| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sq1 | Structured version Visualization version GIF version | ||
| Description: The square of 1 is 1. (Contributed by NM, 22-Aug-1999.) |
| Ref | Expression |
|---|---|
| sq1 | ⊢ (1↑2) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12541 | . 2 ⊢ 2 ∈ ℤ | |
| 2 | 1exp 14032 | . 2 ⊢ (2 ∈ ℤ → (1↑2) = 1) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (1↑2) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7369 1c1 11045 2c2 12217 ℤcz 12505 ↑cexp 14002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-seq 13943 df-exp 14003 |
| This theorem is referenced by: neg1sqe1 14137 binom21 14160 binom2sub1 14162 sq01 14166 01sqrexlem1 15184 sqrt1 15213 sinbnd 16124 cosbnd 16125 cos1bnd 16131 cos2bnd 16132 cos01gt0 16135 sqnprm 16648 numdensq 16700 zsqrtelqelz 16704 prmreclem1 16863 prmreclem2 16864 4sqlem13 16904 4sqlem19 16910 odadd 19756 abvneg 20711 gzrngunitlem 21325 gzrngunit 21326 zringunit 21352 sinhalfpilem 26348 cos2pi 26361 tangtx 26390 coskpi 26408 tanregt0 26424 efif1olem3 26429 root1id 26640 root1cj 26642 isosctrlem2 26705 asin1 26780 efiatan2 26803 bndatandm 26815 atans2 26817 wilthlem1 26954 dchrinv 27148 sum2dchr 27161 lgslem1 27184 lgsne0 27222 lgssq 27224 lgssq2 27225 1lgs 27227 lgs1 27228 lgsdinn0 27232 lgsquad2lem2 27272 lgsquad3 27274 2lgsoddprmlem3a 27297 2sqlem9 27314 2sqlem10 27315 2sqlem11 27316 2sqblem 27318 2sqb 27319 2sq2 27320 addsqn2reu 27328 addsqrexnreu 27329 addsq2nreurex 27331 mulog2sumlem2 27422 pntlemb 27484 axlowdimlem16 28860 ex-pr 30332 normlem1 31012 kbpj 31858 hstnmoc 32125 hstle1 32128 hst1h 32129 hstle 32132 strlem3a 32154 strlem4 32156 strlem5 32157 jplem1 32170 iconstr 33729 cos9thpiminplylem1 33745 cos9thpinconstrlem1 33752 dvasin 37671 dvacos 37672 areacirclem1 37675 areacirc 37680 cntotbnd 37763 3cubeslem1 42645 3cubeslem2 42646 3cubeslem3r 42648 pell1qrge1 42831 pell1qr1 42832 pell1qrgaplem 42834 pell14qrgapw 42837 pellqrex 42840 rmspecnonsq 42868 rmspecfund 42870 rmspecpos 42878 sqrtcval 43603 stoweidlem1 45972 wallispi2lem2 46043 stirlinglem10 46054 lighneallem2 47580 onetansqsecsq 49723 cotsqcscsq 49724 |
| Copyright terms: Public domain | W3C validator |