![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sq1 | Structured version Visualization version GIF version |
Description: The square of 1 is 1. (Contributed by NM, 22-Aug-1999.) |
Ref | Expression |
---|---|
sq1 | ⊢ (1↑2) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12591 | . 2 ⊢ 2 ∈ ℤ | |
2 | 1exp 14054 | . 2 ⊢ (2 ∈ ℤ → (1↑2) = 1) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (1↑2) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 (class class class)co 7401 1c1 11107 2c2 12264 ℤcz 12555 ↑cexp 14024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-n0 12470 df-z 12556 df-uz 12820 df-seq 13964 df-exp 14025 |
This theorem is referenced by: neg1sqe1 14157 binom21 14179 binom2sub1 14181 sq01 14185 01sqrexlem1 15186 sqrt1 15215 sinbnd 16120 cosbnd 16121 cos1bnd 16127 cos2bnd 16128 cos01gt0 16131 sqnprm 16636 numdensq 16689 zsqrtelqelz 16693 prmreclem1 16848 prmreclem2 16849 4sqlem13 16889 4sqlem19 16895 odadd 19760 abvneg 20667 gzrngunitlem 21294 gzrngunit 21295 zringunit 21321 sinhalfpilem 26315 cos2pi 26328 tangtx 26357 coskpi 26374 tanregt0 26390 efif1olem3 26395 root1id 26605 root1cj 26607 isosctrlem2 26667 asin1 26742 efiatan2 26765 bndatandm 26777 atans2 26779 wilthlem1 26916 dchrinv 27110 sum2dchr 27123 lgslem1 27146 lgsne0 27184 lgssq 27186 lgssq2 27187 1lgs 27189 lgs1 27190 lgsdinn0 27194 lgsquad2lem2 27234 lgsquad3 27236 2lgsoddprmlem3a 27259 2sqlem9 27276 2sqlem10 27277 2sqlem11 27278 2sqblem 27280 2sqb 27281 2sq2 27282 addsqn2reu 27290 addsqrexnreu 27291 addsq2nreurex 27293 mulog2sumlem2 27384 pntlemb 27446 axlowdimlem16 28684 ex-pr 30152 normlem1 30832 kbpj 31678 hstnmoc 31945 hstle1 31948 hst1h 31949 hstle 31952 strlem3a 31974 strlem4 31976 strlem5 31977 jplem1 31990 dvasin 37062 dvacos 37063 areacirclem1 37066 areacirc 37071 cntotbnd 37154 3cubeslem1 41911 3cubeslem2 41912 3cubeslem3r 41914 pell1qrge1 42097 pell1qr1 42098 pell1qrgaplem 42100 pell14qrgapw 42103 pellqrex 42106 rmspecnonsq 42134 rmspecfund 42136 rmspecpos 42144 sqrtcval 42881 stoweidlem1 45202 wallispi2lem2 45273 stirlinglem10 45284 lighneallem2 46759 onetansqsecsq 47994 cotsqcscsq 47995 |
Copyright terms: Public domain | W3C validator |