Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sq1 | Structured version Visualization version GIF version |
Description: The square of 1 is 1. (Contributed by NM, 22-Aug-1999.) |
Ref | Expression |
---|---|
sq1 | ⊢ (1↑2) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12361 | . 2 ⊢ 2 ∈ ℤ | |
2 | 1exp 13821 | . 2 ⊢ (2 ∈ ℤ → (1↑2) = 1) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (1↑2) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2107 (class class class)co 7284 1c1 10881 2c2 12037 ℤcz 12328 ↑cexp 13791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 df-nn 11983 df-2 12045 df-n0 12243 df-z 12329 df-uz 12592 df-seq 13731 df-exp 13792 |
This theorem is referenced by: neg1sqe1 13922 binom21 13943 binom2sub1 13945 sq01 13949 sqrlem1 14963 sqrt1 14992 sinbnd 15898 cosbnd 15899 cos1bnd 15905 cos2bnd 15906 cos01gt0 15909 sqnprm 16416 numdensq 16467 zsqrtelqelz 16471 prmreclem1 16626 prmreclem2 16627 4sqlem13 16667 4sqlem19 16673 odadd 19460 abvneg 20103 gzrngunitlem 20672 gzrngunit 20673 zringunit 20697 sinhalfpilem 25629 cos2pi 25642 tangtx 25671 coskpi 25688 tanregt0 25704 efif1olem3 25709 root1id 25916 root1cj 25918 isosctrlem2 25978 asin1 26053 efiatan2 26076 bndatandm 26088 atans2 26090 wilthlem1 26226 dchrinv 26418 sum2dchr 26431 lgslem1 26454 lgsne0 26492 lgssq 26494 lgssq2 26495 1lgs 26497 lgs1 26498 lgsdinn0 26502 lgsquad2lem2 26542 lgsquad3 26544 2lgsoddprmlem3a 26567 2sqlem9 26584 2sqlem10 26585 2sqlem11 26586 2sqblem 26588 2sqb 26589 2sq2 26590 addsqn2reu 26598 addsqrexnreu 26599 addsq2nreurex 26601 mulog2sumlem2 26692 pntlemb 26754 axlowdimlem16 27334 ex-pr 28803 normlem1 29481 kbpj 30327 hstnmoc 30594 hstle1 30597 hst1h 30598 hstle 30601 strlem3a 30623 strlem4 30625 strlem5 30626 jplem1 30639 dvasin 35870 dvacos 35871 areacirclem1 35874 areacirc 35879 cntotbnd 35963 3cubeslem1 40513 3cubeslem2 40514 3cubeslem3r 40516 pell1qrge1 40699 pell1qr1 40700 pell1qrgaplem 40702 pell14qrgapw 40705 pellqrex 40708 rmspecnonsq 40736 rmspecfund 40738 rmspecpos 40745 sqrtcval 41256 stoweidlem1 43549 wallispi2lem2 43620 stirlinglem10 43631 lighneallem2 45069 onetansqsecsq 46474 cotsqcscsq 46475 |
Copyright terms: Public domain | W3C validator |