MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatws1len Structured version   Visualization version   GIF version

Theorem ccatws1len 14654
Description: The length of the concatenation of a word with a singleton word. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by AV, 4-Mar-2022.)
Assertion
Ref Expression
ccatws1len (𝑊 ∈ Word 𝑉 → (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = ((♯‘𝑊) + 1))

Proof of Theorem ccatws1len
StepHypRef Expression
1 s1cli 14639 . . 3 ⟨“𝑋”⟩ ∈ Word V
2 ccatlen 14609 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑋”⟩ ∈ Word V) → (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = ((♯‘𝑊) + (♯‘⟨“𝑋”⟩)))
31, 2mpan2 691 . 2 (𝑊 ∈ Word 𝑉 → (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = ((♯‘𝑊) + (♯‘⟨“𝑋”⟩)))
4 s1len 14640 . . 3 (♯‘⟨“𝑋”⟩) = 1
54oveq2i 7441 . 2 ((♯‘𝑊) + (♯‘⟨“𝑋”⟩)) = ((♯‘𝑊) + 1)
63, 5eqtrdi 2790 1 (𝑊 ∈ Word 𝑉 → (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = ((♯‘𝑊) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  Vcvv 3477  cfv 6562  (class class class)co 7430  1c1 11153   + caddc 11155  chash 14365  Word cword 14548   ++ cconcat 14604  ⟨“cs1 14629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-hash 14366  df-word 14549  df-concat 14605  df-s1 14630
This theorem is referenced by:  ccatws1lenp1b  14655  wrdlenccats1lenm1  14656  ccatw2s1len  14659  ccatws1n0  14666  ccatw2s1p1  14670  ccatw2s1p2  14671  cats1un  14755  gsmsymgrfix  19460  gsmsymgreqlem2  19463  wlklenvclwlk  29687  wwlksext2clwwlk  30085  ccatws1f1olast  32921  chnind  32984  chnub  32985  cycpmco2lem2  33129  cycpmco2lem3  33130  cycpmco2lem4  33131  cycpmco2lem5  33132  cycpmco2lem6  33133  cycpmco2  33135  1arithidomlem2  33543  1arithidom  33544  dfufd2lem  33556  sseqf  34373  signstfvneq0  34565  signshf  34581
  Copyright terms: Public domain W3C validator