| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axcontlem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for axcont 28958. State the defining properties of the value of 𝐹. (Contributed by Scott Fenton, 19-Jun-2013.) |
| Ref | Expression |
|---|---|
| axcontlem5.1 | ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} |
| axcontlem5.2 | ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} |
| Ref | Expression |
|---|---|
| axcontlem6 | ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (𝐹‘𝑃) = (𝐹‘𝑃) | |
| 2 | axcontlem5.1 | . . . 4 ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} | |
| 3 | axcontlem5.2 | . . . . 5 ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} | |
| 4 | 3 | axcontlem1 28946 | . . . 4 ⊢ 𝐹 = {〈𝑦, 𝑠〉 ∣ (𝑦 ∈ 𝐷 ∧ (𝑠 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑦‘𝑗) = (((1 − 𝑠) · (𝑍‘𝑗)) + (𝑠 · (𝑈‘𝑗)))))} |
| 5 | 2, 4 | axcontlem5 28950 | . . 3 ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) = (𝐹‘𝑃) ↔ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗)))))) |
| 6 | 1, 5 | mpbii 233 | . 2 ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗))))) |
| 7 | fveq2 6830 | . . . . 5 ⊢ (𝑗 = 𝑖 → (𝑃‘𝑗) = (𝑃‘𝑖)) | |
| 8 | fveq2 6830 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → (𝑍‘𝑗) = (𝑍‘𝑖)) | |
| 9 | 8 | oveq2d 7370 | . . . . . 6 ⊢ (𝑗 = 𝑖 → ((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) = ((1 − (𝐹‘𝑃)) · (𝑍‘𝑖))) |
| 10 | fveq2 6830 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → (𝑈‘𝑗) = (𝑈‘𝑖)) | |
| 11 | 10 | oveq2d 7370 | . . . . . 6 ⊢ (𝑗 = 𝑖 → ((𝐹‘𝑃) · (𝑈‘𝑗)) = ((𝐹‘𝑃) · (𝑈‘𝑖))) |
| 12 | 9, 11 | oveq12d 7372 | . . . . 5 ⊢ (𝑗 = 𝑖 → (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗))) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) |
| 13 | 7, 12 | eqeq12d 2749 | . . . 4 ⊢ (𝑗 = 𝑖 → ((𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗))) ↔ (𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
| 14 | 13 | cbvralvw 3211 | . . 3 ⊢ (∀𝑗 ∈ (1...𝑁)(𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) |
| 15 | 14 | anbi2i 623 | . 2 ⊢ (((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑃‘𝑗) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑗)) + ((𝐹‘𝑃) · (𝑈‘𝑗)))) ↔ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
| 16 | 6, 15 | sylib 218 | 1 ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 {crab 3396 〈cop 4583 class class class wbr 5095 {copab 5157 ‘cfv 6488 (class class class)co 7354 0cc0 11015 1c1 11016 + caddc 11018 · cmul 11020 +∞cpnf 11152 − cmin 11353 ℕcn 12134 [,)cico 13251 ...cfz 13411 𝔼cee 28869 Btwn cbtwn 28870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-z 12478 df-uz 12741 df-ico 13255 df-icc 13256 df-fz 13412 df-ee 28872 df-btwn 28873 |
| This theorem is referenced by: axcontlem7 28952 axcontlem8 28953 |
| Copyright terms: Public domain | W3C validator |