219,
220 | 3netr4d 3009 |
. . . . . . . . 9
⊢ ((𝑌 = 3 ∧ 𝑋 = 4) → (𝑃‘𝑋) ≠ (𝑃‘𝑌)) |
| 222 | 221 | a1d 25 |
. . . . . . . 8
⊢ ((𝑌 = 3 ∧ 𝑋 = 4) → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) |
| 223 | 222 | ex 412 |
. . . . . . 7
⊢ (𝑌 = 3 → (𝑋 = 4 → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 224 | 207, 215,
223 | 3jaoi 1430 |
. . . . . 6
⊢ ((𝑌 = 1 ∨ 𝑌 = 2 ∨ 𝑌 = 3) → (𝑋 = 4 → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 225 | 97, 194, 224 | syl2imc 41 |
. . . . 5
⊢ (𝑋 ∈ {4} → (𝑌 ∈ {1, 2, 3} → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 226 | 193, 225 | jaoi 857 |
. . . 4
⊢ (((𝑋 ∈ {0, 1} ∨ 𝑋 ∈ {2, 3}) ∨ 𝑋 ∈ {4}) → (𝑌 ∈ {1, 2, 3} → (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 227 | 20, 226 | sylbi 217 |
. . 3
⊢ (𝑋 ∈ (({0, 1} ∪ {2, 3})
∪ {4}) → (𝑌 ∈
{1, 2, 3} → (𝑋 ≠
𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌)))) |
| 228 | 227 | imp 406 |
. 2
⊢ ((𝑋 ∈ (({0, 1} ∪ {2, 3})
∪ {4}) ∧ 𝑌 ∈
{1, 2, 3}) → (𝑋 ≠
𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) |
| 229 | 14, 16, 228 | syl2anb 598 |
1
⊢ ((𝑋 ∈
(0..^(♯‘𝑃))
∧ 𝑌 ∈ (1..^4))
→ (𝑋 ≠ 𝑌 → (𝑃‘𝑋) ≠ (𝑃‘𝑌))) |