![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gamcvg | Structured version Visualization version GIF version |
Description: The pointwise exponential of the series πΊ converges to Ξ(π΄) Β· π΄. (Contributed by Mario Carneiro, 6-Jul-2017.) |
Ref | Expression |
---|---|
lgamcvg.g | β’ πΊ = (π β β β¦ ((π΄ Β· (logβ((π + 1) / π))) β (logβ((π΄ / π) + 1)))) |
lgamcvg.a | β’ (π β π΄ β (β β (β€ β β))) |
Ref | Expression |
---|---|
gamcvg | β’ (π β (exp β seq1( + , πΊ)) β ((Ξβπ΄) Β· π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12896 | . . 3 β’ β = (β€β₯β1) | |
2 | 1zzd 12624 | . . 3 β’ (π β 1 β β€) | |
3 | efcn 26393 | . . . 4 β’ exp β (ββcnββ) | |
4 | 3 | a1i 11 | . . 3 β’ (π β exp β (ββcnββ)) |
5 | lgamcvg.a | . . . . . . . . . 10 β’ (π β π΄ β (β β (β€ β β))) | |
6 | 5 | eldifad 3959 | . . . . . . . . 9 β’ (π β π΄ β β) |
7 | 6 | adantr 480 | . . . . . . . 8 β’ ((π β§ π β β) β π΄ β β) |
8 | simpr 484 | . . . . . . . . . . . . 13 β’ ((π β§ π β β) β π β β) | |
9 | 8 | peano2nnd 12260 | . . . . . . . . . . . 12 β’ ((π β§ π β β) β (π + 1) β β) |
10 | 9 | nnrpd 13047 | . . . . . . . . . . 11 β’ ((π β§ π β β) β (π + 1) β β+) |
11 | 8 | nnrpd 13047 | . . . . . . . . . . 11 β’ ((π β§ π β β) β π β β+) |
12 | 10, 11 | rpdivcld 13066 | . . . . . . . . . 10 β’ ((π β§ π β β) β ((π + 1) / π) β β+) |
13 | 12 | relogcld 26570 | . . . . . . . . 9 β’ ((π β§ π β β) β (logβ((π + 1) / π)) β β) |
14 | 13 | recnd 11273 | . . . . . . . 8 β’ ((π β§ π β β) β (logβ((π + 1) / π)) β β) |
15 | 7, 14 | mulcld 11265 | . . . . . . 7 β’ ((π β§ π β β) β (π΄ Β· (logβ((π + 1) / π))) β β) |
16 | 8 | nncnd 12259 | . . . . . . . . . 10 β’ ((π β§ π β β) β π β β) |
17 | 8 | nnne0d 12293 | . . . . . . . . . 10 β’ ((π β§ π β β) β π β 0) |
18 | 7, 16, 17 | divcld 12021 | . . . . . . . . 9 β’ ((π β§ π β β) β (π΄ / π) β β) |
19 | 1cnd 11240 | . . . . . . . . 9 β’ ((π β§ π β β) β 1 β β) | |
20 | 18, 19 | addcld 11264 | . . . . . . . 8 β’ ((π β§ π β β) β ((π΄ / π) + 1) β β) |
21 | 5 | adantr 480 | . . . . . . . . 9 β’ ((π β§ π β β) β π΄ β (β β (β€ β β))) |
22 | 21, 8 | dmgmdivn0 26973 | . . . . . . . 8 β’ ((π β§ π β β) β ((π΄ / π) + 1) β 0) |
23 | 20, 22 | logcld 26517 | . . . . . . 7 β’ ((π β§ π β β) β (logβ((π΄ / π) + 1)) β β) |
24 | 15, 23 | subcld 11602 | . . . . . 6 β’ ((π β§ π β β) β ((π΄ Β· (logβ((π + 1) / π))) β (logβ((π΄ / π) + 1))) β β) |
25 | lgamcvg.g | . . . . . 6 β’ πΊ = (π β β β¦ ((π΄ Β· (logβ((π + 1) / π))) β (logβ((π΄ / π) + 1)))) | |
26 | 24, 25 | fmptd 7124 | . . . . 5 β’ (π β πΊ:ββΆβ) |
27 | 26 | ffvelcdmda 7094 | . . . 4 β’ ((π β§ π β β) β (πΊβπ) β β) |
28 | 1, 2, 27 | serf 14028 | . . 3 β’ (π β seq1( + , πΊ):ββΆβ) |
29 | 25, 5 | lgamcvg 26999 | . . 3 β’ (π β seq1( + , πΊ) β ((log Ξβπ΄) + (logβπ΄))) |
30 | lgamcl 26986 | . . . . 5 β’ (π΄ β (β β (β€ β β)) β (log Ξβπ΄) β β) | |
31 | 5, 30 | syl 17 | . . . 4 β’ (π β (log Ξβπ΄) β β) |
32 | 5 | dmgmn0 26971 | . . . . 5 β’ (π β π΄ β 0) |
33 | 6, 32 | logcld 26517 | . . . 4 β’ (π β (logβπ΄) β β) |
34 | 31, 33 | addcld 11264 | . . 3 β’ (π β ((log Ξβπ΄) + (logβπ΄)) β β) |
35 | 1, 2, 4, 28, 29, 34 | climcncf 24833 | . 2 β’ (π β (exp β seq1( + , πΊ)) β (expβ((log Ξβπ΄) + (logβπ΄)))) |
36 | efadd 16071 | . . . 4 β’ (((log Ξβπ΄) β β β§ (logβπ΄) β β) β (expβ((log Ξβπ΄) + (logβπ΄))) = ((expβ(log Ξβπ΄)) Β· (expβ(logβπ΄)))) | |
37 | 31, 33, 36 | syl2anc 583 | . . 3 β’ (π β (expβ((log Ξβπ΄) + (logβπ΄))) = ((expβ(log Ξβπ΄)) Β· (expβ(logβπ΄)))) |
38 | eflgam 26990 | . . . . 5 β’ (π΄ β (β β (β€ β β)) β (expβ(log Ξβπ΄)) = (Ξβπ΄)) | |
39 | 5, 38 | syl 17 | . . . 4 β’ (π β (expβ(log Ξβπ΄)) = (Ξβπ΄)) |
40 | eflog 26523 | . . . . 5 β’ ((π΄ β β β§ π΄ β 0) β (expβ(logβπ΄)) = π΄) | |
41 | 6, 32, 40 | syl2anc 583 | . . . 4 β’ (π β (expβ(logβπ΄)) = π΄) |
42 | 39, 41 | oveq12d 7438 | . . 3 β’ (π β ((expβ(log Ξβπ΄)) Β· (expβ(logβπ΄))) = ((Ξβπ΄) Β· π΄)) |
43 | 37, 42 | eqtrd 2768 | . 2 β’ (π β (expβ((log Ξβπ΄) + (logβπ΄))) = ((Ξβπ΄) Β· π΄)) |
44 | 35, 43 | breqtrd 5174 | 1 β’ (π β (exp β seq1( + , πΊ)) β ((Ξβπ΄) Β· π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 β wne 2937 β cdif 3944 class class class wbr 5148 β¦ cmpt 5231 β ccom 5682 βcfv 6548 (class class class)co 7420 βcc 11137 0cc0 11139 1c1 11140 + caddc 11142 Β· cmul 11144 β cmin 11475 / cdiv 11902 βcn 12243 β€cz 12589 seqcseq 13999 β cli 15461 expce 16038 βcnβccncf 24809 logclog 26501 log Ξclgam 26961 Ξcgam 26962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 ax-addf 11218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9387 df-fi 9435 df-sup 9466 df-inf 9467 df-oi 9534 df-dju 9925 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-q 12964 df-rp 13008 df-xneg 13125 df-xadd 13126 df-xmul 13127 df-ioo 13361 df-ioc 13362 df-ico 13363 df-icc 13364 df-fz 13518 df-fzo 13661 df-fl 13790 df-mod 13868 df-seq 14000 df-exp 14060 df-fac 14266 df-bc 14295 df-hash 14323 df-shft 15047 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-limsup 15448 df-clim 15465 df-rlim 15466 df-sum 15666 df-ef 16044 df-sin 16046 df-cos 16047 df-tan 16048 df-pi 16049 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-starv 17248 df-sca 17249 df-vsca 17250 df-ip 17251 df-tset 17252 df-ple 17253 df-ds 17255 df-unif 17256 df-hom 17257 df-cco 17258 df-rest 17404 df-topn 17405 df-0g 17423 df-gsum 17424 df-topgen 17425 df-pt 17426 df-prds 17429 df-xrs 17484 df-qtop 17489 df-imas 17490 df-xps 17492 df-mre 17566 df-mrc 17567 df-acs 17569 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-submnd 18741 df-mulg 19024 df-cntz 19268 df-cmn 19737 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22862 df-cld 22936 df-ntr 22937 df-cls 22938 df-nei 23015 df-lp 23053 df-perf 23054 df-cn 23144 df-cnp 23145 df-haus 23232 df-cmp 23304 df-tx 23479 df-hmeo 23672 df-fil 23763 df-fm 23855 df-flim 23856 df-flf 23857 df-xms 24239 df-ms 24240 df-tms 24241 df-cncf 24811 df-limc 25808 df-dv 25809 df-ulm 26326 df-log 26503 df-cxp 26504 df-lgam 26964 df-gam 26965 |
This theorem is referenced by: gamcvg2 27005 |
Copyright terms: Public domain | W3C validator |