| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2wlkdlem9 | Structured version Visualization version GIF version | ||
| Description: Lemma 9 for 2wlkd 29884. (Contributed by AV, 14-Feb-2021.) |
| Ref | Expression |
|---|---|
| 2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
| 2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
| 2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| 2wlkd.n | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
| 2wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
| Ref | Expression |
|---|---|
| 2wlkdlem9 | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.e | . 2 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) | |
| 2 | 2wlkd.p | . . . 4 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
| 3 | 2wlkd.f | . . . 4 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
| 4 | 2wlkd.s | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
| 5 | 2wlkd.n | . . . 4 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
| 6 | 2, 3, 4, 5, 1 | 2wlkdlem8 29881 | . . 3 ⊢ (𝜑 → ((𝐹‘0) = 𝐽 ∧ (𝐹‘1) = 𝐾)) |
| 7 | fveq2 6886 | . . . . . 6 ⊢ ((𝐹‘0) = 𝐽 → (𝐼‘(𝐹‘0)) = (𝐼‘𝐽)) | |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ (((𝐹‘0) = 𝐽 ∧ (𝐹‘1) = 𝐾) → (𝐼‘(𝐹‘0)) = (𝐼‘𝐽)) |
| 9 | 8 | sseq2d 3996 | . . . 4 ⊢ (((𝐹‘0) = 𝐽 ∧ (𝐹‘1) = 𝐾) → ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ↔ {𝐴, 𝐵} ⊆ (𝐼‘𝐽))) |
| 10 | fveq2 6886 | . . . . . 6 ⊢ ((𝐹‘1) = 𝐾 → (𝐼‘(𝐹‘1)) = (𝐼‘𝐾)) | |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ (((𝐹‘0) = 𝐽 ∧ (𝐹‘1) = 𝐾) → (𝐼‘(𝐹‘1)) = (𝐼‘𝐾)) |
| 12 | 11 | sseq2d 3996 | . . . 4 ⊢ (((𝐹‘0) = 𝐽 ∧ (𝐹‘1) = 𝐾) → ({𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)) ↔ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
| 13 | 9, 12 | anbi12d 632 | . . 3 ⊢ (((𝐹‘0) = 𝐽 ∧ (𝐹‘1) = 𝐾) → (({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1))) ↔ ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾)))) |
| 14 | 6, 13 | syl 17 | . 2 ⊢ (𝜑 → (({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1))) ↔ ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾)))) |
| 15 | 1, 14 | mpbird 257 | 1 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ⊆ wss 3931 {cpr 4608 ‘cfv 6541 0cc0 11137 1c1 11138 〈“cs2 14862 〈“cs3 14863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-fzo 13677 df-hash 14352 df-word 14535 df-concat 14591 df-s1 14616 df-s2 14869 |
| This theorem is referenced by: 2wlkdlem10 29883 |
| Copyright terms: Public domain | W3C validator |