| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sq1 | Structured version Visualization version GIF version | ||
| Description: The square of 1 is 1. (Contributed by NM, 22-Aug-1999.) |
| Ref | Expression |
|---|---|
| sq1 | ⊢ (1↑2) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12504 | . 2 ⊢ 2 ∈ ℤ | |
| 2 | 1exp 13998 | . 2 ⊢ (2 ∈ ℤ → (1↑2) = 1) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (1↑2) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 1c1 11007 2c2 12180 ℤcz 12468 ↑cexp 13968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-seq 13909 df-exp 13969 |
| This theorem is referenced by: neg1sqe1 14103 binom21 14126 binom2sub1 14128 sq01 14132 01sqrexlem1 15149 sqrt1 15178 sinbnd 16089 cosbnd 16090 cos1bnd 16096 cos2bnd 16097 cos01gt0 16100 sqnprm 16613 numdensq 16665 zsqrtelqelz 16669 prmreclem1 16828 prmreclem2 16829 4sqlem13 16869 4sqlem19 16875 odadd 19762 abvneg 20741 gzrngunitlem 21369 gzrngunit 21370 zringunit 21403 sinhalfpilem 26399 cos2pi 26412 tangtx 26441 coskpi 26459 tanregt0 26475 efif1olem3 26480 root1id 26691 root1cj 26693 isosctrlem2 26756 asin1 26831 efiatan2 26854 bndatandm 26866 atans2 26868 wilthlem1 27005 dchrinv 27199 sum2dchr 27212 lgslem1 27235 lgsne0 27273 lgssq 27275 lgssq2 27276 1lgs 27278 lgs1 27279 lgsdinn0 27283 lgsquad2lem2 27323 lgsquad3 27325 2lgsoddprmlem3a 27348 2sqlem9 27365 2sqlem10 27366 2sqlem11 27367 2sqblem 27369 2sqb 27370 2sq2 27371 addsqn2reu 27379 addsqrexnreu 27380 addsq2nreurex 27382 mulog2sumlem2 27473 pntlemb 27535 axlowdimlem16 28935 ex-pr 30410 normlem1 31090 kbpj 31936 hstnmoc 32203 hstle1 32206 hst1h 32207 hstle 32210 strlem3a 32232 strlem4 32234 strlem5 32235 jplem1 32248 iconstr 33779 cos9thpiminplylem1 33795 cos9thpinconstrlem1 33802 dvasin 37752 dvacos 37753 areacirclem1 37756 areacirc 37761 cntotbnd 37844 3cubeslem1 42725 3cubeslem2 42726 3cubeslem3r 42728 pell1qrge1 42911 pell1qr1 42912 pell1qrgaplem 42914 pell14qrgapw 42917 pellqrex 42920 rmspecnonsq 42948 rmspecfund 42950 rmspecpos 42957 sqrtcval 43682 stoweidlem1 46047 wallispi2lem2 46118 stirlinglem10 46129 lighneallem2 47645 onetansqsecsq 49801 cotsqcscsq 49802 |
| Copyright terms: Public domain | W3C validator |