![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > asclelbasALT | Structured version Visualization version GIF version |
Description: Alternate proof of asclelbas 48868. (Contributed by Zhi Wang, 11-Sep-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
asclelbas.a | ⊢ 𝐴 = (algSc‘𝑊) |
asclelbas.f | ⊢ 𝐹 = (Scalar‘𝑊) |
asclelbas.b | ⊢ 𝐵 = (Base‘𝐹) |
asclelbas.w | ⊢ (𝜑 → 𝑊 ∈ AssAlg) |
asclelbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
asclelbasALT | ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Base‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclelbas.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
2 | asclelbas.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑊) | |
3 | asclelbas.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | asclelbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
5 | eqid 2736 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
6 | eqid 2736 | . . . 4 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
7 | 2, 3, 4, 5, 6 | asclval 21892 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (𝐴‘𝐶) = (𝐶( ·𝑠 ‘𝑊)(1r‘𝑊))) |
8 | 1, 7 | syl 17 | . 2 ⊢ (𝜑 → (𝐴‘𝐶) = (𝐶( ·𝑠 ‘𝑊)(1r‘𝑊))) |
9 | eqid 2736 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
10 | asclelbas.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ AssAlg) | |
11 | assalmod 21872 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) |
13 | assaring 21873 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
14 | 9, 6 | ringidcl 20255 | . . . 4 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ (Base‘𝑊)) |
15 | 10, 13, 14 | 3syl 18 | . . 3 ⊢ (𝜑 → (1r‘𝑊) ∈ (Base‘𝑊)) |
16 | 9, 3, 5, 4, 12, 1, 15 | lmodvscld 20869 | . 2 ⊢ (𝜑 → (𝐶( ·𝑠 ‘𝑊)(1r‘𝑊)) ∈ (Base‘𝑊)) |
17 | 8, 16 | eqeltrd 2840 | 1 ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Base‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6559 (class class class)co 7429 Basecbs 17243 Scalarcsca 17296 ·𝑠 cvsca 17297 1rcur 20174 Ringcrg 20226 LModclmod 20850 AssAlgcasa 21862 algSccascl 21864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-er 8741 df-en 8982 df-dom 8983 df-sdom 8984 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-nn 12263 df-2 12325 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17244 df-plusg 17306 df-0g 17482 df-mgm 18649 df-sgrp 18728 df-mnd 18744 df-mgp 20134 df-ur 20175 df-ring 20228 df-lmod 20852 df-assa 21865 df-ascl 21867 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |