| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zncrng | Structured version Visualization version GIF version | ||
| Description: ℤ/nℤ is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| zncrng.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| Ref | Expression |
|---|---|
| zncrng | ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z 12622 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 2 | eqid 2734 | . . . 4 ⊢ (RSpan‘ℤring) = (RSpan‘ℤring) | |
| 3 | eqid 2734 | . . . 4 ⊢ (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) | |
| 4 | 2, 3 | zncrng2 21516 | . . 3 ⊢ (𝑁 ∈ ℤ → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ∈ CRing) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ∈ CRing) |
| 6 | eqidd 2735 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))) | |
| 7 | zncrng.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 8 | 2, 3, 7 | znbas2 21522 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘𝑌)) |
| 9 | 2, 3, 7 | znadd 21524 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (+g‘𝑌)) |
| 10 | 9 | oveqdr 7442 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑦 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑥(+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑦) = (𝑥(+g‘𝑌)𝑦)) |
| 11 | 2, 3, 7 | znmul 21526 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (.r‘𝑌)) |
| 12 | 11 | oveqdr 7442 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑦 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑥(.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑦) = (𝑥(.r‘𝑌)𝑦)) |
| 13 | 6, 8, 10, 12 | crngpropd 20259 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ∈ CRing ↔ 𝑌 ∈ CRing)) |
| 14 | 5, 13 | mpbid 232 | 1 ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {csn 4608 ‘cfv 6542 (class class class)co 7414 ℕ0cn0 12510 ℤcz 12597 Basecbs 17230 +gcplusg 17277 .rcmulr 17278 /s cqus 17526 ~QG cqg 19114 CRingccrg 20204 RSpancrsp 21184 ℤringczring 21424 ℤ/nℤczn 21480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-addf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-tpos 8234 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-ec 8730 df-qs 8734 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-fz 13531 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-starv 17292 df-sca 17293 df-vsca 17294 df-ip 17295 df-tset 17296 df-ple 17297 df-ds 17299 df-unif 17300 df-0g 17462 df-imas 17529 df-qus 17530 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-grp 18928 df-minusg 18929 df-sbg 18930 df-subg 19115 df-nsg 19116 df-eqg 19117 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20123 df-ur 20152 df-ring 20205 df-cring 20206 df-oppr 20307 df-subrng 20519 df-subrg 20543 df-lmod 20833 df-lss 20903 df-lsp 20943 df-sra 21145 df-rgmod 21146 df-lidl 21185 df-rsp 21186 df-2idl 21227 df-cnfld 21332 df-zring 21425 df-zn 21484 |
| This theorem is referenced by: zncyg 21534 zndvds0 21536 znf1o 21537 zzngim 21538 znfld 21546 znchr 21548 znunit 21549 znrrg 21551 cygznlem3 21555 dchrelbas3 27237 dchrelbasd 27238 dchrzrh1 27243 dchrzrhmul 27245 dchrmulcl 27248 dchrn0 27249 dchrfi 27254 dchrghm 27255 dchrabs 27259 dchrinv 27260 dchrptlem1 27263 dchrptlem2 27264 dchrptlem3 27265 dchrpt 27266 dchrsum2 27267 dchrhash 27270 sum2dchr 27273 lgsdchr 27354 dchrisum0flblem1 27507 dchrisum0re 27512 znfermltl 33335 ply1fermltl 33550 hashscontpowcl 42062 hashscontpow 42064 aks6d1c4 42066 aks6d1c2 42072 aks6d1c6lem3 42114 aks6d1c6lem5 42119 aks6d1c7lem1 42122 aks5lem2 42129 aks5lem3a 42131 aks5lem5a 42133 frlmpwfi 43055 isnumbasgrplem3 43062 cznabel 48122 cznrng 48123 |
| Copyright terms: Public domain | W3C validator |