![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sq1 | Structured version Visualization version GIF version |
Description: The square of 1 is 1. (Contributed by NM, 22-Aug-1999.) |
Ref | Expression |
---|---|
sq1 | ⊢ (1↑2) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12647 | . 2 ⊢ 2 ∈ ℤ | |
2 | 1exp 14129 | . 2 ⊢ (2 ∈ ℤ → (1↑2) = 1) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (1↑2) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 (class class class)co 7431 1c1 11154 2c2 12319 ℤcz 12611 ↑cexp 14099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-seq 14040 df-exp 14100 |
This theorem is referenced by: neg1sqe1 14232 binom21 14255 binom2sub1 14257 sq01 14261 01sqrexlem1 15278 sqrt1 15307 sinbnd 16213 cosbnd 16214 cos1bnd 16220 cos2bnd 16221 cos01gt0 16224 sqnprm 16736 numdensq 16788 zsqrtelqelz 16792 prmreclem1 16950 prmreclem2 16951 4sqlem13 16991 4sqlem19 16997 odadd 19883 abvneg 20844 gzrngunitlem 21468 gzrngunit 21469 zringunit 21495 sinhalfpilem 26520 cos2pi 26533 tangtx 26562 coskpi 26580 tanregt0 26596 efif1olem3 26601 root1id 26812 root1cj 26814 isosctrlem2 26877 asin1 26952 efiatan2 26975 bndatandm 26987 atans2 26989 wilthlem1 27126 dchrinv 27320 sum2dchr 27333 lgslem1 27356 lgsne0 27394 lgssq 27396 lgssq2 27397 1lgs 27399 lgs1 27400 lgsdinn0 27404 lgsquad2lem2 27444 lgsquad3 27446 2lgsoddprmlem3a 27469 2sqlem9 27486 2sqlem10 27487 2sqlem11 27488 2sqblem 27490 2sqb 27491 2sq2 27492 addsqn2reu 27500 addsqrexnreu 27501 addsq2nreurex 27503 mulog2sumlem2 27594 pntlemb 27656 axlowdimlem16 28987 ex-pr 30459 normlem1 31139 kbpj 31985 hstnmoc 32252 hstle1 32255 hst1h 32256 hstle 32259 strlem3a 32281 strlem4 32283 strlem5 32284 jplem1 32297 dvasin 37691 dvacos 37692 areacirclem1 37695 areacirc 37700 cntotbnd 37783 3cubeslem1 42672 3cubeslem2 42673 3cubeslem3r 42675 pell1qrge1 42858 pell1qr1 42859 pell1qrgaplem 42861 pell14qrgapw 42864 pellqrex 42867 rmspecnonsq 42895 rmspecfund 42897 rmspecpos 42905 sqrtcval 43631 stoweidlem1 45957 wallispi2lem2 46028 stirlinglem10 46039 lighneallem2 47531 onetansqsecsq 48992 cotsqcscsq 48993 |
Copyright terms: Public domain | W3C validator |