| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axcontlem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for axcont 28903. State the defining properties of the value of 𝐹. (Contributed by Scott Fenton, 19-Jun-2013.) |
| Ref | Expression |
|---|---|
| axcontlem5.1 | ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} |
| axcontlem5.2 | ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} |
| Ref | Expression |
|---|---|
| axcontlem6 | ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (𝐹‘𝑃) = (𝐹‘𝑃) | |
| 2 | axcontlem5.1 | . . . 4 ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} | |
| 3 | axcontlem5.2 | . . . . 5 ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} | |
| 4 | 3 | axcontlem1 28891 | . . . 4 ⊢ 𝐹 = {〈𝑦, 𝑠〉 ∣ (𝑦 ∈ 𝐷 ∧ (𝑠 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑦‘𝑗) = (((1 − 𝑠) · (𝑍‘𝑗)) + (𝑠 · (𝑈‘𝑗)))))} |
| 5 | 2, 4 | axcontlem5 28895 | . . 3 ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) = (𝐹‘𝑃) ↔ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗)))))) |
| 6 | 1, 5 | mpbii 233 | . 2 ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗))))) |
| 7 | fveq2 6858 | . . . . 5 ⊢ (𝑗 = 𝑖 → (𝑃‘𝑗) = (𝑃‘𝑖)) | |
| 8 | fveq2 6858 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → (𝑍‘𝑗) = (𝑍‘𝑖)) | |
| 9 | 8 | oveq2d 7403 | . . . . . 6 ⊢ (𝑗 = 𝑖 → ((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) = ((1 − (𝐹‘𝑃)) · (𝑍‘𝑖))) |
| 10 | fveq2 6858 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → (𝑈‘𝑗) = (𝑈‘𝑖)) | |
| 11 | 10 | oveq2d 7403 | . . . . . 6 ⊢ (𝑗 = 𝑖 → ((𝐹‘𝑃) · (𝑈‘𝑗)) = ((𝐹‘𝑃) · (𝑈‘𝑖))) |
| 12 | 9, 11 | oveq12d 7405 | . . . . 5 ⊢ (𝑗 = 𝑖 → (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗))) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) |
| 13 | 7, 12 | eqeq12d 2745 | . . . 4 ⊢ (𝑗 = 𝑖 → ((𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗))) ↔ (𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
| 14 | 13 | cbvralvw 3215 | . . 3 ⊢ (∀𝑗 ∈ (1...𝑁)(𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) |
| 15 | 14 | anbi2i 623 | . 2 ⊢ (((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗)))) ↔ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
| 16 | 6, 15 | sylib 218 | 1 ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3405 〈cop 4595 class class class wbr 5107 {copab 5169 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 +∞cpnf 11205 − cmin 11405 ℕcn 12186 [,)cico 13308 ...cfz 13468 𝔼cee 28815 Btwn cbtwn 28816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-z 12530 df-uz 12794 df-ico 13312 df-icc 13313 df-fz 13469 df-ee 28818 df-btwn 28819 |
| This theorem is referenced by: axcontlem7 28897 axcontlem8 28898 |
| Copyright terms: Public domain | W3C validator |