![]() |
Mathbox for Paul Chapman |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > abs2sqlti | Structured version Visualization version GIF version |
Description: The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
Ref | Expression |
---|---|
abs2sqlti.1 | ⊢ 𝐴 ∈ ℂ |
abs2sqlti.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
abs2sqlti | ⊢ ((abs‘𝐴) < (abs‘𝐵) ↔ ((abs‘𝐴)↑2) < ((abs‘𝐵)↑2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abs2sqlti.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
2 | 1 | absge0i 15241 | . 2 ⊢ 0 ≤ (abs‘𝐴) |
3 | abs2sqlti.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
4 | 3 | absge0i 15241 | . 2 ⊢ 0 ≤ (abs‘𝐵) |
5 | 1 | abscli 15240 | . . 3 ⊢ (abs‘𝐴) ∈ ℝ |
6 | 3 | abscli 15240 | . . 3 ⊢ (abs‘𝐵) ∈ ℝ |
7 | 5, 6 | lt2sqi 14046 | . 2 ⊢ ((0 ≤ (abs‘𝐴) ∧ 0 ≤ (abs‘𝐵)) → ((abs‘𝐴) < (abs‘𝐵) ↔ ((abs‘𝐴)↑2) < ((abs‘𝐵)↑2))) |
8 | 2, 4, 7 | mp2an 691 | 1 ⊢ ((abs‘𝐴) < (abs‘𝐵) ↔ ((abs‘𝐴)↑2) < ((abs‘𝐵)↑2)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2107 class class class wbr 5104 ‘cfv 6494 (class class class)co 7352 ℂcc 11008 0cc0 11010 < clt 11148 ≤ cle 11149 2c2 12167 ↑cexp 13922 abscabs 15079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2709 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7665 ax-cnex 11066 ax-resscn 11067 ax-1cn 11068 ax-icn 11069 ax-addcl 11070 ax-addrcl 11071 ax-mulcl 11072 ax-mulrcl 11073 ax-mulcom 11074 ax-addass 11075 ax-mulass 11076 ax-distr 11077 ax-i2m1 11078 ax-1ne0 11079 ax-1rid 11080 ax-rnegex 11081 ax-rrecex 11082 ax-cnre 11083 ax-pre-lttri 11084 ax-pre-lttrn 11085 ax-pre-ltadd 11086 ax-pre-mulgt0 11087 ax-pre-sup 11088 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5530 df-eprel 5536 df-po 5544 df-so 5545 df-fr 5587 df-we 5589 df-xp 5638 df-rel 5639 df-cnv 5640 df-co 5641 df-dm 5642 df-rn 5643 df-res 5644 df-ima 5645 df-pred 6252 df-ord 6319 df-on 6320 df-lim 6321 df-suc 6322 df-iota 6446 df-fun 6496 df-fn 6497 df-f 6498 df-f1 6499 df-fo 6500 df-f1o 6501 df-fv 6502 df-riota 7308 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7796 df-2nd 7915 df-frecs 8205 df-wrecs 8236 df-recs 8310 df-rdg 8349 df-er 8607 df-en 8843 df-dom 8844 df-sdom 8845 df-sup 9337 df-pnf 11150 df-mnf 11151 df-xr 11152 df-ltxr 11153 df-le 11154 df-sub 11346 df-neg 11347 df-div 11772 df-nn 12113 df-2 12175 df-3 12176 df-n0 12373 df-z 12459 df-uz 12723 df-rp 12871 df-seq 13862 df-exp 13923 df-cj 14944 df-re 14945 df-im 14946 df-sqrt 15080 df-abs 15081 |
This theorem is referenced by: abs2sqlt 34075 |
Copyright terms: Public domain | W3C validator |