Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axcontlem6 | Structured version Visualization version GIF version |
Description: Lemma for axcont 26862. State the defining properties of the value of 𝐹. (Contributed by Scott Fenton, 19-Jun-2013.) |
Ref | Expression |
---|---|
axcontlem5.1 | ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} |
axcontlem5.2 | ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} |
Ref | Expression |
---|---|
axcontlem6 | ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2759 | . . 3 ⊢ (𝐹‘𝑃) = (𝐹‘𝑃) | |
2 | axcontlem5.1 | . . . 4 ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} | |
3 | axcontlem5.2 | . . . . 5 ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} | |
4 | 3 | axcontlem1 26850 | . . . 4 ⊢ 𝐹 = {〈𝑦, 𝑠〉 ∣ (𝑦 ∈ 𝐷 ∧ (𝑠 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑦‘𝑗) = (((1 − 𝑠) · (𝑍‘𝑗)) + (𝑠 · (𝑈‘𝑗)))))} |
5 | 2, 4 | axcontlem5 26854 | . . 3 ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) = (𝐹‘𝑃) ↔ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗)))))) |
6 | 1, 5 | mpbii 236 | . 2 ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗))))) |
7 | fveq2 6659 | . . . . 5 ⊢ (𝑗 = 𝑖 → (𝑃‘𝑗) = (𝑃‘𝑖)) | |
8 | fveq2 6659 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → (𝑍‘𝑗) = (𝑍‘𝑖)) | |
9 | 8 | oveq2d 7167 | . . . . . 6 ⊢ (𝑗 = 𝑖 → ((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) = ((1 − (𝐹‘𝑃)) · (𝑍‘𝑖))) |
10 | fveq2 6659 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → (𝑈‘𝑗) = (𝑈‘𝑖)) | |
11 | 10 | oveq2d 7167 | . . . . . 6 ⊢ (𝑗 = 𝑖 → ((𝐹‘𝑃) · (𝑈‘𝑗)) = ((𝐹‘𝑃) · (𝑈‘𝑖))) |
12 | 9, 11 | oveq12d 7169 | . . . . 5 ⊢ (𝑗 = 𝑖 → (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗))) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) |
13 | 7, 12 | eqeq12d 2775 | . . . 4 ⊢ (𝑗 = 𝑖 → ((𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗))) ↔ (𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
14 | 13 | cbvralvw 3362 | . . 3 ⊢ (∀𝑗 ∈ (1...𝑁)(𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) |
15 | 14 | anbi2i 626 | . 2 ⊢ (((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗)))) ↔ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
16 | 6, 15 | sylib 221 | 1 ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∨ wo 845 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ∀wral 3071 {crab 3075 〈cop 4529 class class class wbr 5033 {copab 5095 ‘cfv 6336 (class class class)co 7151 0cc0 10568 1c1 10569 + caddc 10571 · cmul 10573 +∞cpnf 10703 − cmin 10901 ℕcn 11667 [,)cico 12774 ...cfz 12932 𝔼cee 26774 Btwn cbtwn 26775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-map 8419 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-div 11329 df-nn 11668 df-z 12014 df-uz 12276 df-ico 12778 df-icc 12779 df-fz 12933 df-ee 26777 df-btwn 26778 |
This theorem is referenced by: axcontlem7 26856 axcontlem8 26857 |
Copyright terms: Public domain | W3C validator |