Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gamcvg | Structured version Visualization version GIF version |
Description: The pointwise exponential of the series 𝐺 converges to Γ(𝐴) · 𝐴. (Contributed by Mario Carneiro, 6-Jul-2017.) |
Ref | Expression |
---|---|
lgamcvg.g | ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) |
lgamcvg.a | ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
Ref | Expression |
---|---|
gamcvg | ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ ((Γ‘𝐴) · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12550 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 12281 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
3 | efcn 25507 | . . . 4 ⊢ exp ∈ (ℂ–cn→ℂ) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → exp ∈ (ℂ–cn→ℂ)) |
5 | lgamcvg.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) | |
6 | 5 | eldifad 3895 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ ℂ) |
8 | simpr 484 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ) | |
9 | 8 | peano2nnd 11920 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ) |
10 | 9 | nnrpd 12699 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℝ+) |
11 | 8 | nnrpd 12699 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+) |
12 | 10, 11 | rpdivcld 12718 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) / 𝑚) ∈ ℝ+) |
13 | 12 | relogcld 25683 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ) |
14 | 13 | recnd 10934 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ) |
15 | 7, 14 | mulcld 10926 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐴 · (log‘((𝑚 + 1) / 𝑚))) ∈ ℂ) |
16 | 8 | nncnd 11919 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ) |
17 | 8 | nnne0d 11953 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ≠ 0) |
18 | 7, 16, 17 | divcld 11681 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐴 / 𝑚) ∈ ℂ) |
19 | 1cnd 10901 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 1 ∈ ℂ) | |
20 | 18, 19 | addcld 10925 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐴 / 𝑚) + 1) ∈ ℂ) |
21 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
22 | 21, 8 | dmgmdivn0 26082 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐴 / 𝑚) + 1) ≠ 0) |
23 | 20, 22 | logcld 25631 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (log‘((𝐴 / 𝑚) + 1)) ∈ ℂ) |
24 | 15, 23 | subcld 11262 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))) ∈ ℂ) |
25 | lgamcvg.g | . . . . . 6 ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) | |
26 | 24, 25 | fmptd 6970 | . . . . 5 ⊢ (𝜑 → 𝐺:ℕ⟶ℂ) |
27 | 26 | ffvelrnda 6943 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ ℂ) |
28 | 1, 2, 27 | serf 13679 | . . 3 ⊢ (𝜑 → seq1( + , 𝐺):ℕ⟶ℂ) |
29 | 25, 5 | lgamcvg 26108 | . . 3 ⊢ (𝜑 → seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴))) |
30 | lgamcl 26095 | . . . . 5 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘𝐴) ∈ ℂ) | |
31 | 5, 30 | syl 17 | . . . 4 ⊢ (𝜑 → (log Γ‘𝐴) ∈ ℂ) |
32 | 5 | dmgmn0 26080 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 0) |
33 | 6, 32 | logcld 25631 | . . . 4 ⊢ (𝜑 → (log‘𝐴) ∈ ℂ) |
34 | 31, 33 | addcld 10925 | . . 3 ⊢ (𝜑 → ((log Γ‘𝐴) + (log‘𝐴)) ∈ ℂ) |
35 | 1, 2, 4, 28, 29, 34 | climcncf 23969 | . 2 ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ (exp‘((log Γ‘𝐴) + (log‘𝐴)))) |
36 | efadd 15731 | . . . 4 ⊢ (((log Γ‘𝐴) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴)))) | |
37 | 31, 33, 36 | syl2anc 583 | . . 3 ⊢ (𝜑 → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴)))) |
38 | eflgam 26099 | . . . . 5 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴)) | |
39 | 5, 38 | syl 17 | . . . 4 ⊢ (𝜑 → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴)) |
40 | eflog 25637 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴) | |
41 | 6, 32, 40 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (exp‘(log‘𝐴)) = 𝐴) |
42 | 39, 41 | oveq12d 7273 | . . 3 ⊢ (𝜑 → ((exp‘(log Γ‘𝐴)) · (exp‘(log‘𝐴))) = ((Γ‘𝐴) · 𝐴)) |
43 | 37, 42 | eqtrd 2778 | . 2 ⊢ (𝜑 → (exp‘((log Γ‘𝐴) + (log‘𝐴))) = ((Γ‘𝐴) · 𝐴)) |
44 | 35, 43 | breqtrd 5096 | 1 ⊢ (𝜑 → (exp ∘ seq1( + , 𝐺)) ⇝ ((Γ‘𝐴) · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 class class class wbr 5070 ↦ cmpt 5153 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 − cmin 11135 / cdiv 11562 ℕcn 11903 ℤcz 12249 seqcseq 13649 ⇝ cli 15121 expce 15699 –cn→ccncf 23945 logclog 25615 log Γclgam 26070 Γcgam 26071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-tan 15709 df-pi 15710 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-cmp 22446 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-ulm 25441 df-log 25617 df-cxp 25618 df-lgam 26073 df-gam 26074 |
This theorem is referenced by: gamcvg2 26114 |
Copyright terms: Public domain | W3C validator |