MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zncrng Structured version   Visualization version   GIF version

Theorem zncrng 21483
Description: ℤ/n is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
zncrng.y 𝑌 = (ℤ/nℤ‘𝑁)
Assertion
Ref Expression
zncrng (𝑁 ∈ ℕ0𝑌 ∈ CRing)

Proof of Theorem zncrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0z 12619 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 eqid 2727 . . . 4 (RSpan‘ℤring) = (RSpan‘ℤring)
3 eqid 2727 . . . 4 (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
42, 3zncrng2 21469 . . 3 (𝑁 ∈ ℤ → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ∈ CRing)
51, 4syl 17 . 2 (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ∈ CRing)
6 eqidd 2728 . . 3 (𝑁 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))
7 zncrng.y . . . 4 𝑌 = (ℤ/nℤ‘𝑁)
82, 3, 7znbas2 21475 . . 3 (𝑁 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘𝑌))
92, 3, 7znadd 21477 . . . 4 (𝑁 ∈ ℕ0 → (+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (+g𝑌))
109oveqdr 7452 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑦 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑥(+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑦) = (𝑥(+g𝑌)𝑦))
112, 3, 7znmul 21479 . . . 4 (𝑁 ∈ ℕ0 → (.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (.r𝑌))
1211oveqdr 7452 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑦 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑥(.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑦) = (𝑥(.r𝑌)𝑦))
136, 8, 10, 12crngpropd 20230 . 2 (𝑁 ∈ ℕ0 → ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ∈ CRing ↔ 𝑌 ∈ CRing))
145, 13mpbid 231 1 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {csn 4630  cfv 6551  (class class class)co 7424  0cn0 12508  cz 12594  Basecbs 17185  +gcplusg 17238  .rcmulr 17239   /s cqus 17492   ~QG cqg 19082  CRingccrg 20179  RSpancrsp 21108  ringczring 21377  ℤ/nczn 21433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-addf 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-tpos 8236  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-ec 8731  df-qs 8735  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9471  df-inf 9472  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12509  df-z 12595  df-dec 12714  df-uz 12859  df-fz 13523  df-struct 17121  df-sets 17138  df-slot 17156  df-ndx 17168  df-base 17186  df-ress 17215  df-plusg 17251  df-mulr 17252  df-starv 17253  df-sca 17254  df-vsca 17255  df-ip 17256  df-tset 17257  df-ple 17258  df-ds 17260  df-unif 17261  df-0g 17428  df-imas 17495  df-qus 17496  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-grp 18898  df-minusg 18899  df-sbg 18900  df-subg 19083  df-nsg 19084  df-eqg 19085  df-cmn 19742  df-abl 19743  df-mgp 20080  df-rng 20098  df-ur 20127  df-ring 20180  df-cring 20181  df-oppr 20278  df-subrng 20488  df-subrg 20513  df-lmod 20750  df-lss 20821  df-lsp 20861  df-sra 21063  df-rgmod 21064  df-lidl 21109  df-rsp 21110  df-2idl 21149  df-cnfld 21285  df-zring 21378  df-zn 21437
This theorem is referenced by:  zncyg  21487  zndvds0  21489  znf1o  21490  zzngim  21491  znfld  21499  znchr  21501  znunit  21502  znrrg  21504  cygznlem3  21508  dchrelbas3  27189  dchrelbasd  27190  dchrzrh1  27195  dchrzrhmul  27197  dchrmulcl  27200  dchrn0  27201  dchrfi  27206  dchrghm  27207  dchrabs  27211  dchrinv  27212  dchrptlem1  27215  dchrptlem2  27216  dchrptlem3  27217  dchrpt  27218  dchrsum2  27219  dchrhash  27222  sum2dchr  27225  lgsdchr  27306  dchrisum0flblem1  27459  dchrisum0re  27464  znfermltl  33096  ply1fermltl  33267  hashscontpowcl  41595  hashscontpow  41597  aks6d1c4  41599  aks6d1c2  41605  aks6d1c6lem3  41648  aks6d1c6lem5  41653  aks6d1c7lem1  41656  frlmpwfi  42525  isnumbasgrplem3  42532  cznabel  47373  cznrng  47374
  Copyright terms: Public domain W3C validator