Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addid2i | Structured version Visualization version GIF version |
Description: 0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
addid2i | ⊢ (0 + 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | addid2 11168 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 + 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 (class class class)co 7267 ℂcc 10879 0cc0 10881 + caddc 10884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-po 5498 df-so 5499 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-ov 7270 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-pnf 11021 df-mnf 11022 df-ltxr 11024 |
This theorem is referenced by: ine0 11420 muleqadd 11629 inelr 11973 nnne0 12017 0p1e1 12105 num0h 12459 nummul1c 12496 decrmac 12505 fz0tp 13367 fz0to4untppr 13369 fzo0to3tp 13483 cats1fvn 14581 rei 14877 imi 14878 ef01bndlem 15903 gcdaddmlem 16241 dec5dvds2 16776 2exp11 16801 2exp16 16802 43prm 16833 83prm 16834 139prm 16835 163prm 16836 317prm 16837 631prm 16838 1259lem1 16842 1259lem2 16843 1259lem3 16844 1259lem4 16845 1259lem5 16846 2503lem1 16848 2503lem2 16849 2503lem3 16850 2503prm 16851 4001lem1 16852 4001lem2 16853 4001lem3 16854 4001prm 16856 frgpnabllem1 19484 pcoass 24197 dvradcnv 25590 efhalfpi 25638 sinq34lt0t 25676 efifo 25713 logm1 25754 argimgt0 25777 ang180lem4 25972 1cubr 26002 asin1 26054 atanlogsublem 26075 dvatan 26095 log2ublem3 26108 log2ub 26109 basellem9 26248 cht2 26331 log2sumbnd 26702 ax5seglem7 27313 ex-fac 28823 dp20h 31161 dpmul4 31196 hgt750lem2 32640 12gcd5e1 40019 3exp7 40069 3lexlogpow5ineq1 40070 3lexlogpow5ineq5 40076 aks4d1p1 40092 sqn5i 40321 decpmul 40324 sqdeccom12 40325 sq3deccom12 40326 ex-decpmul 40328 fltnltalem 40507 dirkertrigeqlem1 43620 dirkertrigeqlem3 43622 fourierdlem103 43731 sqwvfoura 43750 sqwvfourb 43751 fouriersw 43753 fmtno5lem1 44983 fmtno5lem2 44984 fmtno5lem4 44986 fmtno4prmfac 45002 fmtno5faclem2 45010 fmtno5faclem3 45011 fmtno5fac 45012 139prmALT 45026 127prm 45029 2exp340mod341 45163 nfermltl8rev 45172 ackval1012 46014 ackval2012 46015 ackval3012 46016 |
Copyright terms: Public domain | W3C validator |