![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gamcvg | Structured version Visualization version GIF version |
Description: The pointwise exponential of the series 𝐺 converges to Γ(𝐴) · 𝐴. (Contributed by Mario Carneiro, 6-Jul-2017.) |
Ref | Expression |
---|---|
lgamcvg.g | ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) |
lgamcvg.a | ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
Ref | Expression |
---|---|
gamcvg | ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ ((Γ‘𝐴) · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12946 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 12674 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
3 | efcn 26505 | . . . 4 ⊢ exp ∈ (ℂ–cn→ℂ) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → exp ∈ (ℂ–cn→ℂ)) |
5 | lgamcvg.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) | |
6 | 5 | eldifad 3988 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℂ) |
8 | simpr 484 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ) | |
9 | 8 | peano2nnd 12310 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ) |
10 | 9 | nnrpd 13097 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℝ+) |
11 | 8 | nnrpd 13097 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+) |
12 | 10, 11 | rpdivcld 13116 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) / 𝑚) ∈ ℝ+) |
13 | 12 | relogcld 26683 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ) |
14 | 13 | recnd 11318 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ) |
15 | 7, 14 | mulcld 11310 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐴 · (log‘((𝑚 + 1) / 𝑚))) ∈ ℂ) |
16 | 8 | nncnd 12309 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ) |
17 | 8 | nnne0d 12343 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ≠ 0) |
18 | 7, 16, 17 | divcld 12070 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐴 / 𝑚) ∈ ℂ) |
19 | 1cnd 11285 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 1 ∈ ℂ) | |
20 | 18, 19 | addcld 11309 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐴 / 𝑚) + 1) ∈ ℂ) |
21 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
22 | 21, 8 | dmgmdivn0 27089 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐴 / 𝑚) + 1) ≠ 0) |
23 | 20, 22 | logcld 26630 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (log‘((𝐴 / 𝑚) + 1)) ∈ ℂ) |
24 | 15, 23 | subcld 11647 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))) ∈ ℂ) |
25 | lgamcvg.g | . . . . . 6 ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) | |
26 | 24, 25 | fmptd 7148 | . . . . 5 ⊢ (𝜑 → 𝐺:ℕ⟶ℂ) |
27 | 26 | ffvelcdmda 7118 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ ℂ) |
28 | 1, 2, 27 | serf 14081 | . . 3 ⊢ (𝜑 → seq1( + , 𝐺):ℕ⟶ℂ) |
29 | 25, 5 | lgamcvg 27115 | . . 3 ⊢ (𝜑 → seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))) |
30 | lgamcl 27102 | . . . . 5 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘𝐴) ∈ ℂ) | |
31 | 5, 30 | syl 17 | . . . 4 ⊢ (𝜑 → (log Γ‘𝐴) ∈ ℂ) |
32 | 5 | dmgmn0 27087 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 0) |
33 | 6, 32 | logcld 26630 | . . . 4 ⊢ (𝜑 → (log‘𝐴) ∈ ℂ) |
34 | 31, 33 | addcld 11309 | . . 3 ⊢ (𝜑 → ((log Γ‘𝐴) + (log‘𝐴)) ∈ ℂ) |
35 | 1, 2, 4, 28, 29, 34 | climcncf 24945 | . 2 ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ (exp‘((log Γ‘𝐴) + (log‘𝐴)))) |
36 | efadd 16142 | . . . 4 ⊢ (((log Γ‘𝐴) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴)))) | |
37 | 31, 33, 36 | syl2anc 583 | . . 3 ⊢ (𝜑 → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴)))) |
38 | eflgam 27106 | . . . . 5 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴)) | |
39 | 5, 38 | syl 17 | . . . 4 ⊢ (𝜑 → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴)) |
40 | eflog 26636 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴) | |
41 | 6, 32, 40 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (exp‘(log‘𝐴)) = 𝐴) |
42 | 39, 41 | oveq12d 7466 | . . 3 ⊢ (𝜑 → ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴))) = ((Γ‘𝐴) · 𝐴)) |
43 | 37, 42 | eqtrd 2780 | . 2 ⊢ (𝜑 → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((Γ‘𝐴) · 𝐴)) |
44 | 35, 43 | breqtrd 5192 | 1 ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ ((Γ‘𝐴) · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 class class class wbr 5166 ↦ cmpt 5249 ∘ ccom 5704 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 − cmin 11520 / cdiv 11947 ℕcn 12293 ℤcz 12639 seqcseq 14052 ⇝ cli 15530 expce 16109 –cn→ccncf 24921 logclog 26614 log Γclgam 27077 Γcgam 27078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-ef 16115 df-sin 16117 df-cos 16118 df-tan 16119 df-pi 16120 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-cmp 23416 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-limc 25921 df-dv 25922 df-ulm 26438 df-log 26616 df-cxp 26617 df-lgam 27080 df-gam 27081 |
This theorem is referenced by: gamcvg2 27121 |
Copyright terms: Public domain | W3C validator |