Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sq1 | Structured version Visualization version GIF version |
Description: The square of 1 is 1. (Contributed by NM, 22-Aug-1999.) |
Ref | Expression |
---|---|
sq1 | ⊢ (1↑2) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12282 | . 2 ⊢ 2 ∈ ℤ | |
2 | 1exp 13740 | . 2 ⊢ (2 ∈ ℤ → (1↑2) = 1) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (1↑2) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 1c1 10803 2c2 11958 ℤcz 12249 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-exp 13711 |
This theorem is referenced by: neg1sqe1 13841 binom21 13862 binom2sub1 13864 sq01 13868 sqrlem1 14882 sqrt1 14911 sinbnd 15817 cosbnd 15818 cos1bnd 15824 cos2bnd 15825 cos01gt0 15828 sqnprm 16335 numdensq 16386 zsqrtelqelz 16390 prmreclem1 16545 prmreclem2 16546 4sqlem13 16586 4sqlem19 16592 odadd 19366 abvneg 20009 gzrngunitlem 20575 gzrngunit 20576 zringunit 20600 sinhalfpilem 25525 cos2pi 25538 tangtx 25567 coskpi 25584 tanregt0 25600 efif1olem3 25605 root1id 25812 root1cj 25814 isosctrlem2 25874 asin1 25949 efiatan2 25972 bndatandm 25984 atans2 25986 wilthlem1 26122 dchrinv 26314 sum2dchr 26327 lgslem1 26350 lgsne0 26388 lgssq 26390 lgssq2 26391 1lgs 26393 lgs1 26394 lgsdinn0 26398 lgsquad2lem2 26438 lgsquad3 26440 2lgsoddprmlem3a 26463 2sqlem9 26480 2sqlem10 26481 2sqlem11 26482 2sqblem 26484 2sqb 26485 2sq2 26486 addsqn2reu 26494 addsqrexnreu 26495 addsq2nreurex 26497 mulog2sumlem2 26588 pntlemb 26650 axlowdimlem16 27228 ex-pr 28695 normlem1 29373 kbpj 30219 hstnmoc 30486 hstle1 30489 hst1h 30490 hstle 30493 strlem3a 30515 strlem4 30517 strlem5 30518 jplem1 30531 dvasin 35788 dvacos 35789 areacirclem1 35792 areacirc 35797 cntotbnd 35881 3cubeslem1 40422 3cubeslem2 40423 3cubeslem3r 40425 pell1qrge1 40608 pell1qr1 40609 pell1qrgaplem 40611 pell14qrgapw 40614 pellqrex 40617 rmspecnonsq 40645 rmspecfund 40647 rmspecpos 40654 sqrtcval 41138 stoweidlem1 43432 wallispi2lem2 43503 stirlinglem10 43514 lighneallem2 44946 onetansqsecsq 46349 cotsqcscsq 46350 |
Copyright terms: Public domain | W3C validator |