| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gamcvg | Structured version Visualization version GIF version | ||
| Description: The pointwise exponential of the series 𝐺 converges to Γ(𝐴) · 𝐴. (Contributed by Mario Carneiro, 6-Jul-2017.) |
| Ref | Expression |
|---|---|
| lgamcvg.g | ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) |
| lgamcvg.a | ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
| Ref | Expression |
|---|---|
| gamcvg | ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ ((Γ‘𝐴) · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12775 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1zzd 12503 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 3 | efcn 26381 | . . . 4 ⊢ exp ∈ (ℂ–cn→ℂ) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → exp ∈ (ℂ–cn→ℂ)) |
| 5 | lgamcvg.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) | |
| 6 | 5 | eldifad 3914 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℂ) |
| 8 | simpr 484 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ) | |
| 9 | 8 | peano2nnd 12142 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ) |
| 10 | 9 | nnrpd 12932 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℝ+) |
| 11 | 8 | nnrpd 12932 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+) |
| 12 | 10, 11 | rpdivcld 12951 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) / 𝑚) ∈ ℝ+) |
| 13 | 12 | relogcld 26560 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ) |
| 14 | 13 | recnd 11140 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ) |
| 15 | 7, 14 | mulcld 11132 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐴 · (log‘((𝑚 + 1) / 𝑚))) ∈ ℂ) |
| 16 | 8 | nncnd 12141 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ) |
| 17 | 8 | nnne0d 12175 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ≠ 0) |
| 18 | 7, 16, 17 | divcld 11897 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐴 / 𝑚) ∈ ℂ) |
| 19 | 1cnd 11107 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 1 ∈ ℂ) | |
| 20 | 18, 19 | addcld 11131 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐴 / 𝑚) + 1) ∈ ℂ) |
| 21 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
| 22 | 21, 8 | dmgmdivn0 26966 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐴 / 𝑚) + 1) ≠ 0) |
| 23 | 20, 22 | logcld 26507 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (log‘((𝐴 / 𝑚) + 1)) ∈ ℂ) |
| 24 | 15, 23 | subcld 11472 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))) ∈ ℂ) |
| 25 | lgamcvg.g | . . . . . 6 ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) | |
| 26 | 24, 25 | fmptd 7047 | . . . . 5 ⊢ (𝜑 → 𝐺:ℕ⟶ℂ) |
| 27 | 26 | ffvelcdmda 7017 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ ℂ) |
| 28 | 1, 2, 27 | serf 13937 | . . 3 ⊢ (𝜑 → seq1( + , 𝐺):ℕ⟶ℂ) |
| 29 | 25, 5 | lgamcvg 26992 | . . 3 ⊢ (𝜑 → seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))) |
| 30 | lgamcl 26979 | . . . . 5 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘𝐴) ∈ ℂ) | |
| 31 | 5, 30 | syl 17 | . . . 4 ⊢ (𝜑 → (log Γ‘𝐴) ∈ ℂ) |
| 32 | 5 | dmgmn0 26964 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 0) |
| 33 | 6, 32 | logcld 26507 | . . . 4 ⊢ (𝜑 → (log‘𝐴) ∈ ℂ) |
| 34 | 31, 33 | addcld 11131 | . . 3 ⊢ (𝜑 → ((log Γ‘𝐴) + (log‘𝐴)) ∈ ℂ) |
| 35 | 1, 2, 4, 28, 29, 34 | climcncf 24821 | . 2 ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ (exp‘((log Γ‘𝐴) + (log‘𝐴)))) |
| 36 | efadd 16001 | . . . 4 ⊢ (((log Γ‘𝐴) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴)))) | |
| 37 | 31, 33, 36 | syl2anc 584 | . . 3 ⊢ (𝜑 → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴)))) |
| 38 | eflgam 26983 | . . . . 5 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴)) | |
| 39 | 5, 38 | syl 17 | . . . 4 ⊢ (𝜑 → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴)) |
| 40 | eflog 26513 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴) | |
| 41 | 6, 32, 40 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (exp‘(log‘𝐴)) = 𝐴) |
| 42 | 39, 41 | oveq12d 7364 | . . 3 ⊢ (𝜑 → ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴))) = ((Γ‘𝐴) · 𝐴)) |
| 43 | 37, 42 | eqtrd 2766 | . 2 ⊢ (𝜑 → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((Γ‘𝐴) · 𝐴)) |
| 44 | 35, 43 | breqtrd 5117 | 1 ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ ((Γ‘𝐴) · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3899 class class class wbr 5091 ↦ cmpt 5172 ∘ ccom 5620 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 − cmin 11344 / cdiv 11774 ℕcn 12125 ℤcz 12468 seqcseq 13908 ⇝ cli 15391 expce 15968 –cn→ccncf 24797 logclog 26491 log Γclgam 26954 Γcgam 26955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-tan 15978 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19230 df-cmn 19695 df-psmet 21284 df-xmet 21285 df-met 21286 df-bl 21287 df-mopn 21288 df-fbas 21289 df-fg 21290 df-cnfld 21293 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lp 23052 df-perf 23053 df-cn 23143 df-cnp 23144 df-haus 23231 df-cmp 23303 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 df-limc 25795 df-dv 25796 df-ulm 26314 df-log 26493 df-cxp 26494 df-lgam 26957 df-gam 26958 |
| This theorem is referenced by: gamcvg2 26998 |
| Copyright terms: Public domain | W3C validator |