| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sq1 | Structured version Visualization version GIF version | ||
| Description: The square of 1 is 1. (Contributed by NM, 22-Aug-1999.) |
| Ref | Expression |
|---|---|
| sq1 | ⊢ (1↑2) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12629 | . 2 ⊢ 2 ∈ ℤ | |
| 2 | 1exp 14114 | . 2 ⊢ (2 ∈ ℤ → (1↑2) = 1) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (1↑2) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7410 1c1 11135 2c2 12300 ℤcz 12593 ↑cexp 14084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-seq 14025 df-exp 14085 |
| This theorem is referenced by: neg1sqe1 14219 binom21 14242 binom2sub1 14244 sq01 14248 01sqrexlem1 15266 sqrt1 15295 sinbnd 16203 cosbnd 16204 cos1bnd 16210 cos2bnd 16211 cos01gt0 16214 sqnprm 16726 numdensq 16778 zsqrtelqelz 16782 prmreclem1 16941 prmreclem2 16942 4sqlem13 16982 4sqlem19 16988 odadd 19836 abvneg 20791 gzrngunitlem 21405 gzrngunit 21406 zringunit 21432 sinhalfpilem 26429 cos2pi 26442 tangtx 26471 coskpi 26489 tanregt0 26505 efif1olem3 26510 root1id 26721 root1cj 26723 isosctrlem2 26786 asin1 26861 efiatan2 26884 bndatandm 26896 atans2 26898 wilthlem1 27035 dchrinv 27229 sum2dchr 27242 lgslem1 27265 lgsne0 27303 lgssq 27305 lgssq2 27306 1lgs 27308 lgs1 27309 lgsdinn0 27313 lgsquad2lem2 27353 lgsquad3 27355 2lgsoddprmlem3a 27378 2sqlem9 27395 2sqlem10 27396 2sqlem11 27397 2sqblem 27399 2sqb 27400 2sq2 27401 addsqn2reu 27409 addsqrexnreu 27410 addsq2nreurex 27412 mulog2sumlem2 27503 pntlemb 27565 axlowdimlem16 28941 ex-pr 30416 normlem1 31096 kbpj 31942 hstnmoc 32209 hstle1 32212 hst1h 32213 hstle 32216 strlem3a 32238 strlem4 32240 strlem5 32241 jplem1 32254 iconstr 33805 cos9thpiminplylem1 33821 cos9thpinconstrlem1 33828 dvasin 37733 dvacos 37734 areacirclem1 37737 areacirc 37742 cntotbnd 37825 3cubeslem1 42674 3cubeslem2 42675 3cubeslem3r 42677 pell1qrge1 42860 pell1qr1 42861 pell1qrgaplem 42863 pell14qrgapw 42866 pellqrex 42869 rmspecnonsq 42897 rmspecfund 42899 rmspecpos 42907 sqrtcval 43632 stoweidlem1 45997 wallispi2lem2 46068 stirlinglem10 46079 lighneallem2 47587 onetansqsecsq 49592 cotsqcscsq 49593 |
| Copyright terms: Public domain | W3C validator |