MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem6 Structured version   Visualization version   GIF version

Theorem axcontlem6 28985
Description: Lemma for axcont 28992. State the defining properties of the value of 𝐹. (Contributed by Scott Fenton, 19-Jun-2013.)
Hypotheses
Ref Expression
axcontlem5.1 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
axcontlem5.2 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
Assertion
Ref Expression
axcontlem6 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))))
Distinct variable groups:   𝑡,𝐷,𝑥   𝑖,𝑝,𝑡,𝑥,𝑁   𝑃,𝑖,𝑡,𝑥   𝑈,𝑖,𝑝,𝑡,𝑥   𝑖,𝑍,𝑝,𝑡,𝑥   𝑖,𝐹
Allowed substitution hints:   𝐷(𝑖,𝑝)   𝑃(𝑝)   𝐹(𝑥,𝑡,𝑝)

Proof of Theorem axcontlem6
Dummy variables 𝑠 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (𝐹𝑃) = (𝐹𝑃)
2 axcontlem5.1 . . . 4 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
3 axcontlem5.2 . . . . 5 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
43axcontlem1 28980 . . . 4 𝐹 = {⟨𝑦, 𝑠⟩ ∣ (𝑦𝐷 ∧ (𝑠 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑦𝑗) = (((1 − 𝑠) · (𝑍𝑗)) + (𝑠 · (𝑈𝑗)))))}
52, 4axcontlem5 28984 . . 3 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = (𝐹𝑃) ↔ ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃𝑗) = (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗))))))
61, 5mpbii 233 . 2 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃𝑗) = (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗)))))
7 fveq2 6905 . . . . 5 (𝑗 = 𝑖 → (𝑃𝑗) = (𝑃𝑖))
8 fveq2 6905 . . . . . . 7 (𝑗 = 𝑖 → (𝑍𝑗) = (𝑍𝑖))
98oveq2d 7448 . . . . . 6 (𝑗 = 𝑖 → ((1 − (𝐹𝑃)) · (𝑍𝑗)) = ((1 − (𝐹𝑃)) · (𝑍𝑖)))
10 fveq2 6905 . . . . . . 7 (𝑗 = 𝑖 → (𝑈𝑗) = (𝑈𝑖))
1110oveq2d 7448 . . . . . 6 (𝑗 = 𝑖 → ((𝐹𝑃) · (𝑈𝑗)) = ((𝐹𝑃) · (𝑈𝑖)))
129, 11oveq12d 7450 . . . . 5 (𝑗 = 𝑖 → (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗))) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))))
137, 12eqeq12d 2752 . . . 4 (𝑗 = 𝑖 → ((𝑃𝑗) = (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗))) ↔ (𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))))
1413cbvralvw 3236 . . 3 (∀𝑗 ∈ (1...𝑁)(𝑃𝑗) = (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))))
1514anbi2i 623 . 2 (((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃𝑗) = (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗)))) ↔ ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))))
166, 15sylib 218 1 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  {crab 3435  cop 4631   class class class wbr 5142  {copab 5204  cfv 6560  (class class class)co 7432  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  +∞cpnf 11293  cmin 11493  cn 12267  [,)cico 13390  ...cfz 13548  𝔼cee 28904   Btwn cbtwn 28905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-z 12616  df-uz 12880  df-ico 13394  df-icc 13395  df-fz 13549  df-ee 28907  df-btwn 28908
This theorem is referenced by:  axcontlem7  28986  axcontlem8  28987
  Copyright terms: Public domain W3C validator