Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  asclelbasALT Structured version   Visualization version   GIF version

Theorem asclelbasALT 48869
Description: Alternate proof of asclelbas 48868. (Contributed by Zhi Wang, 11-Sep-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
asclelbas.a 𝐴 = (algSc‘𝑊)
asclelbas.f 𝐹 = (Scalar‘𝑊)
asclelbas.b 𝐵 = (Base‘𝐹)
asclelbas.w (𝜑𝑊 ∈ AssAlg)
asclelbas.c (𝜑𝐶𝐵)
Assertion
Ref Expression
asclelbasALT (𝜑 → (𝐴𝐶) ∈ (Base‘𝑊))

Proof of Theorem asclelbasALT
StepHypRef Expression
1 asclelbas.c . . 3 (𝜑𝐶𝐵)
2 asclelbas.a . . . 4 𝐴 = (algSc‘𝑊)
3 asclelbas.f . . . 4 𝐹 = (Scalar‘𝑊)
4 asclelbas.b . . . 4 𝐵 = (Base‘𝐹)
5 eqid 2736 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
6 eqid 2736 . . . 4 (1r𝑊) = (1r𝑊)
72, 3, 4, 5, 6asclval 21892 . . 3 (𝐶𝐵 → (𝐴𝐶) = (𝐶( ·𝑠𝑊)(1r𝑊)))
81, 7syl 17 . 2 (𝜑 → (𝐴𝐶) = (𝐶( ·𝑠𝑊)(1r𝑊)))
9 eqid 2736 . . 3 (Base‘𝑊) = (Base‘𝑊)
10 asclelbas.w . . . 4 (𝜑𝑊 ∈ AssAlg)
11 assalmod 21872 . . . 4 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
1210, 11syl 17 . . 3 (𝜑𝑊 ∈ LMod)
13 assaring 21873 . . . 4 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
149, 6ringidcl 20255 . . . 4 (𝑊 ∈ Ring → (1r𝑊) ∈ (Base‘𝑊))
1510, 13, 143syl 18 . . 3 (𝜑 → (1r𝑊) ∈ (Base‘𝑊))
169, 3, 5, 4, 12, 1, 15lmodvscld 20869 . 2 (𝜑 → (𝐶( ·𝑠𝑊)(1r𝑊)) ∈ (Base‘𝑊))
178, 16eqeltrd 2840 1 (𝜑 → (𝐴𝐶) ∈ (Base‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6559  (class class class)co 7429  Basecbs 17243  Scalarcsca 17296   ·𝑠 cvsca 17297  1rcur 20174  Ringcrg 20226  LModclmod 20850  AssAlgcasa 21862  algSccascl 21864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-2nd 8011  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-er 8741  df-en 8982  df-dom 8983  df-sdom 8984  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-nn 12263  df-2 12325  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17244  df-plusg 17306  df-0g 17482  df-mgm 18649  df-sgrp 18728  df-mnd 18744  df-mgp 20134  df-ur 20175  df-ring 20228  df-lmod 20852  df-assa 21865  df-ascl 21867
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator