![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > asclcntr | Structured version Visualization version GIF version |
Description: The algebra scalar lifting function maps into the center of the algebra. Equivalently, a lifted scalar is a center of the algebra. (Contributed by Zhi Wang, 11-Sep-2025.) |
Ref | Expression |
---|---|
asclelbas.a | ⊢ 𝐴 = (algSc‘𝑊) |
asclelbas.f | ⊢ 𝐹 = (Scalar‘𝑊) |
asclelbas.b | ⊢ 𝐵 = (Base‘𝐹) |
asclelbas.w | ⊢ (𝜑 → 𝑊 ∈ AssAlg) |
asclelbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
asclcntr.m | ⊢ 𝑀 = (mulGrp‘𝑊) |
Ref | Expression |
---|---|
asclcntr | ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Cntr‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . 2 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | asclcntr.m | . 2 ⊢ 𝑀 = (mulGrp‘𝑊) | |
3 | eqid 2737 | . 2 ⊢ (Cntr‘𝑀) = (Cntr‘𝑀) | |
4 | asclelbas.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
5 | asclelbas.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | asclelbas.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
7 | asclelbas.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ AssAlg) | |
8 | asclelbas.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
9 | 4, 5, 6, 7, 8 | asclelbas 48840 | . 2 ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Base‘𝑊)) |
10 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑊 ∈ AssAlg) |
11 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑊)) → 𝐶 ∈ 𝐵) |
12 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝑊)) | |
13 | eqid 2737 | . . . . 5 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
14 | eqid 2737 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
15 | 4, 5, 6, 1, 13, 14 | asclmul1 21933 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝐴‘𝐶)(.r‘𝑊)𝑥) = (𝐶( ·𝑠 ‘𝑊)𝑥)) |
16 | 4, 5, 6, 1, 13, 14 | asclmul2 21934 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r‘𝑊)(𝐴‘𝐶)) = (𝐶( ·𝑠 ‘𝑊)𝑥)) |
17 | 15, 16 | eqtr4d 2780 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝐴‘𝐶)(.r‘𝑊)𝑥) = (𝑥(.r‘𝑊)(𝐴‘𝐶))) |
18 | 10, 11, 12, 17 | syl3anc 1372 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝐴‘𝐶)(.r‘𝑊)𝑥) = (𝑥(.r‘𝑊)(𝐴‘𝐶))) |
19 | 1, 2, 3, 9, 18 | elmgpcntrd 48839 | 1 ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Cntr‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 .rcmulr 17308 Scalarcsca 17310 ·𝑠 cvsca 17311 Cntrccntr 19356 mulGrpcmgp 20161 AssAlgcasa 21897 algSccascl 21899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-plusg 17320 df-0g 17497 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-cntz 19357 df-cntr 19358 df-mgp 20162 df-ur 20209 df-ring 20262 df-lmod 20886 df-assa 21900 df-ascl 21902 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |