MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addid1 Structured version   Visualization version   GIF version

Theorem addid1 10822
Description: 0 is an additive identity. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
addid1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)

Proof of Theorem addid1
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1re 10643 . 2 1 ∈ ℝ
2 ax-rnegex 10610 . 2 (1 ∈ ℝ → ∃𝑐 ∈ ℝ (1 + 𝑐) = 0)
3 ax-1ne0 10608 . . . . . 6 1 ≠ 0
4 oveq2 7166 . . . . . . . . . 10 (𝑐 = 0 → (1 + 𝑐) = (1 + 0))
54eqeq1d 2825 . . . . . . . . 9 (𝑐 = 0 → ((1 + 𝑐) = 0 ↔ (1 + 0) = 0))
65biimpcd 251 . . . . . . . 8 ((1 + 𝑐) = 0 → (𝑐 = 0 → (1 + 0) = 0))
7 oveq2 7166 . . . . . . . . 9 ((1 + 0) = 0 → (((i · i) · (i · i)) · (1 + 0)) = (((i · i) · (i · i)) · 0))
8 ax-icn 10598 . . . . . . . . . . . . . . 15 i ∈ ℂ
98, 8mulcli 10650 . . . . . . . . . . . . . 14 (i · i) ∈ ℂ
109, 9mulcli 10650 . . . . . . . . . . . . 13 ((i · i) · (i · i)) ∈ ℂ
11 ax-1cn 10597 . . . . . . . . . . . . 13 1 ∈ ℂ
12 0cn 10635 . . . . . . . . . . . . 13 0 ∈ ℂ
1310, 11, 12adddii 10655 . . . . . . . . . . . 12 (((i · i) · (i · i)) · (1 + 0)) = ((((i · i) · (i · i)) · 1) + (((i · i) · (i · i)) · 0))
1410mulid1i 10647 . . . . . . . . . . . . 13 (((i · i) · (i · i)) · 1) = ((i · i) · (i · i))
15 mul01 10821 . . . . . . . . . . . . . . 15 (((i · i) · (i · i)) ∈ ℂ → (((i · i) · (i · i)) · 0) = 0)
1610, 15ax-mp 5 . . . . . . . . . . . . . 14 (((i · i) · (i · i)) · 0) = 0
17 ax-i2m1 10607 . . . . . . . . . . . . . 14 ((i · i) + 1) = 0
1816, 17eqtr4i 2849 . . . . . . . . . . . . 13 (((i · i) · (i · i)) · 0) = ((i · i) + 1)
1914, 18oveq12i 7170 . . . . . . . . . . . 12 ((((i · i) · (i · i)) · 1) + (((i · i) · (i · i)) · 0)) = (((i · i) · (i · i)) + ((i · i) + 1))
2013, 19eqtri 2846 . . . . . . . . . . 11 (((i · i) · (i · i)) · (1 + 0)) = (((i · i) · (i · i)) + ((i · i) + 1))
2120, 16eqeq12i 2838 . . . . . . . . . 10 ((((i · i) · (i · i)) · (1 + 0)) = (((i · i) · (i · i)) · 0) ↔ (((i · i) · (i · i)) + ((i · i) + 1)) = 0)
2210, 9, 11addassi 10653 . . . . . . . . . . . 12 ((((i · i) · (i · i)) + (i · i)) + 1) = (((i · i) · (i · i)) + ((i · i) + 1))
239mulid1i 10647 . . . . . . . . . . . . . . 15 ((i · i) · 1) = (i · i)
2423oveq2i 7169 . . . . . . . . . . . . . 14 (((i · i) · (i · i)) + ((i · i) · 1)) = (((i · i) · (i · i)) + (i · i))
259, 9, 11adddii 10655 . . . . . . . . . . . . . . 15 ((i · i) · ((i · i) + 1)) = (((i · i) · (i · i)) + ((i · i) · 1))
2617oveq2i 7169 . . . . . . . . . . . . . . . 16 ((i · i) · ((i · i) + 1)) = ((i · i) · 0)
27 mul01 10821 . . . . . . . . . . . . . . . . 17 ((i · i) ∈ ℂ → ((i · i) · 0) = 0)
289, 27ax-mp 5 . . . . . . . . . . . . . . . 16 ((i · i) · 0) = 0
2926, 28eqtri 2846 . . . . . . . . . . . . . . 15 ((i · i) · ((i · i) + 1)) = 0
3025, 29eqtr3i 2848 . . . . . . . . . . . . . 14 (((i · i) · (i · i)) + ((i · i) · 1)) = 0
3124, 30eqtr3i 2848 . . . . . . . . . . . . 13 (((i · i) · (i · i)) + (i · i)) = 0
3231oveq1i 7168 . . . . . . . . . . . 12 ((((i · i) · (i · i)) + (i · i)) + 1) = (0 + 1)
3322, 32eqtr3i 2848 . . . . . . . . . . 11 (((i · i) · (i · i)) + ((i · i) + 1)) = (0 + 1)
34 00id 10817 . . . . . . . . . . . 12 (0 + 0) = 0
3534eqcomi 2832 . . . . . . . . . . 11 0 = (0 + 0)
3633, 35eqeq12i 2838 . . . . . . . . . 10 ((((i · i) · (i · i)) + ((i · i) + 1)) = 0 ↔ (0 + 1) = (0 + 0))
37 0re 10645 . . . . . . . . . . 11 0 ∈ ℝ
38 readdcan 10816 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 + 1) = (0 + 0) ↔ 1 = 0))
391, 37, 37, 38mp3an 1457 . . . . . . . . . 10 ((0 + 1) = (0 + 0) ↔ 1 = 0)
4021, 36, 393bitri 299 . . . . . . . . 9 ((((i · i) · (i · i)) · (1 + 0)) = (((i · i) · (i · i)) · 0) ↔ 1 = 0)
417, 40sylib 220 . . . . . . . 8 ((1 + 0) = 0 → 1 = 0)
426, 41syl6 35 . . . . . . 7 ((1 + 𝑐) = 0 → (𝑐 = 0 → 1 = 0))
4342necon3d 3039 . . . . . 6 ((1 + 𝑐) = 0 → (1 ≠ 0 → 𝑐 ≠ 0))
443, 43mpi 20 . . . . 5 ((1 + 𝑐) = 0 → 𝑐 ≠ 0)
45 ax-rrecex 10611 . . . . 5 ((𝑐 ∈ ℝ ∧ 𝑐 ≠ 0) → ∃𝑥 ∈ ℝ (𝑐 · 𝑥) = 1)
4644, 45sylan2 594 . . . 4 ((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) → ∃𝑥 ∈ ℝ (𝑐 · 𝑥) = 1)
47 simpr 487 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
48 simplrl 775 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 𝑥 ∈ ℝ)
4948recnd 10671 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 𝑥 ∈ ℂ)
5047, 49mulcld 10663 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
51 simplll 773 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 𝑐 ∈ ℝ)
5251recnd 10671 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 𝑐 ∈ ℂ)
5312a1i 11 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 0 ∈ ℂ)
5450, 52, 53adddid 10667 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((𝐴 · 𝑥) · (𝑐 + 0)) = (((𝐴 · 𝑥) · 𝑐) + ((𝐴 · 𝑥) · 0)))
5511a1i 11 . . . . . . . . . . . . 13 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 1 ∈ ℂ)
5655, 52, 53addassd 10665 . . . . . . . . . . . 12 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((1 + 𝑐) + 0) = (1 + (𝑐 + 0)))
57 simpllr 774 . . . . . . . . . . . . 13 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (1 + 𝑐) = 0)
5857oveq1d 7173 . . . . . . . . . . . 12 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((1 + 𝑐) + 0) = (0 + 0))
5956, 58eqtr3d 2860 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (1 + (𝑐 + 0)) = (0 + 0))
6034, 59, 573eqtr4a 2884 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (1 + (𝑐 + 0)) = (1 + 𝑐))
6137a1i 11 . . . . . . . . . . . 12 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 0 ∈ ℝ)
6251, 61readdcld 10672 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (𝑐 + 0) ∈ ℝ)
631a1i 11 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 1 ∈ ℝ)
64 readdcan 10816 . . . . . . . . . . 11 (((𝑐 + 0) ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 1 ∈ ℝ) → ((1 + (𝑐 + 0)) = (1 + 𝑐) ↔ (𝑐 + 0) = 𝑐))
6562, 51, 63, 64syl3anc 1367 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((1 + (𝑐 + 0)) = (1 + 𝑐) ↔ (𝑐 + 0) = 𝑐))
6660, 65mpbid 234 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (𝑐 + 0) = 𝑐)
6766oveq2d 7174 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((𝐴 · 𝑥) · (𝑐 + 0)) = ((𝐴 · 𝑥) · 𝑐))
6854, 67eqtr3d 2860 . . . . . . 7 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (((𝐴 · 𝑥) · 𝑐) + ((𝐴 · 𝑥) · 0)) = ((𝐴 · 𝑥) · 𝑐))
69 mul31 10809 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝐴 · 𝑥) · 𝑐) = ((𝑐 · 𝑥) · 𝐴))
7047, 49, 52, 69syl3anc 1367 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((𝐴 · 𝑥) · 𝑐) = ((𝑐 · 𝑥) · 𝐴))
71 simplrr 776 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (𝑐 · 𝑥) = 1)
7271oveq1d 7173 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((𝑐 · 𝑥) · 𝐴) = (1 · 𝐴))
7347mulid2d 10661 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = 𝐴)
7470, 72, 733eqtrd 2862 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((𝐴 · 𝑥) · 𝑐) = 𝐴)
75 mul01 10821 . . . . . . . . 9 ((𝐴 · 𝑥) ∈ ℂ → ((𝐴 · 𝑥) · 0) = 0)
7650, 75syl 17 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((𝐴 · 𝑥) · 0) = 0)
7774, 76oveq12d 7176 . . . . . . 7 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (((𝐴 · 𝑥) · 𝑐) + ((𝐴 · 𝑥) · 0)) = (𝐴 + 0))
7868, 77, 743eqtr3d 2866 . . . . . 6 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (𝐴 + 0) = 𝐴)
7978exp42 438 . . . . 5 ((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) → (𝑥 ∈ ℝ → ((𝑐 · 𝑥) = 1 → (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴))))
8079rexlimdv 3285 . . . 4 ((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) → (∃𝑥 ∈ ℝ (𝑐 · 𝑥) = 1 → (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)))
8146, 80mpd 15 . . 3 ((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) → (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴))
8281rexlimiva 3283 . 2 (∃𝑐 ∈ ℝ (1 + 𝑐) = 0 → (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴))
831, 2, 82mp2b 10 1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wrex 3141  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540  ici 10541   + caddc 10542   · cmul 10544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-ltxr 10682
This theorem is referenced by:  cnegex  10823  addid2  10825  addcan2  10827  addid1i  10829  addid1d  10842  subid  10907  subid1  10908  addid0  11061  swrdccat3blem  14103  shftval3  14437  reim0  14479  isercolllem3  15025  fsumcvg  15071  summolem2a  15074  risefac1  15389  cnaddid  18992  ovolicc1  24119  addsqnreup  26021  brbtwn2  26693  axsegconlem1  26705  ax5seglem4  26720  axeuclid  26751  axcontlem2  26753  axcontlem4  26755  2xp3dxp2ge1d  39104  factwoffsmonot  39105  stoweidlem26  42318  2zrngamnd  44219  aacllem  44909
  Copyright terms: Public domain W3C validator