Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axcontlem6 | Structured version Visualization version GIF version |
Description: Lemma for axcont 27344. State the defining properties of the value of 𝐹. (Contributed by Scott Fenton, 19-Jun-2013.) |
Ref | Expression |
---|---|
axcontlem5.1 | ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} |
axcontlem5.2 | ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} |
Ref | Expression |
---|---|
axcontlem6 | ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (𝐹‘𝑃) = (𝐹‘𝑃) | |
2 | axcontlem5.1 | . . . 4 ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} | |
3 | axcontlem5.2 | . . . . 5 ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} | |
4 | 3 | axcontlem1 27332 | . . . 4 ⊢ 𝐹 = {〈𝑦, 𝑠〉 ∣ (𝑦 ∈ 𝐷 ∧ (𝑠 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑦‘𝑗) = (((1 − 𝑠) · (𝑍‘𝑗)) + (𝑠 · (𝑈‘𝑗)))))} |
5 | 2, 4 | axcontlem5 27336 | . . 3 ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) = (𝐹‘𝑃) ↔ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗)))))) |
6 | 1, 5 | mpbii 232 | . 2 ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗))))) |
7 | fveq2 6774 | . . . . 5 ⊢ (𝑗 = 𝑖 → (𝑃‘𝑗) = (𝑃‘𝑖)) | |
8 | fveq2 6774 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → (𝑍‘𝑗) = (𝑍‘𝑖)) | |
9 | 8 | oveq2d 7291 | . . . . . 6 ⊢ (𝑗 = 𝑖 → ((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) = ((1 − (𝐹‘𝑃)) · (𝑍‘𝑖))) |
10 | fveq2 6774 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → (𝑈‘𝑗) = (𝑈‘𝑖)) | |
11 | 10 | oveq2d 7291 | . . . . . 6 ⊢ (𝑗 = 𝑖 → ((𝐹‘𝑃) · (𝑈‘𝑗)) = ((𝐹‘𝑃) · (𝑈‘𝑖))) |
12 | 9, 11 | oveq12d 7293 | . . . . 5 ⊢ (𝑗 = 𝑖 → (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗))) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) |
13 | 7, 12 | eqeq12d 2754 | . . . 4 ⊢ (𝑗 = 𝑖 → ((𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗))) ↔ (𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
14 | 13 | cbvralvw 3383 | . . 3 ⊢ (∀𝑗 ∈ (1...𝑁)(𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) |
15 | 14 | anbi2i 623 | . 2 ⊢ (((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗)))) ↔ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
16 | 6, 15 | sylib 217 | 1 ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 {crab 3068 〈cop 4567 class class class wbr 5074 {copab 5136 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 +∞cpnf 11006 − cmin 11205 ℕcn 11973 [,)cico 13081 ...cfz 13239 𝔼cee 27256 Btwn cbtwn 27257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-z 12320 df-uz 12583 df-ico 13085 df-icc 13086 df-fz 13240 df-ee 27259 df-btwn 27260 |
This theorem is referenced by: axcontlem7 27338 axcontlem8 27339 |
Copyright terms: Public domain | W3C validator |