MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zncrng Structured version   Visualization version   GIF version

Theorem zncrng 20694
Description: ℤ/n is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
zncrng.y 𝑌 = (ℤ/nℤ‘𝑁)
Assertion
Ref Expression
zncrng (𝑁 ∈ ℕ0𝑌 ∈ CRing)

Proof of Theorem zncrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0z 12008 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 eqid 2824 . . . 4 (RSpan‘ℤring) = (RSpan‘ℤring)
3 eqid 2824 . . . 4 (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
42, 3zncrng2 20684 . . 3 (𝑁 ∈ ℤ → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ∈ CRing)
51, 4syl 17 . 2 (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ∈ CRing)
6 eqidd 2825 . . 3 (𝑁 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))
7 zncrng.y . . . 4 𝑌 = (ℤ/nℤ‘𝑁)
82, 3, 7znbas2 20689 . . 3 (𝑁 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘𝑌))
92, 3, 7znadd 20690 . . . 4 (𝑁 ∈ ℕ0 → (+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (+g𝑌))
109oveqdr 7187 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑦 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑥(+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑦) = (𝑥(+g𝑌)𝑦))
112, 3, 7znmul 20691 . . . 4 (𝑁 ∈ ℕ0 → (.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (.r𝑌))
1211oveqdr 7187 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑦 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑥(.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑦) = (𝑥(.r𝑌)𝑦))
136, 8, 10, 12crngpropd 19336 . 2 (𝑁 ∈ ℕ0 → ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ∈ CRing ↔ 𝑌 ∈ CRing))
145, 13mpbid 234 1 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  {csn 4570  cfv 6358  (class class class)co 7159  0cn0 11900  cz 11984  Basecbs 16486  +gcplusg 16568  .rcmulr 16569   /s cqus 16781   ~QG cqg 18278  CRingccrg 19301  RSpancrsp 19946  ringzring 20620  ℤ/nczn 20653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-tpos 7895  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-ec 8294  df-qs 8298  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-0g 16718  df-imas 16784  df-qus 16785  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-grp 18109  df-minusg 18110  df-sbg 18111  df-subg 18279  df-nsg 18280  df-eqg 18281  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-cring 19303  df-oppr 19376  df-subrg 19536  df-lmod 19639  df-lss 19707  df-lsp 19747  df-sra 19947  df-rgmod 19948  df-lidl 19949  df-rsp 19950  df-2idl 20008  df-cnfld 20549  df-zring 20621  df-zn 20657
This theorem is referenced by:  zncyg  20698  zndvds0  20700  znf1o  20701  zzngim  20702  znfld  20710  znchr  20712  znunit  20713  znrrg  20715  cygznlem3  20719  dchrelbas3  25817  dchrelbasd  25818  dchrzrh1  25823  dchrzrhmul  25825  dchrmulcl  25828  dchrn0  25829  dchrfi  25834  dchrghm  25835  dchrabs  25839  dchrinv  25840  dchrptlem1  25843  dchrptlem2  25844  dchrptlem3  25845  dchrpt  25846  dchrsum2  25847  dchrhash  25850  sum2dchr  25853  lgsdchr  25934  dchrisum0flblem1  26087  dchrisum0re  26092  frlmpwfi  39704  isnumbasgrplem3  39711  cznabel  44232  cznrng  44233
  Copyright terms: Public domain W3C validator