| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zncrng | Structured version Visualization version GIF version | ||
| Description: ℤ/nℤ is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| zncrng.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| Ref | Expression |
|---|---|
| zncrng | ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z 12554 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 2 | eqid 2729 | . . . 4 ⊢ (RSpan‘ℤring) = (RSpan‘ℤring) | |
| 3 | eqid 2729 | . . . 4 ⊢ (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) | |
| 4 | 2, 3 | zncrng2 21444 | . . 3 ⊢ (𝑁 ∈ ℤ → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ∈ CRing) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ∈ CRing) |
| 6 | eqidd 2730 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))) | |
| 7 | zncrng.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 8 | 2, 3, 7 | znbas2 21449 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘𝑌)) |
| 9 | 2, 3, 7 | znadd 21450 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (+g‘𝑌)) |
| 10 | 9 | oveqdr 7415 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑦 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑥(+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑦) = (𝑥(+g‘𝑌)𝑦)) |
| 11 | 2, 3, 7 | znmul 21451 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (.r‘𝑌)) |
| 12 | 11 | oveqdr 7415 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑦 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑥(.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑦) = (𝑥(.r‘𝑌)𝑦)) |
| 13 | 6, 8, 10, 12 | crngpropd 20198 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ∈ CRing ↔ 𝑌 ∈ CRing)) |
| 14 | 5, 13 | mpbid 232 | 1 ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4589 ‘cfv 6511 (class class class)co 7387 ℕ0cn0 12442 ℤcz 12529 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 /s cqus 17468 ~QG cqg 19054 CRingccrg 20143 RSpancrsp 21117 ℤringczring 21356 ℤ/nℤczn 21412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-ec 8673 df-qs 8677 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-imas 17471 df-qus 17472 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-nsg 19056 df-eqg 19057 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-subrng 20455 df-subrg 20479 df-lmod 20768 df-lss 20838 df-lsp 20878 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-rsp 21119 df-2idl 21160 df-cnfld 21265 df-zring 21357 df-zn 21416 |
| This theorem is referenced by: zncyg 21458 zndvds0 21460 znf1o 21461 zzngim 21462 znfld 21470 znchr 21472 znunit 21473 znrrg 21475 cygznlem3 21479 dchrelbas3 27149 dchrelbasd 27150 dchrzrh1 27155 dchrzrhmul 27157 dchrmulcl 27160 dchrn0 27161 dchrfi 27166 dchrghm 27167 dchrabs 27171 dchrinv 27172 dchrptlem1 27175 dchrptlem2 27176 dchrptlem3 27177 dchrpt 27178 dchrsum2 27179 dchrhash 27182 sum2dchr 27185 lgsdchr 27266 dchrisum0flblem1 27419 dchrisum0re 27424 znfermltl 33337 ply1fermltl 33553 hashscontpowcl 42108 hashscontpow 42110 aks6d1c4 42112 aks6d1c2 42118 aks6d1c6lem3 42160 aks6d1c6lem5 42165 aks6d1c7lem1 42168 aks5lem2 42175 aks5lem3a 42177 aks5lem5a 42179 frlmpwfi 43087 isnumbasgrplem3 43094 cznabel 48248 cznrng 48249 |
| Copyright terms: Public domain | W3C validator |