![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addid2i | Structured version Visualization version GIF version |
Description: 0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
addid2i | ⊢ (0 + 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | addid2 10559 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 + 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∈ wcel 2107 (class class class)co 6922 ℂcc 10270 0cc0 10272 + caddc 10275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-ltxr 10416 |
This theorem is referenced by: ine0 10810 muleqadd 11019 inelr 11364 nnne0 11410 0p1e1 11504 num0h 11857 nummul1c 11895 decrmac 11904 decmul1OLD 11911 fz0tp 12759 fz0to4untppr 12761 fzo0to3tp 12873 cats1fvn 14009 rei 14303 imi 14304 ef01bndlem 15316 gcdaddmlem 15651 dec5dvds2 16173 2exp16 16196 43prm 16227 83prm 16228 139prm 16229 163prm 16230 317prm 16231 631prm 16232 1259lem1 16236 1259lem2 16237 1259lem3 16238 1259lem4 16239 1259lem5 16240 2503lem1 16242 2503lem2 16243 2503lem3 16244 2503prm 16245 4001lem1 16246 4001lem2 16247 4001lem3 16248 4001prm 16250 frgpnabllem1 18662 pcoass 23231 dvradcnv 24612 efhalfpi 24661 sinq34lt0t 24699 efifo 24731 logm1 24772 argimgt0 24795 ang180lem4 24990 1cubr 25020 asin1 25072 atanlogsublem 25093 dvatan 25113 log2ublem3 25127 log2ub 25128 basellem9 25267 cht2 25350 log2sumbnd 25685 ax5seglem7 26284 ex-fac 27883 dp20h 30149 dpmul4 30184 hgt750lem2 31332 sqn5i 38153 decpmul 38156 sqdeccom12 38157 sq3deccom12 38158 ex-decpmul 38160 dirkertrigeqlem1 41246 dirkertrigeqlem3 41248 fourierdlem103 41357 sqwvfoura 41376 sqwvfourb 41377 fouriersw 41379 fmtno5lem1 42490 fmtno5lem2 42491 fmtno5lem4 42493 fmtno4prmfac 42509 fmtno5faclem2 42517 fmtno5faclem3 42518 fmtno5fac 42519 139prmALT 42536 127prm 42540 2exp11 42542 |
Copyright terms: Public domain | W3C validator |