![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sq1 | Structured version Visualization version GIF version |
Description: The square of 1 is 1. (Contributed by NM, 22-Aug-1999.) |
Ref | Expression |
---|---|
sq1 | ⊢ (1↑2) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12675 | . 2 ⊢ 2 ∈ ℤ | |
2 | 1exp 14142 | . 2 ⊢ (2 ∈ ℤ → (1↑2) = 1) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (1↑2) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 1c1 11185 2c2 12348 ℤcz 12639 ↑cexp 14112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-seq 14053 df-exp 14113 |
This theorem is referenced by: neg1sqe1 14245 binom21 14268 binom2sub1 14270 sq01 14274 01sqrexlem1 15291 sqrt1 15320 sinbnd 16228 cosbnd 16229 cos1bnd 16235 cos2bnd 16236 cos01gt0 16239 sqnprm 16749 numdensq 16801 zsqrtelqelz 16805 prmreclem1 16963 prmreclem2 16964 4sqlem13 17004 4sqlem19 17010 odadd 19892 abvneg 20849 gzrngunitlem 21473 gzrngunit 21474 zringunit 21500 sinhalfpilem 26523 cos2pi 26536 tangtx 26565 coskpi 26583 tanregt0 26599 efif1olem3 26604 root1id 26815 root1cj 26817 isosctrlem2 26880 asin1 26955 efiatan2 26978 bndatandm 26990 atans2 26992 wilthlem1 27129 dchrinv 27323 sum2dchr 27336 lgslem1 27359 lgsne0 27397 lgssq 27399 lgssq2 27400 1lgs 27402 lgs1 27403 lgsdinn0 27407 lgsquad2lem2 27447 lgsquad3 27449 2lgsoddprmlem3a 27472 2sqlem9 27489 2sqlem10 27490 2sqlem11 27491 2sqblem 27493 2sqb 27494 2sq2 27495 addsqn2reu 27503 addsqrexnreu 27504 addsq2nreurex 27506 mulog2sumlem2 27597 pntlemb 27659 axlowdimlem16 28990 ex-pr 30462 normlem1 31142 kbpj 31988 hstnmoc 32255 hstle1 32258 hst1h 32259 hstle 32262 strlem3a 32284 strlem4 32286 strlem5 32287 jplem1 32300 dvasin 37664 dvacos 37665 areacirclem1 37668 areacirc 37673 cntotbnd 37756 3cubeslem1 42640 3cubeslem2 42641 3cubeslem3r 42643 pell1qrge1 42826 pell1qr1 42827 pell1qrgaplem 42829 pell14qrgapw 42832 pellqrex 42835 rmspecnonsq 42863 rmspecfund 42865 rmspecpos 42873 sqrtcval 43603 stoweidlem1 45922 wallispi2lem2 45993 stirlinglem10 46004 lighneallem2 47480 onetansqsecsq 48853 cotsqcscsq 48854 |
Copyright terms: Public domain | W3C validator |