![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sq1 | Structured version Visualization version GIF version |
Description: The square of 1 is 1. (Contributed by NM, 22-Aug-1999.) |
Ref | Expression |
---|---|
sq1 | ⊢ (1↑2) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 11696 | . 2 ⊢ 2 ∈ ℤ | |
2 | 1exp 13140 | . 2 ⊢ (2 ∈ ℤ → (1↑2) = 1) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (1↑2) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 (class class class)co 6877 1c1 10224 2c2 11365 ℤcz 11663 ↑cexp 13111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 ax-cnex 10279 ax-resscn 10280 ax-1cn 10281 ax-icn 10282 ax-addcl 10283 ax-addrcl 10284 ax-mulcl 10285 ax-mulrcl 10286 ax-mulcom 10287 ax-addass 10288 ax-mulass 10289 ax-distr 10290 ax-i2m1 10291 ax-1ne0 10292 ax-1rid 10293 ax-rnegex 10294 ax-rrecex 10295 ax-cnre 10296 ax-pre-lttri 10297 ax-pre-lttrn 10298 ax-pre-ltadd 10299 ax-pre-mulgt0 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3386 df-sbc 3633 df-csb 3728 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-pss 3784 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-tp 4372 df-op 4374 df-uni 4628 df-iun 4711 df-br 4843 df-opab 4905 df-mpt 4922 df-tr 4945 df-id 5219 df-eprel 5224 df-po 5232 df-so 5233 df-fr 5270 df-we 5272 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-pred 5897 df-ord 5943 df-on 5944 df-lim 5945 df-suc 5946 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-f1 6105 df-fo 6106 df-f1o 6107 df-fv 6108 df-riota 6838 df-ov 6880 df-oprab 6881 df-mpt2 6882 df-om 7299 df-2nd 7401 df-wrecs 7644 df-recs 7706 df-rdg 7744 df-er 7981 df-en 8195 df-dom 8196 df-sdom 8197 df-pnf 10364 df-mnf 10365 df-xr 10366 df-ltxr 10367 df-le 10368 df-sub 10557 df-neg 10558 df-div 10976 df-nn 11312 df-2 11373 df-n0 11578 df-z 11664 df-uz 11928 df-seq 13053 df-exp 13112 |
This theorem is referenced by: neg1sqe1 13210 binom21 13231 binom2sub1 13233 sq01 13237 sqrlem1 14321 sqrt1 14350 sinbnd 15243 cosbnd 15244 cos1bnd 15250 cos2bnd 15251 cos01gt0 15254 sqnprm 15744 numdensq 15792 zsqrtelqelz 15796 prmreclem1 15950 prmreclem2 15951 4sqlem13 15991 4sqlem19 15997 odadd 18565 abvneg 19149 gzrngunitlem 20130 gzrngunit 20131 zringunit 20155 sinhalfpilem 24554 cos2pi 24567 tangtx 24596 coskpi 24611 tanregt0 24624 efif1olem3 24629 root1id 24836 root1cj 24838 isosctrlem2 24898 asin1 24970 efiatan2 24993 bndatandm 25005 atans2 25007 wilthlem1 25143 dchrinv 25335 sum2dchr 25348 lgslem1 25371 lgsne0 25409 lgssq 25411 lgssq2 25412 1lgs 25414 lgs1 25415 lgsdinn0 25419 lgsquad2lem2 25459 lgsquad3 25461 2lgsoddprmlem3a 25484 2sqlem9 25501 2sqlem10 25502 2sqlem11 25503 2sqblem 25505 2sqb 25506 mulog2sumlem2 25573 pntlemb 25635 axlowdimlem16 26187 ex-pr 27808 normlem1 28485 kbpj 29333 hstnmoc 29600 hstle1 29603 hst1h 29604 hstle 29607 strlem3a 29629 strlem4 29631 strlem5 29632 jplem1 29645 nn0sqeq1 30024 dvasin 33977 dvacos 33978 areacirclem1 33981 areacirc 33986 cntotbnd 34075 pell1qrge1 38209 pell1qr1 38210 pell1qrgaplem 38212 pell14qrgapw 38215 pellqrex 38218 rmspecnonsq 38246 rmspecfund 38248 rmspecpos 38255 stoweidlem1 40950 wallispi2lem2 41021 stirlinglem10 41032 lighneallem2 42294 onetansqsecsq 43293 cotsqcscsq 43294 |
Copyright terms: Public domain | W3C validator |