| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sq1 | Structured version Visualization version GIF version | ||
| Description: The square of 1 is 1. (Contributed by NM, 22-Aug-1999.) |
| Ref | Expression |
|---|---|
| sq1 | ⊢ (1↑2) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12507 | . 2 ⊢ 2 ∈ ℤ | |
| 2 | 1exp 13998 | . 2 ⊢ (2 ∈ ℤ → (1↑2) = 1) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (1↑2) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7349 1c1 11010 2c2 12183 ℤcz 12471 ↑cexp 13968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-seq 13909 df-exp 13969 |
| This theorem is referenced by: neg1sqe1 14103 binom21 14126 binom2sub1 14128 sq01 14132 01sqrexlem1 15149 sqrt1 15178 sinbnd 16089 cosbnd 16090 cos1bnd 16096 cos2bnd 16097 cos01gt0 16100 sqnprm 16613 numdensq 16665 zsqrtelqelz 16669 prmreclem1 16828 prmreclem2 16829 4sqlem13 16869 4sqlem19 16875 odadd 19729 abvneg 20711 gzrngunitlem 21339 gzrngunit 21340 zringunit 21373 sinhalfpilem 26370 cos2pi 26383 tangtx 26412 coskpi 26430 tanregt0 26446 efif1olem3 26451 root1id 26662 root1cj 26664 isosctrlem2 26727 asin1 26802 efiatan2 26825 bndatandm 26837 atans2 26839 wilthlem1 26976 dchrinv 27170 sum2dchr 27183 lgslem1 27206 lgsne0 27244 lgssq 27246 lgssq2 27247 1lgs 27249 lgs1 27250 lgsdinn0 27254 lgsquad2lem2 27294 lgsquad3 27296 2lgsoddprmlem3a 27319 2sqlem9 27336 2sqlem10 27337 2sqlem11 27338 2sqblem 27340 2sqb 27341 2sq2 27342 addsqn2reu 27350 addsqrexnreu 27351 addsq2nreurex 27353 mulog2sumlem2 27444 pntlemb 27506 axlowdimlem16 28902 ex-pr 30374 normlem1 31054 kbpj 31900 hstnmoc 32167 hstle1 32170 hst1h 32171 hstle 32174 strlem3a 32196 strlem4 32198 strlem5 32199 jplem1 32212 iconstr 33733 cos9thpiminplylem1 33749 cos9thpinconstrlem1 33756 dvasin 37684 dvacos 37685 areacirclem1 37688 areacirc 37693 cntotbnd 37776 3cubeslem1 42657 3cubeslem2 42658 3cubeslem3r 42660 pell1qrge1 42843 pell1qr1 42844 pell1qrgaplem 42846 pell14qrgapw 42849 pellqrex 42852 rmspecnonsq 42880 rmspecfund 42882 rmspecpos 42889 sqrtcval 43614 stoweidlem1 45982 wallispi2lem2 46053 stirlinglem10 46064 lighneallem2 47590 onetansqsecsq 49746 cotsqcscsq 49747 |
| Copyright terms: Public domain | W3C validator |