MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gamcvg Structured version   Visualization version   GIF version

Theorem gamcvg 27099
Description: The pointwise exponential of the series 𝐺 converges to Γ(𝐴) · 𝐴. (Contributed by Mario Carneiro, 6-Jul-2017.)
Hypotheses
Ref Expression
lgamcvg.g 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
lgamcvg.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
Assertion
Ref Expression
gamcvg (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ ((Γ‘𝐴) · 𝐴))
Distinct variable groups:   𝐴,𝑚   𝜑,𝑚
Allowed substitution hint:   𝐺(𝑚)

Proof of Theorem gamcvg
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12921 . . 3 ℕ = (ℤ‘1)
2 1zzd 12648 . . 3 (𝜑 → 1 ∈ ℤ)
3 efcn 26487 . . . 4 exp ∈ (ℂ–cn→ℂ)
43a1i 11 . . 3 (𝜑 → exp ∈ (ℂ–cn→ℂ))
5 lgamcvg.a . . . . . . . . . 10 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
65eldifad 3963 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
76adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝐴 ∈ ℂ)
8 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
98peano2nnd 12283 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
109nnrpd 13075 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℝ+)
118nnrpd 13075 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
1210, 11rpdivcld 13094 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + 1) / 𝑚) ∈ ℝ+)
1312relogcld 26665 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ)
1413recnd 11289 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ)
157, 14mulcld 11281 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝐴 · (log‘((𝑚 + 1) / 𝑚))) ∈ ℂ)
168nncnd 12282 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
178nnne0d 12316 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
187, 16, 17divcld 12043 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝐴 / 𝑚) ∈ ℂ)
19 1cnd 11256 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 1 ∈ ℂ)
2018, 19addcld 11280 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝐴 / 𝑚) + 1) ∈ ℂ)
215adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2221, 8dmgmdivn0 27071 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝐴 / 𝑚) + 1) ≠ 0)
2320, 22logcld 26612 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (log‘((𝐴 / 𝑚) + 1)) ∈ ℂ)
2415, 23subcld 11620 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))) ∈ ℂ)
25 lgamcvg.g . . . . . 6 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
2624, 25fmptd 7134 . . . . 5 (𝜑𝐺:ℕ⟶ℂ)
2726ffvelcdmda 7104 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℂ)
281, 2, 27serf 14071 . . 3 (𝜑 → seq1( + , 𝐺):ℕ⟶ℂ)
2925, 5lgamcvg 27097 . . 3 (𝜑 → seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴)))
30 lgamcl 27084 . . . . 5 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘𝐴) ∈ ℂ)
315, 30syl 17 . . . 4 (𝜑 → (log Γ‘𝐴) ∈ ℂ)
325dmgmn0 27069 . . . . 5 (𝜑𝐴 ≠ 0)
336, 32logcld 26612 . . . 4 (𝜑 → (log‘𝐴) ∈ ℂ)
3431, 33addcld 11280 . . 3 (𝜑 → ((log Γ‘𝐴) + (log‘𝐴)) ∈ ℂ)
351, 2, 4, 28, 29, 34climcncf 24926 . 2 (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ (exp‘((log Γ‘𝐴) + (log‘𝐴))))
36 efadd 16130 . . . 4 (((log Γ‘𝐴) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴))))
3731, 33, 36syl2anc 584 . . 3 (𝜑 → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴))))
38 eflgam 27088 . . . . 5 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴))
395, 38syl 17 . . . 4 (𝜑 → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴))
40 eflog 26618 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
416, 32, 40syl2anc 584 . . . 4 (𝜑 → (exp‘(log‘𝐴)) = 𝐴)
4239, 41oveq12d 7449 . . 3 (𝜑 → ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴))) = ((Γ‘𝐴) · 𝐴))
4337, 42eqtrd 2777 . 2 (𝜑 → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((Γ‘𝐴) · 𝐴))
4435, 43breqtrd 5169 1 (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ ((Γ‘𝐴) · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  cdif 3948   class class class wbr 5143  cmpt 5225  ccom 5689  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492   / cdiv 11920  cn 12266  cz 12613  seqcseq 14042  cli 15520  expce 16097  cnccncf 24902  logclog 26596  log Γclgam 27059  Γcgam 27060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-tan 16107  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-ulm 26420  df-log 26598  df-cxp 26599  df-lgam 27062  df-gam 27063
This theorem is referenced by:  gamcvg2  27103
  Copyright terms: Public domain W3C validator