![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gamcvg | Structured version Visualization version GIF version |
Description: The pointwise exponential of the series 𝐺 converges to Γ(𝐴) · 𝐴. (Contributed by Mario Carneiro, 6-Jul-2017.) |
Ref | Expression |
---|---|
lgamcvg.g | ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) |
lgamcvg.a | ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
Ref | Expression |
---|---|
gamcvg | ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ ((Γ‘𝐴) · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12918 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 12645 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
3 | efcn 26501 | . . . 4 ⊢ exp ∈ (ℂ–cn→ℂ) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → exp ∈ (ℂ–cn→ℂ)) |
5 | lgamcvg.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) | |
6 | 5 | eldifad 3974 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℂ) |
8 | simpr 484 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ) | |
9 | 8 | peano2nnd 12280 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ) |
10 | 9 | nnrpd 13072 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℝ+) |
11 | 8 | nnrpd 13072 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+) |
12 | 10, 11 | rpdivcld 13091 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) / 𝑚) ∈ ℝ+) |
13 | 12 | relogcld 26679 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ) |
14 | 13 | recnd 11286 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ) |
15 | 7, 14 | mulcld 11278 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐴 · (log‘((𝑚 + 1) / 𝑚))) ∈ ℂ) |
16 | 8 | nncnd 12279 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ) |
17 | 8 | nnne0d 12313 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ≠ 0) |
18 | 7, 16, 17 | divcld 12040 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐴 / 𝑚) ∈ ℂ) |
19 | 1cnd 11253 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 1 ∈ ℂ) | |
20 | 18, 19 | addcld 11277 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐴 / 𝑚) + 1) ∈ ℂ) |
21 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
22 | 21, 8 | dmgmdivn0 27085 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐴 / 𝑚) + 1) ≠ 0) |
23 | 20, 22 | logcld 26626 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (log‘((𝐴 / 𝑚) + 1)) ∈ ℂ) |
24 | 15, 23 | subcld 11617 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))) ∈ ℂ) |
25 | lgamcvg.g | . . . . . 6 ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) | |
26 | 24, 25 | fmptd 7133 | . . . . 5 ⊢ (𝜑 → 𝐺:ℕ⟶ℂ) |
27 | 26 | ffvelcdmda 7103 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ ℂ) |
28 | 1, 2, 27 | serf 14067 | . . 3 ⊢ (𝜑 → seq1( + , 𝐺):ℕ⟶ℂ) |
29 | 25, 5 | lgamcvg 27111 | . . 3 ⊢ (𝜑 → seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))) |
30 | lgamcl 27098 | . . . . 5 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘𝐴) ∈ ℂ) | |
31 | 5, 30 | syl 17 | . . . 4 ⊢ (𝜑 → (log Γ‘𝐴) ∈ ℂ) |
32 | 5 | dmgmn0 27083 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 0) |
33 | 6, 32 | logcld 26626 | . . . 4 ⊢ (𝜑 → (log‘𝐴) ∈ ℂ) |
34 | 31, 33 | addcld 11277 | . . 3 ⊢ (𝜑 → ((log Γ‘𝐴) + (log‘𝐴)) ∈ ℂ) |
35 | 1, 2, 4, 28, 29, 34 | climcncf 24939 | . 2 ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ (exp‘((log Γ‘𝐴) + (log‘𝐴)))) |
36 | efadd 16126 | . . . 4 ⊢ (((log Γ‘𝐴) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴)))) | |
37 | 31, 33, 36 | syl2anc 584 | . . 3 ⊢ (𝜑 → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴)))) |
38 | eflgam 27102 | . . . . 5 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴)) | |
39 | 5, 38 | syl 17 | . . . 4 ⊢ (𝜑 → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴)) |
40 | eflog 26632 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴) | |
41 | 6, 32, 40 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (exp‘(log‘𝐴)) = 𝐴) |
42 | 39, 41 | oveq12d 7448 | . . 3 ⊢ (𝜑 → ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴))) = ((Γ‘𝐴) · 𝐴)) |
43 | 37, 42 | eqtrd 2774 | . 2 ⊢ (𝜑 → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((Γ‘𝐴) · 𝐴)) |
44 | 35, 43 | breqtrd 5173 | 1 ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ ((Γ‘𝐴) · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∖ cdif 3959 class class class wbr 5147 ↦ cmpt 5230 ∘ ccom 5692 ‘cfv 6562 (class class class)co 7430 ℂcc 11150 0cc0 11152 1c1 11153 + caddc 11155 · cmul 11157 − cmin 11489 / cdiv 11917 ℕcn 12263 ℤcz 12610 seqcseq 14038 ⇝ cli 15516 expce 16093 –cn→ccncf 24915 logclog 26610 log Γclgam 27073 Γcgam 27074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-oadd 8508 df-er 8743 df-map 8866 df-pm 8867 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-fi 9448 df-sup 9479 df-inf 9480 df-oi 9547 df-dju 9938 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-ioo 13387 df-ioc 13388 df-ico 13389 df-icc 13390 df-fz 13544 df-fzo 13691 df-fl 13828 df-mod 13906 df-seq 14039 df-exp 14099 df-fac 14309 df-bc 14338 df-hash 14366 df-shft 15102 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-limsup 15503 df-clim 15520 df-rlim 15521 df-sum 15719 df-ef 16099 df-sin 16101 df-cos 16102 df-tan 16103 df-pi 16104 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-submnd 18809 df-mulg 19098 df-cntz 19347 df-cmn 19814 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-fbas 21378 df-fg 21379 df-cnfld 21382 df-top 22915 df-topon 22932 df-topsp 22954 df-bases 22968 df-cld 23042 df-ntr 23043 df-cls 23044 df-nei 23121 df-lp 23159 df-perf 23160 df-cn 23250 df-cnp 23251 df-haus 23338 df-cmp 23410 df-tx 23585 df-hmeo 23778 df-fil 23869 df-fm 23961 df-flim 23962 df-flf 23963 df-xms 24345 df-ms 24346 df-tms 24347 df-cncf 24917 df-limc 25915 df-dv 25916 df-ulm 26434 df-log 26612 df-cxp 26613 df-lgam 27076 df-gam 27077 |
This theorem is referenced by: gamcvg2 27117 |
Copyright terms: Public domain | W3C validator |