| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sq1 | Structured version Visualization version GIF version | ||
| Description: The square of 1 is 1. (Contributed by NM, 22-Aug-1999.) |
| Ref | Expression |
|---|---|
| sq1 | ⊢ (1↑2) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12649 | . 2 ⊢ 2 ∈ ℤ | |
| 2 | 1exp 14132 | . 2 ⊢ (2 ∈ ℤ → (1↑2) = 1) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (1↑2) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7431 1c1 11156 2c2 12321 ℤcz 12613 ↑cexp 14102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-uz 12879 df-seq 14043 df-exp 14103 |
| This theorem is referenced by: neg1sqe1 14235 binom21 14258 binom2sub1 14260 sq01 14264 01sqrexlem1 15281 sqrt1 15310 sinbnd 16216 cosbnd 16217 cos1bnd 16223 cos2bnd 16224 cos01gt0 16227 sqnprm 16739 numdensq 16791 zsqrtelqelz 16795 prmreclem1 16954 prmreclem2 16955 4sqlem13 16995 4sqlem19 17001 odadd 19868 abvneg 20827 gzrngunitlem 21450 gzrngunit 21451 zringunit 21477 sinhalfpilem 26505 cos2pi 26518 tangtx 26547 coskpi 26565 tanregt0 26581 efif1olem3 26586 root1id 26797 root1cj 26799 isosctrlem2 26862 asin1 26937 efiatan2 26960 bndatandm 26972 atans2 26974 wilthlem1 27111 dchrinv 27305 sum2dchr 27318 lgslem1 27341 lgsne0 27379 lgssq 27381 lgssq2 27382 1lgs 27384 lgs1 27385 lgsdinn0 27389 lgsquad2lem2 27429 lgsquad3 27431 2lgsoddprmlem3a 27454 2sqlem9 27471 2sqlem10 27472 2sqlem11 27473 2sqblem 27475 2sqb 27476 2sq2 27477 addsqn2reu 27485 addsqrexnreu 27486 addsq2nreurex 27488 mulog2sumlem2 27579 pntlemb 27641 axlowdimlem16 28972 ex-pr 30449 normlem1 31129 kbpj 31975 hstnmoc 32242 hstle1 32245 hst1h 32246 hstle 32249 strlem3a 32271 strlem4 32273 strlem5 32274 jplem1 32287 dvasin 37711 dvacos 37712 areacirclem1 37715 areacirc 37720 cntotbnd 37803 3cubeslem1 42695 3cubeslem2 42696 3cubeslem3r 42698 pell1qrge1 42881 pell1qr1 42882 pell1qrgaplem 42884 pell14qrgapw 42887 pellqrex 42890 rmspecnonsq 42918 rmspecfund 42920 rmspecpos 42928 sqrtcval 43654 stoweidlem1 46016 wallispi2lem2 46087 stirlinglem10 46098 lighneallem2 47593 onetansqsecsq 49280 cotsqcscsq 49281 |
| Copyright terms: Public domain | W3C validator |