MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem6 Structured version   Visualization version   GIF version

Theorem axcontlem6 28092
Description: Lemma for axcont 28099. State the defining properties of the value of 𝐹. (Contributed by Scott Fenton, 19-Jun-2013.)
Hypotheses
Ref Expression
axcontlem5.1 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
axcontlem5.2 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
Assertion
Ref Expression
axcontlem6 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))))
Distinct variable groups:   𝑡,𝐷,𝑥   𝑖,𝑝,𝑡,𝑥,𝑁   𝑃,𝑖,𝑡,𝑥   𝑈,𝑖,𝑝,𝑡,𝑥   𝑖,𝑍,𝑝,𝑡,𝑥   𝑖,𝐹
Allowed substitution hints:   𝐷(𝑖,𝑝)   𝑃(𝑝)   𝐹(𝑥,𝑡,𝑝)

Proof of Theorem axcontlem6
Dummy variables 𝑠 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (𝐹𝑃) = (𝐹𝑃)
2 axcontlem5.1 . . . 4 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
3 axcontlem5.2 . . . . 5 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
43axcontlem1 28087 . . . 4 𝐹 = {⟨𝑦, 𝑠⟩ ∣ (𝑦𝐷 ∧ (𝑠 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑦𝑗) = (((1 − 𝑠) · (𝑍𝑗)) + (𝑠 · (𝑈𝑗)))))}
52, 4axcontlem5 28091 . . 3 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = (𝐹𝑃) ↔ ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃𝑗) = (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗))))))
61, 5mpbii 232 . 2 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃𝑗) = (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗)))))
7 fveq2 6878 . . . . 5 (𝑗 = 𝑖 → (𝑃𝑗) = (𝑃𝑖))
8 fveq2 6878 . . . . . . 7 (𝑗 = 𝑖 → (𝑍𝑗) = (𝑍𝑖))
98oveq2d 7409 . . . . . 6 (𝑗 = 𝑖 → ((1 − (𝐹𝑃)) · (𝑍𝑗)) = ((1 − (𝐹𝑃)) · (𝑍𝑖)))
10 fveq2 6878 . . . . . . 7 (𝑗 = 𝑖 → (𝑈𝑗) = (𝑈𝑖))
1110oveq2d 7409 . . . . . 6 (𝑗 = 𝑖 → ((𝐹𝑃) · (𝑈𝑗)) = ((𝐹𝑃) · (𝑈𝑖)))
129, 11oveq12d 7411 . . . . 5 (𝑗 = 𝑖 → (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗))) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))))
137, 12eqeq12d 2747 . . . 4 (𝑗 = 𝑖 → ((𝑃𝑗) = (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗))) ↔ (𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))))
1413cbvralvw 3233 . . 3 (∀𝑗 ∈ (1...𝑁)(𝑃𝑗) = (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))))
1514anbi2i 623 . 2 (((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃𝑗) = (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗)))) ↔ ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))))
166, 15sylib 217 1 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wral 3060  {crab 3431  cop 4628   class class class wbr 5141  {copab 5203  cfv 6532  (class class class)co 7393  0cc0 11092  1c1 11093   + caddc 11095   · cmul 11097  +∞cpnf 11227  cmin 11426  cn 12194  [,)cico 13308  ...cfz 13466  𝔼cee 28011   Btwn cbtwn 28012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-z 12541  df-uz 12805  df-ico 13312  df-icc 13313  df-fz 13467  df-ee 28014  df-btwn 28015
This theorem is referenced by:  axcontlem7  28093  axcontlem8  28094
  Copyright terms: Public domain W3C validator