| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sq1 | Structured version Visualization version GIF version | ||
| Description: The square of 1 is 1. (Contributed by NM, 22-Aug-1999.) |
| Ref | Expression |
|---|---|
| sq1 | ⊢ (1↑2) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12565 | . 2 ⊢ 2 ∈ ℤ | |
| 2 | 1exp 14056 | . 2 ⊢ (2 ∈ ℤ → (1↑2) = 1) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (1↑2) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7387 1c1 11069 2c2 12241 ℤcz 12529 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: neg1sqe1 14161 binom21 14184 binom2sub1 14186 sq01 14190 01sqrexlem1 15208 sqrt1 15237 sinbnd 16148 cosbnd 16149 cos1bnd 16155 cos2bnd 16156 cos01gt0 16159 sqnprm 16672 numdensq 16724 zsqrtelqelz 16728 prmreclem1 16887 prmreclem2 16888 4sqlem13 16928 4sqlem19 16934 odadd 19780 abvneg 20735 gzrngunitlem 21349 gzrngunit 21350 zringunit 21376 sinhalfpilem 26372 cos2pi 26385 tangtx 26414 coskpi 26432 tanregt0 26448 efif1olem3 26453 root1id 26664 root1cj 26666 isosctrlem2 26729 asin1 26804 efiatan2 26827 bndatandm 26839 atans2 26841 wilthlem1 26978 dchrinv 27172 sum2dchr 27185 lgslem1 27208 lgsne0 27246 lgssq 27248 lgssq2 27249 1lgs 27251 lgs1 27252 lgsdinn0 27256 lgsquad2lem2 27296 lgsquad3 27298 2lgsoddprmlem3a 27321 2sqlem9 27338 2sqlem10 27339 2sqlem11 27340 2sqblem 27342 2sqb 27343 2sq2 27344 addsqn2reu 27352 addsqrexnreu 27353 addsq2nreurex 27355 mulog2sumlem2 27446 pntlemb 27508 axlowdimlem16 28884 ex-pr 30359 normlem1 31039 kbpj 31885 hstnmoc 32152 hstle1 32155 hst1h 32156 hstle 32159 strlem3a 32181 strlem4 32183 strlem5 32184 jplem1 32197 iconstr 33756 cos9thpiminplylem1 33772 cos9thpinconstrlem1 33779 dvasin 37698 dvacos 37699 areacirclem1 37702 areacirc 37707 cntotbnd 37790 3cubeslem1 42672 3cubeslem2 42673 3cubeslem3r 42675 pell1qrge1 42858 pell1qr1 42859 pell1qrgaplem 42861 pell14qrgapw 42864 pellqrex 42867 rmspecnonsq 42895 rmspecfund 42897 rmspecpos 42905 sqrtcval 43630 stoweidlem1 45999 wallispi2lem2 46070 stirlinglem10 46081 lighneallem2 47604 onetansqsecsq 49747 cotsqcscsq 49748 |
| Copyright terms: Public domain | W3C validator |