Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addid2i | Structured version Visualization version GIF version |
Description: 0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
addid2i | ⊢ (0 + 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | addid2 11063 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 + 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2112 (class class class)co 7252 ℂcc 10775 0cc0 10777 + caddc 10780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5479 df-po 5493 df-so 5494 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-ov 7255 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-pnf 10917 df-mnf 10918 df-ltxr 10920 |
This theorem is referenced by: ine0 11315 muleqadd 11524 inelr 11868 nnne0 11912 0p1e1 12000 num0h 12353 nummul1c 12390 decrmac 12399 fz0tp 13261 fz0to4untppr 13263 fzo0to3tp 13376 cats1fvn 14474 rei 14770 imi 14771 ef01bndlem 15796 gcdaddmlem 16134 dec5dvds2 16669 2exp11 16694 2exp16 16695 43prm 16726 83prm 16727 139prm 16728 163prm 16729 317prm 16730 631prm 16731 1259lem1 16735 1259lem2 16736 1259lem3 16737 1259lem4 16738 1259lem5 16739 2503lem1 16741 2503lem2 16742 2503lem3 16743 2503prm 16744 4001lem1 16745 4001lem2 16746 4001lem3 16747 4001prm 16749 frgpnabllem1 19364 pcoass 24068 dvradcnv 25460 efhalfpi 25508 sinq34lt0t 25546 efifo 25583 logm1 25624 argimgt0 25647 ang180lem4 25842 1cubr 25872 asin1 25924 atanlogsublem 25945 dvatan 25965 log2ublem3 25978 log2ub 25979 basellem9 26118 cht2 26201 log2sumbnd 26572 ax5seglem7 27181 ex-fac 28691 dp20h 31030 dpmul4 31065 hgt750lem2 32507 12gcd5e1 39918 3exp7 39968 3lexlogpow5ineq1 39969 3lexlogpow5ineq5 39975 aks4d1p1 39990 sqn5i 40206 decpmul 40209 sqdeccom12 40210 sq3deccom12 40211 ex-decpmul 40213 fltnltalem 40387 dirkertrigeqlem1 43502 dirkertrigeqlem3 43504 fourierdlem103 43613 sqwvfoura 43632 sqwvfourb 43633 fouriersw 43635 fmtno5lem1 44866 fmtno5lem2 44867 fmtno5lem4 44869 fmtno4prmfac 44885 fmtno5faclem2 44893 fmtno5faclem3 44894 fmtno5fac 44895 139prmALT 44909 127prm 44912 2exp340mod341 45046 nfermltl8rev 45055 ackval1012 45897 ackval2012 45898 ackval3012 45899 |
Copyright terms: Public domain | W3C validator |