MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zncrng Structured version   Visualization version   GIF version

Theorem zncrng 21454
Description: ℤ/n is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
zncrng.y 𝑌 = (ℤ/nℤ‘𝑁)
Assertion
Ref Expression
zncrng (𝑁 ∈ ℕ0𝑌 ∈ CRing)

Proof of Theorem zncrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0z 12554 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 eqid 2729 . . . 4 (RSpan‘ℤring) = (RSpan‘ℤring)
3 eqid 2729 . . . 4 (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
42, 3zncrng2 21444 . . 3 (𝑁 ∈ ℤ → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ∈ CRing)
51, 4syl 17 . 2 (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ∈ CRing)
6 eqidd 2730 . . 3 (𝑁 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))
7 zncrng.y . . . 4 𝑌 = (ℤ/nℤ‘𝑁)
82, 3, 7znbas2 21449 . . 3 (𝑁 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘𝑌))
92, 3, 7znadd 21450 . . . 4 (𝑁 ∈ ℕ0 → (+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (+g𝑌))
109oveqdr 7415 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑦 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑥(+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑦) = (𝑥(+g𝑌)𝑦))
112, 3, 7znmul 21451 . . . 4 (𝑁 ∈ ℕ0 → (.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (.r𝑌))
1211oveqdr 7415 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑦 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑥(.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑦) = (𝑥(.r𝑌)𝑦))
136, 8, 10, 12crngpropd 20198 . 2 (𝑁 ∈ ℕ0 → ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ∈ CRing ↔ 𝑌 ∈ CRing))
145, 13mpbid 232 1 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4589  cfv 6511  (class class class)co 7387  0cn0 12442  cz 12529  Basecbs 17179  +gcplusg 17220  .rcmulr 17221   /s cqus 17468   ~QG cqg 19054  CRingccrg 20143  RSpancrsp 21117  ringczring 21356  ℤ/nczn 21412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-ec 8673  df-qs 8677  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-imas 17471  df-qus 17472  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-nsg 19056  df-eqg 19057  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160  df-cnfld 21265  df-zring 21357  df-zn 21416
This theorem is referenced by:  zncyg  21458  zndvds0  21460  znf1o  21461  zzngim  21462  znfld  21470  znchr  21472  znunit  21473  znrrg  21475  cygznlem3  21479  dchrelbas3  27149  dchrelbasd  27150  dchrzrh1  27155  dchrzrhmul  27157  dchrmulcl  27160  dchrn0  27161  dchrfi  27166  dchrghm  27167  dchrabs  27171  dchrinv  27172  dchrptlem1  27175  dchrptlem2  27176  dchrptlem3  27177  dchrpt  27178  dchrsum2  27179  dchrhash  27182  sum2dchr  27185  lgsdchr  27266  dchrisum0flblem1  27419  dchrisum0re  27424  znfermltl  33337  ply1fermltl  33553  hashscontpowcl  42108  hashscontpow  42110  aks6d1c4  42112  aks6d1c2  42118  aks6d1c6lem3  42160  aks6d1c6lem5  42165  aks6d1c7lem1  42168  aks5lem2  42175  aks5lem3a  42177  aks5lem5a  42179  frlmpwfi  43087  isnumbasgrplem3  43094  cznabel  48248  cznrng  48249
  Copyright terms: Public domain W3C validator