![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > asclelbasALT | Structured version Visualization version GIF version |
Description: Alternate proof for asclelbas 48759. (Contributed by Zhi Wang, 11-Sep-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
asclelbas.a | ⊢ 𝐴 = (algSc‘𝑊) |
asclelbas.f | ⊢ 𝐹 = (Scalar‘𝑊) |
asclelbas.b | ⊢ 𝐵 = (Base‘𝐹) |
asclelbas.w | ⊢ (𝜑 → 𝑊 ∈ AssAlg) |
asclelbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
asclelbasALT | ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Base‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclelbas.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
2 | asclelbas.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑊) | |
3 | asclelbas.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | asclelbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
5 | eqid 2740 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
6 | eqid 2740 | . . . 4 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
7 | 2, 3, 4, 5, 6 | asclval 21944 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (𝐴‘𝐶) = (𝐶( ·𝑠 ‘𝑊)(1r‘𝑊))) |
8 | 1, 7 | syl 17 | . 2 ⊢ (𝜑 → (𝐴‘𝐶) = (𝐶( ·𝑠 ‘𝑊)(1r‘𝑊))) |
9 | eqid 2740 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
10 | asclelbas.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ AssAlg) | |
11 | assalmod 21924 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) |
13 | assaring 21925 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
14 | 9, 6 | ringidcl 20310 | . . . 4 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ (Base‘𝑊)) |
15 | 10, 13, 14 | 3syl 18 | . . 3 ⊢ (𝜑 → (1r‘𝑊) ∈ (Base‘𝑊)) |
16 | 9, 3, 5, 4, 12, 1, 15 | lmodvscld 20920 | . 2 ⊢ (𝜑 → (𝐶( ·𝑠 ‘𝑊)(1r‘𝑊)) ∈ (Base‘𝑊)) |
17 | 8, 16 | eqeltrd 2844 | 1 ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Base‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6577 (class class class)co 7452 Basecbs 17279 Scalarcsca 17335 ·𝑠 cvsca 17336 1rcur 20229 Ringcrg 20281 LModclmod 20901 AssAlgcasa 21914 algSccascl 21916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5305 ax-sep 5319 ax-nul 5326 ax-pow 5385 ax-pr 5449 ax-un 7774 ax-cnex 11244 ax-resscn 11245 ax-1cn 11246 ax-icn 11247 ax-addcl 11248 ax-addrcl 11249 ax-mulcl 11250 ax-mulrcl 11251 ax-mulcom 11252 ax-addass 11253 ax-mulass 11254 ax-distr 11255 ax-i2m1 11256 ax-1ne0 11257 ax-1rid 11258 ax-rnegex 11259 ax-rrecex 11260 ax-cnre 11261 ax-pre-lttri 11262 ax-pre-lttrn 11263 ax-pre-ltadd 11264 ax-pre-mulgt0 11265 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3445 df-v 3491 df-sbc 3806 df-csb 3923 df-dif 3980 df-un 3982 df-in 3984 df-ss 3994 df-pss 3997 df-nul 4354 df-if 4550 df-pw 4625 df-sn 4650 df-pr 4652 df-op 4656 df-uni 4934 df-iun 5019 df-br 5169 df-opab 5231 df-mpt 5252 df-tr 5286 df-id 5595 df-eprel 5601 df-po 5609 df-so 5610 df-fr 5654 df-we 5656 df-xp 5708 df-rel 5709 df-cnv 5710 df-co 5711 df-dm 5712 df-rn 5713 df-res 5714 df-ima 5715 df-pred 6336 df-ord 6402 df-on 6403 df-lim 6404 df-suc 6405 df-iota 6529 df-fun 6579 df-fn 6580 df-f 6581 df-f1 6582 df-fo 6583 df-f1o 6584 df-fv 6585 df-riota 7408 df-ov 7455 df-oprab 7456 df-mpo 7457 df-om 7908 df-2nd 8035 df-frecs 8326 df-wrecs 8357 df-recs 8431 df-rdg 8470 df-er 8767 df-en 9008 df-dom 9009 df-sdom 9010 df-pnf 11330 df-mnf 11331 df-xr 11332 df-ltxr 11333 df-le 11334 df-sub 11527 df-neg 11528 df-nn 12300 df-2 12362 df-sets 17232 df-slot 17250 df-ndx 17262 df-base 17280 df-plusg 17345 df-0g 17522 df-mgm 18699 df-sgrp 18778 df-mnd 18794 df-mgp 20183 df-ur 20230 df-ring 20283 df-lmod 20903 df-assa 21917 df-ascl 21919 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |