![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zncrng | Structured version Visualization version GIF version |
Description: ℤ/nℤ is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
zncrng.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
Ref | Expression |
---|---|
zncrng | ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 12619 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
2 | eqid 2727 | . . . 4 ⊢ (RSpan‘ℤring) = (RSpan‘ℤring) | |
3 | eqid 2727 | . . . 4 ⊢ (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) | |
4 | 2, 3 | zncrng2 21469 | . . 3 ⊢ (𝑁 ∈ ℤ → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ∈ CRing) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ∈ CRing) |
6 | eqidd 2728 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))) | |
7 | zncrng.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
8 | 2, 3, 7 | znbas2 21475 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘𝑌)) |
9 | 2, 3, 7 | znadd 21477 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (+g‘𝑌)) |
10 | 9 | oveqdr 7452 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑦 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑥(+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑦) = (𝑥(+g‘𝑌)𝑦)) |
11 | 2, 3, 7 | znmul 21479 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (.r‘𝑌)) |
12 | 11 | oveqdr 7452 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑦 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑥(.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑦) = (𝑥(.r‘𝑌)𝑦)) |
13 | 6, 8, 10, 12 | crngpropd 20230 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ∈ CRing ↔ 𝑌 ∈ CRing)) |
14 | 5, 13 | mpbid 231 | 1 ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {csn 4630 ‘cfv 6551 (class class class)co 7424 ℕ0cn0 12508 ℤcz 12594 Basecbs 17185 +gcplusg 17238 .rcmulr 17239 /s cqus 17492 ~QG cqg 19082 CRingccrg 20179 RSpancrsp 21108 ℤringczring 21377 ℤ/nℤczn 21433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-addf 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-tpos 8236 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-er 8729 df-ec 8731 df-qs 8735 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9471 df-inf 9472 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12509 df-z 12595 df-dec 12714 df-uz 12859 df-fz 13523 df-struct 17121 df-sets 17138 df-slot 17156 df-ndx 17168 df-base 17186 df-ress 17215 df-plusg 17251 df-mulr 17252 df-starv 17253 df-sca 17254 df-vsca 17255 df-ip 17256 df-tset 17257 df-ple 17258 df-ds 17260 df-unif 17261 df-0g 17428 df-imas 17495 df-qus 17496 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-grp 18898 df-minusg 18899 df-sbg 18900 df-subg 19083 df-nsg 19084 df-eqg 19085 df-cmn 19742 df-abl 19743 df-mgp 20080 df-rng 20098 df-ur 20127 df-ring 20180 df-cring 20181 df-oppr 20278 df-subrng 20488 df-subrg 20513 df-lmod 20750 df-lss 20821 df-lsp 20861 df-sra 21063 df-rgmod 21064 df-lidl 21109 df-rsp 21110 df-2idl 21149 df-cnfld 21285 df-zring 21378 df-zn 21437 |
This theorem is referenced by: zncyg 21487 zndvds0 21489 znf1o 21490 zzngim 21491 znfld 21499 znchr 21501 znunit 21502 znrrg 21504 cygznlem3 21508 dchrelbas3 27189 dchrelbasd 27190 dchrzrh1 27195 dchrzrhmul 27197 dchrmulcl 27200 dchrn0 27201 dchrfi 27206 dchrghm 27207 dchrabs 27211 dchrinv 27212 dchrptlem1 27215 dchrptlem2 27216 dchrptlem3 27217 dchrpt 27218 dchrsum2 27219 dchrhash 27222 sum2dchr 27225 lgsdchr 27306 dchrisum0flblem1 27459 dchrisum0re 27464 znfermltl 33096 ply1fermltl 33267 hashscontpowcl 41595 hashscontpow 41597 aks6d1c4 41599 aks6d1c2 41605 aks6d1c6lem3 41648 aks6d1c6lem5 41653 aks6d1c7lem1 41656 frlmpwfi 42525 isnumbasgrplem3 42532 cznabel 47373 cznrng 47374 |
Copyright terms: Public domain | W3C validator |