![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > asclcntr | Structured version Visualization version GIF version |
Description: The algebra scalars function maps into the center of the algebra. Equivalently, a lifted scalar is a center of the algebra. (Contributed by Zhi Wang, 11-Sep-2025.) |
Ref | Expression |
---|---|
asclelbas.a | ⊢ 𝐴 = (algSc‘𝑊) |
asclelbas.f | ⊢ 𝐹 = (Scalar‘𝑊) |
asclelbas.b | ⊢ 𝐵 = (Base‘𝐹) |
asclelbas.w | ⊢ (𝜑 → 𝑊 ∈ AssAlg) |
asclelbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
asclcntr.m | ⊢ 𝑀 = (mulGrp‘𝑊) |
Ref | Expression |
---|---|
asclcntr | ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Cntr‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | asclcntr.m | . 2 ⊢ 𝑀 = (mulGrp‘𝑊) | |
3 | eqid 2740 | . 2 ⊢ (Cntr‘𝑀) = (Cntr‘𝑀) | |
4 | asclelbas.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
5 | asclelbas.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | asclelbas.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
7 | asclelbas.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ AssAlg) | |
8 | asclelbas.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
9 | 4, 5, 6, 7, 8 | asclelbas 48680 | . 2 ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Base‘𝑊)) |
10 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑊 ∈ AssAlg) |
11 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑊)) → 𝐶 ∈ 𝐵) |
12 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝑊)) | |
13 | eqid 2740 | . . . . 5 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
14 | eqid 2740 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
15 | 4, 5, 6, 1, 13, 14 | asclmul1 21931 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝐴‘𝐶)(.r‘𝑊)𝑥) = (𝐶( ·𝑠 ‘𝑊)𝑥)) |
16 | 4, 5, 6, 1, 13, 14 | asclmul2 21932 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(.r‘𝑊)(𝐴‘𝐶)) = (𝐶( ·𝑠 ‘𝑊)𝑥)) |
17 | 15, 16 | eqtr4d 2783 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝐴‘𝐶)(.r‘𝑊)𝑥) = (𝑥(.r‘𝑊)(𝐴‘𝐶))) |
18 | 10, 11, 12, 17 | syl3anc 1371 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝐴‘𝐶)(.r‘𝑊)𝑥) = (𝑥(.r‘𝑊)(𝐴‘𝐶))) |
19 | 1, 2, 3, 9, 18 | elmgpcntrd 48679 | 1 ⊢ (𝜑 → (𝐴‘𝐶) ∈ (Cntr‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6575 (class class class)co 7450 Basecbs 17260 .rcmulr 17314 Scalarcsca 17316 ·𝑠 cvsca 17317 Cntrccntr 19358 mulGrpcmgp 20163 AssAlgcasa 21895 algSccascl 21897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-plusg 17326 df-0g 17503 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-cntz 19359 df-cntr 19360 df-mgp 20164 df-ur 20211 df-ring 20264 df-lmod 20884 df-assa 21898 df-ascl 21900 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |