MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gamcvg Structured version   Visualization version   GIF version

Theorem gamcvg 27113
Description: The pointwise exponential of the series 𝐺 converges to Γ(𝐴) · 𝐴. (Contributed by Mario Carneiro, 6-Jul-2017.)
Hypotheses
Ref Expression
lgamcvg.g 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
lgamcvg.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
Assertion
Ref Expression
gamcvg (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ ((Γ‘𝐴) · 𝐴))
Distinct variable groups:   𝐴,𝑚   𝜑,𝑚
Allowed substitution hint:   𝐺(𝑚)

Proof of Theorem gamcvg
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12918 . . 3 ℕ = (ℤ‘1)
2 1zzd 12645 . . 3 (𝜑 → 1 ∈ ℤ)
3 efcn 26501 . . . 4 exp ∈ (ℂ–cn→ℂ)
43a1i 11 . . 3 (𝜑 → exp ∈ (ℂ–cn→ℂ))
5 lgamcvg.a . . . . . . . . . 10 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
65eldifad 3974 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
76adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝐴 ∈ ℂ)
8 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
98peano2nnd 12280 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
109nnrpd 13072 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℝ+)
118nnrpd 13072 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
1210, 11rpdivcld 13091 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + 1) / 𝑚) ∈ ℝ+)
1312relogcld 26679 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ)
1413recnd 11286 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ)
157, 14mulcld 11278 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝐴 · (log‘((𝑚 + 1) / 𝑚))) ∈ ℂ)
168nncnd 12279 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
178nnne0d 12313 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
187, 16, 17divcld 12040 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝐴 / 𝑚) ∈ ℂ)
19 1cnd 11253 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 1 ∈ ℂ)
2018, 19addcld 11277 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝐴 / 𝑚) + 1) ∈ ℂ)
215adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2221, 8dmgmdivn0 27085 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝐴 / 𝑚) + 1) ≠ 0)
2320, 22logcld 26626 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (log‘((𝐴 / 𝑚) + 1)) ∈ ℂ)
2415, 23subcld 11617 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))) ∈ ℂ)
25 lgamcvg.g . . . . . 6 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
2624, 25fmptd 7133 . . . . 5 (𝜑𝐺:ℕ⟶ℂ)
2726ffvelcdmda 7103 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℂ)
281, 2, 27serf 14067 . . 3 (𝜑 → seq1( + , 𝐺):ℕ⟶ℂ)
2925, 5lgamcvg 27111 . . 3 (𝜑 → seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴)))
30 lgamcl 27098 . . . . 5 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘𝐴) ∈ ℂ)
315, 30syl 17 . . . 4 (𝜑 → (log Γ‘𝐴) ∈ ℂ)
325dmgmn0 27083 . . . . 5 (𝜑𝐴 ≠ 0)
336, 32logcld 26626 . . . 4 (𝜑 → (log‘𝐴) ∈ ℂ)
3431, 33addcld 11277 . . 3 (𝜑 → ((log Γ‘𝐴) + (log‘𝐴)) ∈ ℂ)
351, 2, 4, 28, 29, 34climcncf 24939 . 2 (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ (exp‘((log Γ‘𝐴) + (log‘𝐴))))
36 efadd 16126 . . . 4 (((log Γ‘𝐴) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴))))
3731, 33, 36syl2anc 584 . . 3 (𝜑 → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴))))
38 eflgam 27102 . . . . 5 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴))
395, 38syl 17 . . . 4 (𝜑 → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴))
40 eflog 26632 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
416, 32, 40syl2anc 584 . . . 4 (𝜑 → (exp‘(log‘𝐴)) = 𝐴)
4239, 41oveq12d 7448 . . 3 (𝜑 → ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴))) = ((Γ‘𝐴) · 𝐴))
4337, 42eqtrd 2774 . 2 (𝜑 → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((Γ‘𝐴) · 𝐴))
4435, 43breqtrd 5173 1 (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ ((Γ‘𝐴) · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wne 2937  cdif 3959   class class class wbr 5147  cmpt 5230  ccom 5692  cfv 6562  (class class class)co 7430  cc 11150  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  cmin 11489   / cdiv 11917  cn 12263  cz 12610  seqcseq 14038  cli 15516  expce 16093  cnccncf 24915  logclog 26610  log Γclgam 27073  Γcgam 27074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-tan 16103  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-ulm 26434  df-log 26612  df-cxp 26613  df-lgam 27076  df-gam 27077
This theorem is referenced by:  gamcvg2  27117
  Copyright terms: Public domain W3C validator