MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem6 Structured version   Visualization version   GIF version

Theorem axcontlem6 27337
Description: Lemma for axcont 27344. State the defining properties of the value of 𝐹. (Contributed by Scott Fenton, 19-Jun-2013.)
Hypotheses
Ref Expression
axcontlem5.1 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
axcontlem5.2 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
Assertion
Ref Expression
axcontlem6 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))))
Distinct variable groups:   𝑡,𝐷,𝑥   𝑖,𝑝,𝑡,𝑥,𝑁   𝑃,𝑖,𝑡,𝑥   𝑈,𝑖,𝑝,𝑡,𝑥   𝑖,𝑍,𝑝,𝑡,𝑥   𝑖,𝐹
Allowed substitution hints:   𝐷(𝑖,𝑝)   𝑃(𝑝)   𝐹(𝑥,𝑡,𝑝)

Proof of Theorem axcontlem6
Dummy variables 𝑠 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (𝐹𝑃) = (𝐹𝑃)
2 axcontlem5.1 . . . 4 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
3 axcontlem5.2 . . . . 5 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
43axcontlem1 27332 . . . 4 𝐹 = {⟨𝑦, 𝑠⟩ ∣ (𝑦𝐷 ∧ (𝑠 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑦𝑗) = (((1 − 𝑠) · (𝑍𝑗)) + (𝑠 · (𝑈𝑗)))))}
52, 4axcontlem5 27336 . . 3 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = (𝐹𝑃) ↔ ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃𝑗) = (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗))))))
61, 5mpbii 232 . 2 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃𝑗) = (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗)))))
7 fveq2 6774 . . . . 5 (𝑗 = 𝑖 → (𝑃𝑗) = (𝑃𝑖))
8 fveq2 6774 . . . . . . 7 (𝑗 = 𝑖 → (𝑍𝑗) = (𝑍𝑖))
98oveq2d 7291 . . . . . 6 (𝑗 = 𝑖 → ((1 − (𝐹𝑃)) · (𝑍𝑗)) = ((1 − (𝐹𝑃)) · (𝑍𝑖)))
10 fveq2 6774 . . . . . . 7 (𝑗 = 𝑖 → (𝑈𝑗) = (𝑈𝑖))
1110oveq2d 7291 . . . . . 6 (𝑗 = 𝑖 → ((𝐹𝑃) · (𝑈𝑗)) = ((𝐹𝑃) · (𝑈𝑖)))
129, 11oveq12d 7293 . . . . 5 (𝑗 = 𝑖 → (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗))) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))))
137, 12eqeq12d 2754 . . . 4 (𝑗 = 𝑖 → ((𝑃𝑗) = (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗))) ↔ (𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))))
1413cbvralvw 3383 . . 3 (∀𝑗 ∈ (1...𝑁)(𝑃𝑗) = (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖))))
1514anbi2i 623 . 2 (((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃𝑗) = (((1 − (𝐹𝑃)) · (𝑍𝑗)) + ((𝐹𝑃) · (𝑈𝑗)))) ↔ ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))))
166, 15sylib 217 1 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − (𝐹𝑃)) · (𝑍𝑖)) + ((𝐹𝑃) · (𝑈𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  cop 4567   class class class wbr 5074  {copab 5136  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  +∞cpnf 11006  cmin 11205  cn 11973  [,)cico 13081  ...cfz 13239  𝔼cee 27256   Btwn cbtwn 27257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-z 12320  df-uz 12583  df-ico 13085  df-icc 13086  df-fz 13240  df-ee 27259  df-btwn 27260
This theorem is referenced by:  axcontlem7  27338  axcontlem8  27339
  Copyright terms: Public domain W3C validator