Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gamcvg | Structured version Visualization version GIF version |
Description: The pointwise exponential of the series 𝐺 converges to Γ(𝐴) · 𝐴. (Contributed by Mario Carneiro, 6-Jul-2017.) |
Ref | Expression |
---|---|
lgamcvg.g | ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) |
lgamcvg.a | ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
Ref | Expression |
---|---|
gamcvg | ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ ((Γ‘𝐴) · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12630 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 12360 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
3 | efcn 25611 | . . . 4 ⊢ exp ∈ (ℂ–cn→ℂ) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → exp ∈ (ℂ–cn→ℂ)) |
5 | lgamcvg.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) | |
6 | 5 | eldifad 3900 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
7 | 6 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℂ) |
8 | simpr 485 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ) | |
9 | 8 | peano2nnd 11999 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ) |
10 | 9 | nnrpd 12779 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℝ+) |
11 | 8 | nnrpd 12779 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+) |
12 | 10, 11 | rpdivcld 12798 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) / 𝑚) ∈ ℝ+) |
13 | 12 | relogcld 25787 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ) |
14 | 13 | recnd 11012 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ) |
15 | 7, 14 | mulcld 11004 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐴 · (log‘((𝑚 + 1) / 𝑚))) ∈ ℂ) |
16 | 8 | nncnd 11998 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ) |
17 | 8 | nnne0d 12032 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ≠ 0) |
18 | 7, 16, 17 | divcld 11760 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐴 / 𝑚) ∈ ℂ) |
19 | 1cnd 10979 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 1 ∈ ℂ) | |
20 | 18, 19 | addcld 11003 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐴 / 𝑚) + 1) ∈ ℂ) |
21 | 5 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
22 | 21, 8 | dmgmdivn0 26186 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐴 / 𝑚) + 1) ≠ 0) |
23 | 20, 22 | logcld 25735 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (log‘((𝐴 / 𝑚) + 1)) ∈ ℂ) |
24 | 15, 23 | subcld 11341 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))) ∈ ℂ) |
25 | lgamcvg.g | . . . . . 6 ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) | |
26 | 24, 25 | fmptd 6997 | . . . . 5 ⊢ (𝜑 → 𝐺:ℕ⟶ℂ) |
27 | 26 | ffvelrnda 6970 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ ℂ) |
28 | 1, 2, 27 | serf 13760 | . . 3 ⊢ (𝜑 → seq1( + , 𝐺):ℕ⟶ℂ) |
29 | 25, 5 | lgamcvg 26212 | . . 3 ⊢ (𝜑 → seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))) |
30 | lgamcl 26199 | . . . . 5 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘𝐴) ∈ ℂ) | |
31 | 5, 30 | syl 17 | . . . 4 ⊢ (𝜑 → (log Γ‘𝐴) ∈ ℂ) |
32 | 5 | dmgmn0 26184 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 0) |
33 | 6, 32 | logcld 25735 | . . . 4 ⊢ (𝜑 → (log‘𝐴) ∈ ℂ) |
34 | 31, 33 | addcld 11003 | . . 3 ⊢ (𝜑 → ((log Γ‘𝐴) + (log‘𝐴)) ∈ ℂ) |
35 | 1, 2, 4, 28, 29, 34 | climcncf 24072 | . 2 ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ (exp‘((log Γ‘𝐴) + (log‘𝐴)))) |
36 | efadd 15812 | . . . 4 ⊢ (((log Γ‘𝐴) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴)))) | |
37 | 31, 33, 36 | syl2anc 584 | . . 3 ⊢ (𝜑 → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴)))) |
38 | eflgam 26203 | . . . . 5 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴)) | |
39 | 5, 38 | syl 17 | . . . 4 ⊢ (𝜑 → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴)) |
40 | eflog 25741 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴) | |
41 | 6, 32, 40 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (exp‘(log‘𝐴)) = 𝐴) |
42 | 39, 41 | oveq12d 7302 | . . 3 ⊢ (𝜑 → ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴))) = ((Γ‘𝐴) · 𝐴)) |
43 | 37, 42 | eqtrd 2779 | . 2 ⊢ (𝜑 → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((Γ‘𝐴) · 𝐴)) |
44 | 35, 43 | breqtrd 5101 | 1 ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ ((Γ‘𝐴) · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ≠ wne 2944 ∖ cdif 3885 class class class wbr 5075 ↦ cmpt 5158 ∘ ccom 5594 ‘cfv 6437 (class class class)co 7284 ℂcc 10878 0cc0 10880 1c1 10881 + caddc 10883 · cmul 10885 − cmin 11214 / cdiv 11641 ℕcn 11982 ℤcz 12328 seqcseq 13730 ⇝ cli 15202 expce 15780 –cn→ccncf 24048 logclog 25719 log Γclgam 26174 Γcgam 26175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-inf2 9408 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 ax-pre-sup 10958 ax-addf 10959 ax-mulf 10960 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-iin 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-isom 6446 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-of 7542 df-om 7722 df-1st 7840 df-2nd 7841 df-supp 7987 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-2o 8307 df-oadd 8310 df-er 8507 df-map 8626 df-pm 8627 df-ixp 8695 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-fsupp 9138 df-fi 9179 df-sup 9210 df-inf 9211 df-oi 9278 df-dju 9668 df-card 9706 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 df-nn 11983 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 df-7 12050 df-8 12051 df-9 12052 df-n0 12243 df-z 12329 df-dec 12447 df-uz 12592 df-q 12698 df-rp 12740 df-xneg 12857 df-xadd 12858 df-xmul 12859 df-ioo 13092 df-ioc 13093 df-ico 13094 df-icc 13095 df-fz 13249 df-fzo 13392 df-fl 13521 df-mod 13599 df-seq 13731 df-exp 13792 df-fac 13997 df-bc 14026 df-hash 14054 df-shft 14787 df-cj 14819 df-re 14820 df-im 14821 df-sqrt 14955 df-abs 14956 df-limsup 15189 df-clim 15206 df-rlim 15207 df-sum 15407 df-ef 15786 df-sin 15788 df-cos 15789 df-tan 15790 df-pi 15791 df-struct 16857 df-sets 16874 df-slot 16892 df-ndx 16904 df-base 16922 df-ress 16951 df-plusg 16984 df-mulr 16985 df-starv 16986 df-sca 16987 df-vsca 16988 df-ip 16989 df-tset 16990 df-ple 16991 df-ds 16993 df-unif 16994 df-hom 16995 df-cco 16996 df-rest 17142 df-topn 17143 df-0g 17161 df-gsum 17162 df-topgen 17163 df-pt 17164 df-prds 17167 df-xrs 17222 df-qtop 17227 df-imas 17228 df-xps 17230 df-mre 17304 df-mrc 17305 df-acs 17307 df-mgm 18335 df-sgrp 18384 df-mnd 18395 df-submnd 18440 df-mulg 18710 df-cntz 18932 df-cmn 19397 df-psmet 20598 df-xmet 20599 df-met 20600 df-bl 20601 df-mopn 20602 df-fbas 20603 df-fg 20604 df-cnfld 20607 df-top 22052 df-topon 22069 df-topsp 22091 df-bases 22105 df-cld 22179 df-ntr 22180 df-cls 22181 df-nei 22258 df-lp 22296 df-perf 22297 df-cn 22387 df-cnp 22388 df-haus 22475 df-cmp 22547 df-tx 22722 df-hmeo 22915 df-fil 23006 df-fm 23098 df-flim 23099 df-flf 23100 df-xms 23482 df-ms 23483 df-tms 23484 df-cncf 24050 df-limc 25039 df-dv 25040 df-ulm 25545 df-log 25721 df-cxp 25722 df-lgam 26177 df-gam 26178 |
This theorem is referenced by: gamcvg2 26218 |
Copyright terms: Public domain | W3C validator |