MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gamcvg Structured version   Visualization version   GIF version

Theorem gamcvg 26214
Description: The pointwise exponential of the series 𝐺 converges to Γ(𝐴) · 𝐴. (Contributed by Mario Carneiro, 6-Jul-2017.)
Hypotheses
Ref Expression
lgamcvg.g 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
lgamcvg.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
Assertion
Ref Expression
gamcvg (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ ((Γ‘𝐴) · 𝐴))
Distinct variable groups:   𝐴,𝑚   𝜑,𝑚
Allowed substitution hint:   𝐺(𝑚)

Proof of Theorem gamcvg
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12630 . . 3 ℕ = (ℤ‘1)
2 1zzd 12360 . . 3 (𝜑 → 1 ∈ ℤ)
3 efcn 25611 . . . 4 exp ∈ (ℂ–cn→ℂ)
43a1i 11 . . 3 (𝜑 → exp ∈ (ℂ–cn→ℂ))
5 lgamcvg.a . . . . . . . . . 10 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
65eldifad 3900 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
76adantr 481 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝐴 ∈ ℂ)
8 simpr 485 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
98peano2nnd 11999 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
109nnrpd 12779 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℝ+)
118nnrpd 12779 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
1210, 11rpdivcld 12798 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + 1) / 𝑚) ∈ ℝ+)
1312relogcld 25787 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ)
1413recnd 11012 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ)
157, 14mulcld 11004 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝐴 · (log‘((𝑚 + 1) / 𝑚))) ∈ ℂ)
168nncnd 11998 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
178nnne0d 12032 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
187, 16, 17divcld 11760 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝐴 / 𝑚) ∈ ℂ)
19 1cnd 10979 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 1 ∈ ℂ)
2018, 19addcld 11003 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝐴 / 𝑚) + 1) ∈ ℂ)
215adantr 481 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2221, 8dmgmdivn0 26186 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝐴 / 𝑚) + 1) ≠ 0)
2320, 22logcld 25735 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (log‘((𝐴 / 𝑚) + 1)) ∈ ℂ)
2415, 23subcld 11341 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))) ∈ ℂ)
25 lgamcvg.g . . . . . 6 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
2624, 25fmptd 6997 . . . . 5 (𝜑𝐺:ℕ⟶ℂ)
2726ffvelrnda 6970 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℂ)
281, 2, 27serf 13760 . . 3 (𝜑 → seq1( + , 𝐺):ℕ⟶ℂ)
2925, 5lgamcvg 26212 . . 3 (𝜑 → seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴)))
30 lgamcl 26199 . . . . 5 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘𝐴) ∈ ℂ)
315, 30syl 17 . . . 4 (𝜑 → (log Γ‘𝐴) ∈ ℂ)
325dmgmn0 26184 . . . . 5 (𝜑𝐴 ≠ 0)
336, 32logcld 25735 . . . 4 (𝜑 → (log‘𝐴) ∈ ℂ)
3431, 33addcld 11003 . . 3 (𝜑 → ((log Γ‘𝐴) + (log‘𝐴)) ∈ ℂ)
351, 2, 4, 28, 29, 34climcncf 24072 . 2 (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ (exp‘((log Γ‘𝐴) + (log‘𝐴))))
36 efadd 15812 . . . 4 (((log Γ‘𝐴) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴))))
3731, 33, 36syl2anc 584 . . 3 (𝜑 → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴))))
38 eflgam 26203 . . . . 5 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴))
395, 38syl 17 . . . 4 (𝜑 → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴))
40 eflog 25741 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
416, 32, 40syl2anc 584 . . . 4 (𝜑 → (exp‘(log‘𝐴)) = 𝐴)
4239, 41oveq12d 7302 . . 3 (𝜑 → ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴))) = ((Γ‘𝐴) · 𝐴))
4337, 42eqtrd 2779 . 2 (𝜑 → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((Γ‘𝐴) · 𝐴))
4435, 43breqtrd 5101 1 (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ ((Γ‘𝐴) · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2107  wne 2944  cdif 3885   class class class wbr 5075  cmpt 5158  ccom 5594  cfv 6437  (class class class)co 7284  cc 10878  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885  cmin 11214   / cdiv 11641  cn 11982  cz 12328  seqcseq 13730  cli 15202  expce 15780  cnccncf 24048  logclog 25719  log Γclgam 26174  Γcgam 26175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-oadd 8310  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-dju 9668  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ioc 13093  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-mod 13599  df-seq 13731  df-exp 13792  df-fac 13997  df-bc 14026  df-hash 14054  df-shft 14787  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-limsup 15189  df-clim 15206  df-rlim 15207  df-sum 15407  df-ef 15786  df-sin 15788  df-cos 15789  df-tan 15790  df-pi 15791  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-haus 22475  df-cmp 22547  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-xms 23482  df-ms 23483  df-tms 23484  df-cncf 24050  df-limc 25039  df-dv 25040  df-ulm 25545  df-log 25721  df-cxp 25722  df-lgam 26177  df-gam 26178
This theorem is referenced by:  gamcvg2  26218
  Copyright terms: Public domain W3C validator